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Abstract

This paper provides a detailed comparison in a solids mechanics context of adaptive mesh
refinement methods for all-quadrilateral and all-hexahedral meshes. The adaptive multigrid
Local Defect Correction method and the well-known hierarchical h-adaptive refinement tech-
niques are placed into a generic algorithmic setting for an objective numerical comparison.
Such a comparison is of great interest as local multigrid AMR approaches are from now rarely
employed to adaptively solve implicit systems in solid mechanics. However they present var-
ious interesting features mainly related to their intrinsic idea of partitioning the degrees of
freedom on different mesh levels. For this study, we rely on a fully-automatic mesh refinement
algorithm providing the desired refined mesh directly from the user-prescribed accuracy. The
refinement process is driven by an a posteriori error estimator combined to mesh optimality
criteria. In this study, the most efficient strategy based on mesh optimality criterion and
refinement ratio is identified for all-quadrilateral and all-hexahedral finite elements meshes.
The quality of refined meshes is finally appreciated in term of number of nodes but also
through the verification of final solution’s accuracy. A special attention is devoted to the
fulfillment of local precisions which are of great importance from an engineering point of
view. Numerical 2D and 3D experiments of different complexities revealing local phenomena
enable to highlight the essential features of the considered mesh refinement methods within
an elastostatic framework. This study points out the great potentialities of locally adaptive
multigrid method, which clearly appears to be the most powerful strategy in terms of stan-
dard metrics of efficiency (dimension of systems to be solved, storage requirements, CPU
time).

Keywords: Adaptive mesh refinement, h-adaptive methods, local multigrid method, mesh
optimality criterion, local error, all-quadrilateral and all-hexahedral mesh
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1 Introduction
Numerical simulations become extensively used for solving challenging problems in physics and
engineering. This is particularly the case for non-linear or non-smooth behaviors, complex ge-
ometries and bolted or bonded connections. For these last examples, an accurate local solution is
often necessary. Problem resolution must combine a discretization technique (finite elements, etc.)
and a high-performance solver. There are then questions about the reliability, accuracy, cost and
memory space of the resolution methods. For obvious reasons of cost and memory space, it is often
impossible to use a uniform very fine discretization. To overcome this issue, one technique consists
in looking for an optimal mesh, which is a mesh for which the discretization error is lower than a
prescribed tolerance with a minimal number of elements. Obviously, the knowledge of this mesh is
a priori impossible. A common approach is to get that optimal discretization during computations
by relying on one of the adaptive mesh refinement (AMR) methods. These well-known numerical
tools enable to automatically adjust the mesh through enriching it in critical regions where the
solution is less regular and the error is high.

Among popular state-of-the-art adaptive techniques (e.g. [1, 2, 3, 4, 5]), see Figure 1a, aiming
to reduce the discretization error (behaving as O(hp) (with h being the mesh step and p being the
degree of interpolation function)), h-adaptive approaches (e.g. [1, 6, 7]) have gained widespread
success in engineering thanks to their simplicity and efficiency. These methods enable to achieve
optimal convergence rates, in particular when singularities are present [8]. They work on the mesh
size h, thus they are easily implementable over existing industrial solvers. Moreover, these ap-
proaches usually involve linear or quadratic elements. Higher-order elements (generally required
for p or hp-adaptivity) are quite rarely employed in practice within the solid mechanics community,
due to lacking smoothness of the underlying solution and potential locking effect [9]. An attrac-
tive alternative to widely used h-adaptive strategies are locally adaptive multigrid (or multilevel)
methods (e.g. [10, 11, 12, 13]). They consist in enriching the mesh in regions of interest by adding
nested local meshes with finer and finer mesh sizes, see Figure 1b. The problems on the different
levels of refinement are solved separately in a sequential manner and linked to each other through
an iterative process [14] based on transfer operators. These transfer operators only act as pre- and
post-treatments making the implementation of such techniques non-intrusive over existing solvers.

Locally adaptive multigrid methods have been initially introduced and applied for problems in
computational fluid dynamics and have only been recently successfully extended to solids mechan-
ics [15, 16, 17]. Among the existing locally adaptive multigrid approaches [13], the Local Defect
Correction (LDC) method [18] seems to be the most pertinent choice for solid mechanics problems
with localized effects [15].

As h-adaptive techniques, the LDC method also targets mesh-size h, but exploits a conceptually
different multilevel resolution. From a theoretical point of view, the LDC method can be seen as a
partitioned conforming resolution of hierarchical non-conforming h-adaptive strategies [19]. Both
methods have then the same a priori error estimator: they converge with the same order in local
and global mesh steps. In spite of the theoretical aforementioned common features, to the best of
our knowledge, the LDC method has never been numerically compared to h-adaptive methods.

One of the novelties of our paper is to rigorously compare the performance of locally adaptive
multigrid LDC method, and hierarchical h-adaptive approaches. Applications to 2D and 3D
problems with different complexities prove the consistency and importance of the proposed study.
It is worth highlighting that in the proposed comparison, the error is measured in energy norm
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Figure 1: (a) Adaptive methods: h-, p-, r-, s-refinement approaches; (b) Local multigrid method

(equivalent to the H1 semi-norm), which is usually the variable of interest in engineering.
Another novelty of our study is to carry out an in-depth study of local multigrid methods and

to show the potential of the LDC method as a method for solving complex engineering problems.
Moreover, we pay a special attention to control the local element-wise error and the associated

critical region where this error may be high. As mentioned before, sufficiently accurate solution
in such regions is often required and has to be controlled. However, it is often never checked in
the literature. Generally, only the global accuracy of the solution is looked at on the final refined
mesh.

Note that mesh coarsening (also called unrefinement) is not considered here. In addition, mesh
adaptation over time is beyond the scope of this paper and will be considered in future studies.

Motivated by a growing interest for quadrilateral/hexahedral meshes, it was decided in this
study to deal exclusively with this kind of elements (hybrid meshes, as for example in [20], are
excluded). Indeed, such elements are appealing for their tensor-product structure (low bandwidth
matrix, efficiency, refinement flexibility [21, 22, 23]) and offer great advantages in industrial appli-
cations (remarkable modeling properties [24, 25, 26], no special difficulty to deal with unilateral
contact relations [17, 27], plasticity [28], etc). A bilinear (or trilinear) approximation, by so-called
Q1 finite elements, is performed.

In this article we adopt a so-called hierarchical mesh refinement scheme [29, 30] which consists
in directly subdividing elements requiring refinement. This strategy generally results in optimal
refined meshes and enables to better control the mesh refinement thanks to an explicit hierarchical
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data-structure.
Two ways to generate all-quad/hexa h-adaptive meshes are considered in this study, see Fig-

ure 1a. The most straightforward strategy, named here hierarchical non-conforming h-adaptive
technique, leads to non-conforming meshes which required artificial constraints to maintain the
solution continuity. Another approach, named here hierarchical conforming h-adaptive technique,
aims to restore the mesh conformity, which is generally a challenging task while dealing with all-
quad/hexa meshes. In this contribution we decided to avoid the use of refinement template-based
schemes, cf. for example the Schneiders’ approach [31] for structured meshes and its extension for
non-structured meshes [32], which are nontrivial to implement and require a dedicated mesh gen-
erator. We adopt refinement techniques based on layers refinement (see the review paper of [33]),
consisting in substituting some layers (so-called sheets) of elements by layers made of more refined
elements, see dicing [34], pillowing [35] or matching [36] algorithms.

This paper provides a generic fully-automatic refinement algorithm effective for the three AMR
approaches considered here. The mesh adaptation is driven by an a posteriori error estimator,
which enables to assess the discretization error. As in other types of AMR comparative studies
[37, 38, 39], only one estimator is tested since the objective of this paper is the comparison of mesh
adaptive methods and not of estimators. Based on the estimated element-wise a posteriori error
distribution, elements to be refined are marked relying on mesh optimality criteria [40, 41, 42]
which are directly linked to the user-prescribed error tolerance. Such marking strategy allows us
to precisely reach the desired accuracy and to avoid appearance of the so-called pollution error [43],
arising especially while using nested refinement levels as required for the LDC method.

The remaining part of this paper is organized as follows. Section 2 is devoted to the introduction
of the generic refinement algorithm. Section 2.1 presents resolution algorithms for each considered
AMR method. Sections 2.2 to 2.5.1 define the error estimator, the marking strategy (linked to
mesh optimality criterion) and the choice of the refinement ratio, respectively. They are common
to the three AMR techniques. Then, sections 2.5.2 to 2.5.5 details the generation of the refined
meshes for each refinement method considered here. The in-depth computational comparison
based on several (2D and 3D) experiments revealing stress concentration or singularities in a
linear elastostatic framework is presented and discussed in Section 3. Finally, conclusions are
given.

2 Adaptive mesh refinement algorithm
An adaptive mesh refinement method generally follows the well-established iterative refinement
loop based on following steps, see Figure 2.

SOLVE ESTIMATE MARK STOP REFINE

POST-PROCESSING

YES

NO

Figure 2: Generic adaptive mesh refinement algorithm

It consists in generating a sequence of approximate solutions {ui}ki=0 which aims to converge
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toward an acceptable (up to desired accuracy) solution. Thus, starting from an initial discretization
G0 of a domain Ω ⊂ RD, with D being the dimension of the problem, a series of global meshes with
more and more locally refined elements {Gi}ki=1 is produced, see examples in Figs. 13, 14 and 21.
The sub-meshes Ĝi, 1 ≤ i ≤ k, gather the refined elements of refinement step i (Ĝi ⊂ Gi). The
solution uk approximated on the last mesh Gk aims to satisfy the prescribed accuracy requirements.
Let Ti be an element of the mesh Gi, 0 ≤ i ≤ k.

Relying on common steps included into the refinement procedure depicted in Figure 2, we
propose here a generic fully-automatic refinement algorithm (Algorithm 1) applicable for the AMR
methods considered here (h-adaptive approaches and local multigrid techniques). The refinement
process aims to satisfy a user-defined accuracy through verifying (at each refinement iteration) the
achievement of global and local error tolerances.

Algorithm 1 Adaptive mesh refinement algorithm
Input: user-defined global error tolerance εΩ, user-defined local volume control pa-
rameter δ, initial mesh G0
Output: Converged numerical solution
Set i := 0
Ĝ0 ← G0
boolean stop := false
while not stop do
• ui := SOLVEMETHOD(Gi or {Ĝg}ig=0)
• {ξT i}T i∈Gi

:= ESTIMATE(ui,Gi)
• M0

i := MARK(ui, {ξT i}T i∈Gi
,Gi)

• stop := STOP({ξT i}T i∈Gi
,M0

i , εΩ, δ)
if stop = true then exit end if

• Gi+1, Ĝi+1 := REFINEMETHOD(Mi, {βT i}T i∈Mi
,Gi, Ĝi)

• i← i+ 1
end while

To make this paper self-contained, each of the used modules is presented in a detailed manner
in the following sections.

2.1 Discrete solution : module SOLVE
A generic boundary-value problem of the following form is considered:

(P) :

L(u) = f in Ω
Boundary conditions on ∂Ω

(1)

with Ω being a bounded domain in RD (with D – the dimension) and boundary ∂Ω. We denote by
u the problem’s solution, by L a (non-linear) differential operator and f a right-hand side. Any
type of boundary conditions are considered on ∂Ω while problem (P) is well-posed.

After discretization, the following discrete problem has to be solved on a triangulation (or
quadrangulation) Gi of the domain Ω:

(Pi) :

Li(ui) = fi in Gi
Boundary conditions on ∂Gi

(2)
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with Li and fi – the discretized operator and right-hand side, respectively. Then, ui is called
approximation of u.

The module SOLVE stands for application of a numerical method to solve the discrete prob-
lem (2):

ui := SOLVEMETHOD(Gi or {Ĝg}ig=0) (3)

2.1.1 h-adaptive methods

Hierarchical non-conforming h-adaptive method: module SOLVENCHAM

Generally, the hierarchical non-conforming h-adaptive method (NCHAM) leads to optimal
meshes in terms of number of degrees of freedom. However, since the appearance of hanging
nodes is unavoidable, it requires the use of solver dedicated to non-conforming meshes. Several
approaches to manage the non-conformity relations exist (e.g. [44, 45, 46, 47, 48] and the refer-
ences therein). In this study, Lagrange multipliers [44] have been chosen to impose interelements
continuity. The module SOLVENCHAM is given by Algorithm 2.

Algorithm 2 SOLVENCHAM

Input: Mesh Gi, data of the problem
Output: Solution ui in Gi
• Introduce in (Pi) non-conformity relations with a chosen approach
• Solve the modified problem (Pi) in Gi to obtain ui

Hierarchical conforming h-adaptive method: module SOLVECHAM

The hierarchical conforming h-adaptive method (CHAM) aims to generate a conforming locally
refined mesh at each refinement iteration. The module SOLVECHAM (cf. Algorithm 3) lies on
the standard solution of a discrete problem on the refined conforming mesh Gi.

Algorithm 3 SOLVECHAM

Input: Mesh Gi, data of the problem
Output: Solution ui in Gi
• Solve the discrete problem (Pi) in Gi to obtain ui

2.1.2 Locally adaptive multigrid methods

Intruduced in a multilevel mesh refinement context, the idea behind locally adaptive multigrid
methods [11, 13] is to provide a possibility to “zoom“ the computational domain in the regions of
interest and thus to locally improve the accuracy of the solution. Starting from an initial coarse
mesh covering the whole computational domain Ω, these techniques consist in adding levels of
meshes with finer and finer discretization steps only in regions where higher precision is required,
see Figure 1b. The resolution consists in solving in a sequential manner the problems associated
to the different levels of (conforming) meshes and coupling them through a multigrid-like iterative

6



process, see Figure 3.

First iteration Final iteration

⋯

መ𝒢2

መ𝒢1

መ𝒢0

Prolongation step (coarse-to-fine information transfer)  

Restriction step (fine-to-coarse information transfer)  

Smoothing or solving

Initialization Converged

solution

Intermediate iterations

Figure 3: Locally adaptive multigrid ∧-cycle scheme with a sequence of three levels of meshes
{Ĝi}2

i=0.

Local Defect Correction method: module SOLVELDC

As mentioned in Introduction, in this study we have chosen to focus on the adaptive multigrid
Local Defect Correction approach, initially proposed by Hackbusch in [18], which seems to be
the most suitable choice for structural mechanics problems involving localized effects. The reader
is referred to [18] for a more detailed presentation of the LDC algorithm and to [15, 42] for its
adaptation to linear elasticity.

Integrated in the generic AMR process (Algorithm 1), the LDC multilevel iterative resolution
is carried out on a sequence of local sub-meshes {Ĝg}ig=0 at each refinement step i. As any lo-
cally adaptive multigrid methods, the LDC prolongation operator consists in prescribing Dirichlet
boundary conditions on the so-called internal boundary of Ĝg defined as ∂Ĝg\∂Ω (see Figure4a).
Dirichlet values are obtained from the next coarser solution lying on Ĝg−1. The LDC restriction
operator enables us to obtain a restriction of the next finer solution on the current mesh, which
serves to derive a residual (also called defect) acting as an additional source term in the current
level problem. The module SOLVELDC is detailed by Algorithm 4. Note, that performing the
∧-cycle LDC Algorithm (see Figure 3) at each iteration of the adaptive refinement Algorithm 1
returns to a progressive M -cycles version [49] of the LDC method.

In Algorithm 4, Lg denotes the discrete operator associated to mesh Ĝg, and fg the right-hand
side of the problem. The notation f 0

g corresponds to the discretization of problem’s right-hand
side f (see Eq.(1)) on sub-mesh Ĝg. The iterative process stops once the solution on the coarsest
level has converged.
The restriction operator requires to define a set of restriction nodes Ag on which the next finer
solution is restricted. This set Ag is made of the nodes of Ĝg strictly included in the domain
discretized by the fine mesh Ĝg+1 (cf. Figure 4b). A set of correction nodes, referred to as Åg, is a
region where the coarse problem’s right-hand side is updated (cf. Figure 4c). It is defined as the
set of interior nodes of Ag

⋃(∂Ĝg∩∂Ω) (i.e. Åg ∈ Ag
⋃(∂Ĝg∩∂Ω)) in the sense of the discretization
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Algorithm 4 SOLVELDC

Input: Sub-meshes {Ĝg}ig=0, data of the problem, {f 0
g }ig=0 RHS discretized on {Ĝg}ig=0,

convergence parameter τ
Output: Solutions {ug}ig=0 in {Ĝg}ig=0

if i = 0, Ĝ0 ← G0
Solve the discrete problem (P0) in Ĝ0 with right-hand side f 0

0 to obtain u0
else
Set j := 1, boolean convergence := false
while not convergence do
Set uj0 := uj−1

0 with u0
0 := u0

for g = 1, ..., i
if (j = 1 and g < i) then f 1

g := fg else f jg := f j−1
g end if

end for
• Prolongation step. Resolution on fine meshes Ĝg

for g = 1, ..., i
◦ Impose boundary conditions on the mesh boundaries ∂Ĝg:
– boundary conditions of the continuous problem on ∂Ĝg ∩ ∂Ω;
– and Dirichlet boundary condition imposed on the internal boundary
Γfg = ∂Ĝg\(∂Ĝg ∩ ∂Ω). Dirichlet values are derived from the next coarser solution:

ujg,Γf
= Pgg−1(ujg−1)|Γf

g
(4)

with Pgg−1 a prolongation operator (typically interpolation operator)
◦ Solve the problem (Pg) in Ĝg with the right-hand side f jg to obtain ujg

• Restriction step. Correction on coarse meshes Ĝg
for g = i− 1, ..., 0
◦ Compute the restricted fine displacement ujg+1 in Ag:

ũjg(x) =
(
Rg
g+1(ujg+1)

)
(x) ∀x ∈ Ag (5)

with Rg
g+1 ( 6= (Pg+1

g )T) a restriction operator (interpolation or injection operator)
◦ Compute the residual in Åg:

rjg(u)(x) =
(
Lgũjg − f 0

g

)
(x) ∀x ∈ Åg (6)

◦ Correct the right-hand side f jg for the problem in Ĝg:
f jg = f 0

g + χÅg
rjg(u) (7)

where χÅg
is the characteristic function of Åg: χÅg

(x) =

1 if x ∈ Åg

0 elsewhere
◦ Solve the discrete problem (Pg) in Ĝg with corrected right-hand side f jg to update ujg

• Check the convergence: if ‖uj
0−u

j−1
0 ‖

‖uj
0‖

≤ τ then convergence := true
j ← j + 1

end while
end if
ug ← ujg and fg ← f jg ∀g = 0, ..., i
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scheme: x ∈ Ag
⋃(∂Ĝg ∩ ∂Ω) is called interior node (i.e. x ∈ Åg) if Lgug(x) involves only ug(y)

with y ∈ Ag
⋃(∂Ĝg ∩ ∂Ω).

Projection of coarse

problem solution

Continuous problem

boundary conditions

(a) (b) (c)

Figure 4: Illustration of LDC prolongation and restriction steps between two consecutive levels :
(a) Boundary conditions; (b) Set of restriction nodes Ag ; (c) Set of correction nodes Åg

Note that since the transfer operators of the LDC method affect the problem’s right-hand
side only, the matrix factorization can be kept. Thus, the locally adaptive multigrid process is
computationally cheap and can be implemented in any existing solver in a non-intrusive way. In
addition, regular and (quasi-)uniform meshes can be used on each level leading to the generally
well-conditioned problems. Moreover, local multigrid methods are really generic and flexible as
they enable us to change the refinement ratio, the model, the solver, etc. between each level (see
for example [18, 50, 51]).

In the numerical part of this manuscript, the prolongation operator Pgg−1 is a basis function-
based (bi or trilinear) interpolation while a canonical restrictionRg−1

g is employed since hierarchical
nested meshes are generated. The chosen operators orders are in agreement with the expected
first-order accuracy of the approach, as already discussed in [15]. The convergence parameter in
Algorithm 4 is set τ = 10−7 and the Euclidean norm is used.

2.2 Error estimation: module ESTIMATE
In Algorithm 1, the key ingredient enabling to automatically drive the mesh adaptation is the error
estimator. The module ESTIMATE is dedicated to the a posteriori error estimation.

Since the scope of this study is not to compare the performance of error estimators (see for
example [52, 53, 54] for this purpose), an error estimator is chosen as a tool to lead the mesh
refinement, as in other studies focusing of AMR methods comparison (e.g. [39, 38, 37]). Hence, in
this paper, the widely used recovery-based a posteriori error estimator introduced by Zienkiewicz
and Zhu in [40, 55], called ZZ error estimator, has been chosen for its robustness, simplicity of
implementation and performance (limited computational cost).

The element-wise error distribution {ξT i}T i∈Gi
is thus assessed based on the difference between

a reconstructed smoothed gradient (here, the stress field) σsi and a discrete one σi (obtained from
the computation). In a linear elasticity framework, the stress field is defined as σi = C εi (with
C being the fourth order elasticity tensor), and the strain field as εi = 1

2(grad ui + gradT ui).
For the reconstruction of the smoothed gradient we consider the recovery procedure introduced in
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[40]. The smoothed stress field σsi is obtained by projection on the primal (here, the displacement)
basis functions. The element-wise error distribution in the energy norm is estimated as:

ξT i := ‖e‖T i '
( ∫

T i
(σsi − σi) : (εsi − εi) dT i

) 1
2 for T i ∈ Gi (8)

with εsi the strain field associated to the smoothed stress field εsi = C−1σsi .
The global absolute estimated error is then obtained by summing the elementary contributions:

ξGi
:=
( ∑
T i∈Gi

ξ2
T i

) 1
2

(9)

2.3 Marking stage: module MARK
2.3.1 Mesh optimality criteria: sub-module OPTIMALITY

The marking strategy lies either on a qualitative or quantitative use of the estimated element-wise
error field. The qualitative approach is based on a parametric detection of the elements to be
refined, for example, quantile marking, Dörfler marking or maximum marking (see [56, 57, 58, 59]
for more details). The optimal choice of the required parameter is not obvious as it is not directly
related to the desired accuracy and may be problem dependent [16]. Empiric values are often used,
which require a non-nested refinement process in order to reach the user-prescribed accuracy. In
this case, the final refined mesh is generally not optimal in terms of degrees of freedom.

In this study, we focus on a quantitative-based marking procedure relying on the use of the
mesh optimality criteria. This procedure consists in defining a maximal permissible elementary
error based on different considerations about the distribution of error over elements in an optimal
mesh (e.g. [60, 40, 41, 61, 42]). The use of mesh optimality criteria most often naturally leads to
nested refined regions, constructed for a given error tolerance εΩ, without penalizing performance
of AMR methods.

Generally in the literature (see for example [39, 61, 60]), the mesh is assumed acceptable when
the following condition holds:

ξGi

εΩωGi

= 1 (10)

with ωGi
the global strain energy, used to obtain the relative global error and εΩ the user-defined

tolerance on the global error. For the ZZ error estimator [40], the estimated error is weighted with
respect to the global strain energy ωGi

obtained by summing the elementary contributions ωT i :

ωGi
:=
( ∑
T i∈Gi

ω2
T i

) 1
2

(11)

with
ωT i := ‖w‖T i '

( ∫
T i
σi : εi dT i +

∫
T i

(σsi − σi) : (εsi − εi) dT i
) 1

2 for T i ∈ Gi (12)

which is close to the energy norm of computed stress field σi but the additional term enables to
set to one the upper bound of the ratio ξGi

ωGi
(Eq.(10)) even in case of low stress. As mentioned in

Introduction, in this work, a special interest is devoted to the verification of the imposed accuracy
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locally (per element). Thus we are also interested in building a mesh, aiming to fulfill the user-
prescribed accuracy εΩ on each element T i ∈ Gi:

ξT i

εΩωT i

= 1 (13)

The sub-module OPTIMALITY consists in defining the maximal permissible element-wise
error {ξmaxT i }T i∈Gi

for a given mesh optimality criterion. This maximal permissible error is, more-
over, a function of the user-prescribed tolerance εΩ.

In this study we consider mesh optimality criteria introduced by Oñate and Bugeda in [41],
referred here as OB criterion, and the one proposed by Ramière at al. in [42], referred here as LOC
criterion. These both criteria target to satisfy global (10) and local (13) accuracy requirements.

• OB criterion: Equal distribution of the specific error.
In [41, 62], Oñate and Bugeda postulate that the maximal permissible element-wise error
distribution should be governed by the elements measure. Following this, the ratio between
the elementary error’s square and the elements measure must be constant over the whole
mesh and equal to the ratio of the global error’s square over the domain’s measure:

(ξmaxT i )2

µ(T i) =
(ξmaxGi

)2

µ(Ω) ∀Ti ∈ Gi (14)

with µ(T i) being the measure of element T i and µ(Ω) – the computational domain’s total
measure. Setting for the global optimal mesh condition ξmaxGi

= εΩωGi
(Eq.(10)), the maximal

permissible error {ξmax,OBT i }T i∈Gi
delivered by the sub-module OPTIMALITYOB reads:

ξmax,OBT i := εΩωGi

(µ(T i)
µ(Ω)

) 1
2 for T i ∈ Gi (15)

• LOC criterion: Local element-wise error.
The alternative criterion was briefly mentioned in [41] but effectively introduced and ex-
ploited in [42, 17] in the context of structural mechanics problems. It consists in prescribing
the desired accuracy directly on the local element-wise error (Eq.(13)), thus the maximal
permissible error {ξmax,LOCT i }T i∈Gi

delivered by the module OPTIMALITYLOC reads:

ξmax,LOCT i := εΩωT i for T i ∈ Gi (16)

As proved in [42], it automatically implies the fulfillment of the global prescribed accuracy
( ξGi

εΩωGi
≤ 1).

Remark. The most popular mesh optimality criterion relying on the error equidistribution
principle proposed by Zienkiewicz and Zhu [40] targets to satisfy only the global accuracy (10).
Thus, this mesh optimality criterion is not of interest for our purposes. Moreover, as already
discussed in [41], this criterion may lead to an inconsistent oscillatory refinement process of some
mesh regions (for h-adaptive methods). This criterion has been tested on our numerical examples
and such behavior has been also observed.

11



2.3.2 Detect elements: sub-module DETECT

The sub-moduleDETECT takes as input the element-wise estimated error distribution {ξT i}T i∈Gi

as well as the maximal permissible error {ξmaxT i }T i∈Gi
defined by the sub-module OPTIMALITY.

It delivers the set of marked elementsM0
i :

M0
i := {T i ∈ Gi; ξT i > ξmaxT i } (17)

It has to be specified, that for the LDC approach or any refinement strategy implying nested
refinement zones, the elements for refinement are selected in the sub-mesh Ĝi, as follows:

M0
i ⊂ Ĝi ∀i (18)

Note, that terms involving Gi for the definition of ξmaxT i (ωGi
, #Gi, etc.) remain evaluated on the

(eventually composite) mesh Gi.

2.4 Stopping criteria: module STOP
The module STOP outputs a boolean (stop) which indicates if the chosen stopping criteria have
been satisfied or not. If both stopping criteria defined below are satisfied, we assign to the boolean
stop := true, which allows us to turn off the refinement process, cf. Algorithm 1.

In the ideal scenario, a refinement process has to achieve:

M0
i = ∅ (19)

However, as the solution may converge very slowly near a singularity, for mesh optimality
criteria based on the local relative error (especially LOC criterion, see Eq.(16)), the respect of
condition (19) can lead to a costly refinement. Thus, a common practice is to impose other
stopping criteria, which permit to turn off the refinement process once the mesh is supposed to be
acceptable.

In the present study we are concerned with the verification of both global and local accuracies.
Two stopping criteria have thus to be satisfied in order to stop the refinement process:

• Global criterion.
The fulfillment of the global accuracy relies on the verification of the following condition:

ξGi

εΩωGi

≤ 1 (20)

• Local criterion.
The fulfillment of the local accuracy is verified based on local stopping criterion, initially
proposed in [42]. It consists in user-controlling the zone where the local accuracy is not
respected:

µ(ΩM0
i
)

µ(Ω) ≤ δ (21)

with µ(ΩM0
i
) the measure of zone ΩM0

i
= {⋃ T̄ i; T i ∈ M0

i } and δ the user-specified volume
control parameter (δ ≤ 1).
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Using criterion (21), the prescribed mesh optimality criterion aims to be fulfilled on (1−δ)×
100 percent of the domain. This stopping criterion is interesting as it enables to automatically
determine a discrete approximation of the critical region (singularity zone), see [42] for more
details.
Remark. Setting δ = 1 returns to setting only the standard global stopping criterion (10),
while the choice δ = 0 allows us to reach (19).

2.5 Mesh refinement: module REFINE
2.5.1 Refinement ratio: sub-module RATIO

The sub-module RATIO aims to output the refinement ratio β0
T i ∈ N+ for T i ∈ M0

i . In this
work, influence of different choices of refinement ratios is studied. We consider here two possible
ways to obtain the refinement ratio β0

T i :

• Fixed refinement ratio.
The easiest strategy, permitting to progressively refine the mesh, consists in dividing the
marked elements with an a priori fixed uniform refinement ratio:

β0,fix
T i := const ∀T i ∈M0

i ,∀i (22)

In this study, the following value is chosen:

β0,fix
T i := 2 (23)

as usually in practical industrial simulations (see for example [15, 17, 20, 63, 64]).

• Adjusted refinement ratio.
The second approach aims to minimize the number of refinement steps (maximal number of
i in Algorithm 1) by using an adjusted refinement ratio.
To compute the adjusted refinement ratio β0,adj

T i , an ansatz of the a priori local estimator
[40], derived from the classical a priori global estimator [65], is usually used:

ξT i = O(CT ihpT i) (24)

with CT i being a constant depending on the element size and p representing the polynomial
order of the discrete basis functions. In the literature, in order to easily determine β0,adj

T i , the
constant CT i is supposed to be independent of the element T i: CT i ' C.
The adjusted refinement ratio is defined as:

β0,adj
T i = hT i+1

hT i

for T i ∈M0
i (25)

with hT i+1 and hT i being the mesh size of the refined mesh and of the current mesh, respec-
tively.
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We consider ξT i+1 to be the element-wise error required for the mesh Gi+1. By definition, it is
equivalent to the maximal permissible error ξmaxT i , see Section 2.3.1. Considering expressions
(24) and (25), we derive the following formulation:

β0,adj
T i :=


(
ξT i

ξmaxT i

) 1
p

 for T i ∈M0
i (26)

where d·e states for rounding to the next higher integer.
Using the expression of ξmaxT i in Eq.(15) for OB mesh optimality criterion and Eq.(16) for
LOC mesh optimality the adjusted refinement ratios are derived:

β0,OB
T i :=

⌈(
ξT i

εΩωGi

( µ(Ω)
µ(T i)

) 1
2
) 1

p

⌉
for T i ∈M0,OB

i (27)

β0,LOC
T i :=

⌈(
ξT i

εΩωT i

) 1
p

⌉
for T i ∈M0,LOC

i (28)

Remark. As already mentioned in Introduction, Q1 finite elements are used to discretize
the problems. The polynomial order of interpolation functions is then p = 1.
Remark. The adjusted refinement ratio strategy does not fit the philosophy of the LDC
method (generation of (quasi-)uniform sub-meshes) and would return to perform an h-
adaptive approach on each LDC sub-mesh, which is not the aim of this study. In order to
keep the LDC strategy unchanged, the adjusted ratio won’t be coupled to the LDC method.
Thus, the so-called mean adjusted refinement ratio is applied to the LDC method. Its values
are obtained by weighting the adjusted ratio values with respect to the element measures:

β̄0
T i :=


1

µ(ΩM0
i
)
∑

T i∈M0
i

β0,adj
T i · µ(T i)

 for T i ∈M0
i (29)

where β0,adj
T i represents an adjusted refinement ratio (cf. Eqs.(27) and (28)), µ(T i) – the

measure of element T i and µ(ΩM0
i
) – the measure of the marked zone.

2.5.2 Safe refinement: sub-module SAFE_ZONE

In order to ensure that the refinement zones properly capture the features of interest, we rely on
a safe refinement. It consists in enlarging the marked zone M0

i by adding additional layers of
elements whatever the refinement strategy.

While uniform refinement ratio (β0,fix
T i or β̄0

T i) is prescribed, layers of elements are added to the
set M0

i . While using the adjusted ratio β0,adj
T i , each subset of elements of M0

i having the same
prescribed refinement ratio is individually expanded, see Figure 5.

The sub-module SAFE_ZONE, detailed in Algorithm 5, outputs the enlarged marked region
M∗

i as well as the corresponding refinement ratios {β∗T i}T i∈M∗i . Note, that if nbsafe = 0 is set, one
definesM∗

i :=M0
i and {β∗T i}T i∈M∗i := {β0

T i}T i∈M0
i
.

Definition: Vertex-neighbor element. In Algorithms 5 and 6, an element is called a
vertex-neighbor to T i if it shares at least one vertex with T i.
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Algorithm 5 SAFE_ZONE
Input: number of layers of elements in the safe zone nbsafe, marked zoneM0

i , refine-
ment ratio {β0

T i}T i∈M0
i
, current mesh G̃i := Gi for h-adaptive methods or G̃i := Ĝi for

LDC method
Output: enlarged marked region M∗

i containing safe zones and corresponding re-
finement ratio {β∗T i}T i∈M∗i
Store in decreasing order unique elements of {β0

T i}T i∈M0
i
in a list L

M∗
i :=M0

i

β∗T i := β0
T i ∀T i ∈M∗

i

for ` = 1, ...,#L do
Set L` to the `th value of the list L
ZL` := {T i ∈M∗

i ; β∗T i = L`}
Z−L` := {T i ∈M∗

i ; β∗T i < L`}
⋃{G̃i\M∗

i }
for e = 1...nbsafe do
Z∗L`
i := {T i ∈ Z−L` ; T i is a vertex-neighbor to at least one element of ZL`}

β∗T i := L` ∀T i ∈ Z∗L`

Update:
ZL` ← ZL`

⋃Z∗L`

Z−L` ← Z−L`\Z∗L`

M∗ ←M∗
i

⋃Z∗L`

end for
end for

ℓ = 1 ℓ = 1, e = 1 ℓ = 1, e = 1 ℓ = 1, e = 2 ℓ = 1, e = 2

ℓ = 2, e = 1 ℓ = 2, e = 1 ℓ = 2, e = 1 ℓ = 2, e = 2 ℓ = 2, e = 2

ℳ𝑖
∗

ℳ𝑖
0

𝒵0
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𝒵0
𝐿1 𝒵
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Figure 5: Illustration of the sub-module SAFE_ZONE. Mesh Gi and the marked zone M0
i :=

ZL1
0
⋃ZL2

0 with β0
T i∈ZL1

0
= L1 and β0

T i∈ZL2
0

= L2 with L1 > L2. Hence, L = {L1, L2} and
` = 1, ...,#L refers to the `th refinement zone (with β0 = L`). The index e = 1, ..., nbsafe indicates
the layer being added (here nbsafe = 2). Finally, the enlarged marked zoneM∗

i is obtained.

2.5.3 Updated refinement ratio: sub-module UPDATE_RATIOMETHOD

Due to methodological features of an AMR method, some elements can be affected by the refine-
ment of neighboring elements. In other words, refinement of non initially marked elements, or
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modification of some elements refinement ratio may be necessary. Typically, it arises in order to
avoid mesh non-conformity (hierarchical conforming h-adaptivity), or to restrict the mesh irregular-
ity (hierarchical non-conforming h-adaptivity). The sub-modules UPDATE_RATIOMETHOD
dedicated to each AMR technique considered here aim to output the final marked zone Mi and
the associated (corrected) refinement ratios.

Naturally, the hierarchical element division relies on an isotropic refinement, aiming to uni-
formly split an element T i in βDT i elements. To this end, each edge of element T i is uniformly
divided in βT i segments. However, the hierarchical conforming h-adaptive strategy imposes an
anisotropic refinement in some regions which returns to impose non unique refinement ratios to
the edges of element T i. We hence consider a partition of the edges of an element T i in D groups
of edges EdT i , d = 1, ..., D. Each group of edges is composed by 2D−1 edges that do not share any
vertex (also called topologically parallel edges in the literature [36, 66]), see Figures 7 and 8.

Thereby, for the sake of generality, we assume a generic formulation for the refinement ratio
associated to an element T i. We will use a set β

T i of D refinement ratios

β
T i := {βdT i}Dd=1 (30)

where the refinement ratio βdT i is assigned to the dth group of edges EdT i .

Sub-module UPDATE_RATIOLDC

The philosophy of the LDC method consists in generating (quasi-)uniform local sub-meshes at
each refinement step. Thus, only a uniform refinement ratio will be applied to all marked elements
of a sub-mesh (cf. fixed uniform or mean adjusted refinement ratios). Thus, the sub-module
UPDATE_RATIOLDC does not provide any modification of the prior defined marked zone and
refinement ratio. We assume

Mi :=M∗
i (31)

and
β
T i := {βdT i}Dd=1, with βdT i = β∗,fixT i or β̄∗T i ∀d = 1, ..., D and ∀T i ∈Mi (32)

Sub-module UPDATE_RATIONCHAM

For the non-conforming hierarchical h-adaptive method (NCHAM) we adopt the “one-irregularity
rule” (also called “one-hanging node rule”) argued in [67, 68], which is widely used in the literature.
It results in restricting the number of irregular nodes on each edge. Such restriction has numerous
advantages: it allows the refinement to be gradual (where neighboring elements are not of greatly
differing sizes), to guarantee that each element is in the support of a limited number of basis func-
tions, to reduce the implementation effort, and to simplify computations (e.g., matrix assembly
and further mesh refinement). To ensure this, only values of refinement ratio βT i = 2m, m ∈ N
may be prescribed. For doing so, we first correct the computed refinement ratios with expression
33. By denoting BT i the element’s total refinement level (cf. equation 34), the “one-irregularity
rule” is guaranteed if the ratio between total refinement level of two neighboring elements (greater
BT i value over the lower one) is equal to 2 at most. It implies the correction of refinement ratios
of elements for which this requirement does not hold. It may potentially result in enlarging the
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set of marked elementsM∗
i . Figure 6 is a step-by-step illustration of Algorithm 2 which provides

the implementation details of the non-conforming h-adaptive method ensuring the previously de-
scribed “one-irregularity rule”.

Algorithm 6 UPDATE_RATIONCHAM

Input: marked zone M∗
i , refinement ratios {β∗T i}T i∈M∗i , current mesh Gi

Output: zone Mi to be refined and corresponding refinement ratios sets {β
T i}T i∈Mi

if i = 0 then BT−1 := 1 end if
if there is one unique value of {β∗T i}T i∈M∗i and Gi\M∗

i = ∅
Mi :=M∗

i

βcorrT i := β∗T i

else
Set β∗T i := 1 ∀T i ∈ Gi\M∗

i and correct refinement ratio:

βcorrT i := 2min(argmin|2m−β∗
T i |) (33)

Compute total refinement level BT i ∀T i ∈ Gi:

BT i := BT i−1βcorrT i with T i ⊂ T i−1 and T i−1 ∈ Gi−1 (34)

Store in decreasing order unique elements of {BT i}T i∈Gi
in a list L

Set ` := 1
while ` 6= #L do
ZL` := {T i ∈ Gi; BT i = L`}
Z−L` := {T i ∈ Gi; BT i < L`}
Z∗L`
i := {T i ∈ Z−L` ; T i is a vertex-neighbor to at least one element of ZL`}

for all T i ∈ Z∗L`
i such that BT i 6= L`/2 do

BT i := L`/2 and βcorrT i := [BT i/BT i−1 ] for T i ⊂ T i−1 and T i−1 ∈ Gi−1
if BT i /∈ L then insert BT i in the sorted list L and update #L end if

`← `+ 1
end while
M := { T i ∈ Gi; βcorrT i > 1}

end if
β
T i := {βdT i}Dd=1, with βdT i = βcorrT i ∀d = 1, ..., D and ∀T i ∈Mi

Sub-module UPDATE_RATIOCHAM

The hierarchical conforming h-adaptive method (CHAM) consists in preserving the mesh con-
formity within the whole refinement process. Irregular nodes are eliminated by propagating ele-
ments subdivision beyond the set of marked elementsM∗

i . As mentioned before, we rely here on
a technique based on sheet operations [33, 34]. More precisely, we adopt a dicing-like approach
aiming to restore the mesh conformity through layers refinement.

The general principle of the sub-module UPDATE_RATIOCHAM, detailed in Algorithm 7,
is the following. We recursively build layers (or sheets) Ldj of elements associated to the original
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Figure 6: Illustration of the sub-module UPDATE_RATIONCHAM. Initial mesh G0. Marked
zone on G0: M∗

0 = ZL1
0
⋃ZL2

0 with B
T 0∈ZL1

0
= L1 and B

T 0∈ZL2
0

= L2 with L1 > L2. Hence,
L = {L1, L2}. Mesh G0 with the zone to be refinedM0 including transition region, refined mesh
G1 with the sub-mesh Ĝ1

group of edges EdT ∗i of the jth marked element T ∗i in M∗
i : all elements sharing at least one edge

of EdT ∗i are added in the layer and the associated groups of edges in these elements are identified.
These new groups of edges are then used to extend the layer of elements until no new elements
sharing the identified edges can be found. The construction of layers is depicted in Figure 7 for a
two-dimensional case and in Figure 8 for a three-dimensional case.

On the identified groups of edges associated to the layer, we assign the maximal refinement
ratio of elements T i ∈ Ldj . For the sake of optimality, in Algorithm 7 (and illustrated in Figure 7)
the set of marked elementsM∗

i is hence initially sorted by β∗T i in decreasing order.
Algorithm 7 can be easily performed over any FEM existing solver and conserves the original

structure (geometric topology) of the mesh. This algorithm is generic, in particular it can deal with
unstructured meshes and self-intersecting layers. However, it is especially interesting for structured
Cartesian meshes, as it can be a little simplified since k involved in setN is always equal in this case
to d. The index d then represents the direction of the mesh (cf. underlying tensor-product mesh),
see Figures 7 and 8. Note, that while using such algorithm, the mesh coarsening is straightforward.

2.5.4 Sub-module DIVIDE

The elements refinement is performed with the sub-module DIVIDE(T i, β
T i) which inputs an

element T i with the corresponding refinement ratio set β
T i and outputs the produced refined

elements. This sub-module aims to uniformly divide each edge from the groups of edges {EdT i}Dd=1
of an element T i in βdT i (d = 1, ..., D) equal segments. The set of refined elements is then generated
by relying the new obtained opposite nodes, making a paving in quadrilateral (2D) or hexahedral
(3D) elements of the original element T i. The sub-module DIVIDE is depicted in Figure 9a for
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Algorithm 7 UPDATE_RATIOCHAM

Input: marked zone M∗
i , refinement ratios {β∗T i}T i∈M∗i , current mesh Gi

Output: zone Mi to be refined and corresponding refinement ratios sets {β
T i}T i∈Mi

• Mi :=M∗
i

• Range elements T i fromM∗
i in a set S with respect to β∗T i sorted in the decreasing order

• Set βdT i := 1 ∀d = 1, ..., D, ∀T i ∈ Gi\M∗
i

• F ← ∅

• for j = 1, ...,#S
T ∗i := jth element of S
for d = 1, ..., D

if EdT ∗i /∈ F then
βdT ∗i := β∗T ∗i
Ldj := T ∗i

Fdj := EdT ∗i
N := {EkT i ; k ∈ {1, .., D}, T i ∈ Gi\T ∗i, EkT i

⋂ EdT ∗i 6= ∅}
while N 6= ∅ do

βkT i := β∗T ∗i ∀{k, T i} such that EkT i ∈ N
Fdj ← Fdj

⋃N
Ldj ← Ldj

⋃{T i ∈ Gi\Ldj ; EkT i ∈ N}
N := {EkT i ; k ∈ {1, .., D}, EkT i /∈ Fdj , EkT i

⋂Fdj 6= ∅}
end while
Mi ←Mi

⋃Ldj
F ← F ⋃Fdj

end if
end for

end for
β
T i := {βdT i}Dd=1, ∀d = 1, ..., D and ∀T i ∈Mi
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Figure 7: Illustration of the sub-module UPDATE_RATIOCHAM. Initial mesh G0. Marked
zone on G0: M∗

0 with β∗T i . Construction of layers of elements Ldj and correction of refinement
ratios assigned to the groups of edges EdT i of elements ∀T i ∈ Ldj . Mesh G0 with the zone to be
refinedM0, refined mesh G1 with the sub-mesh Ĝ1
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Figure 8: Sketch of layers of elements Ldj and groups of edges EdT i for a three-dimensional case

the two-dimensional case and in Figure 9b for the three-dimensional case.
The sub-module DIVIDE applied for a region is expressed as:

DIVIDE(Mi, {βT i}T i∈Mi
) :=

⋃
T i∈Mi

DIVIDE(T i, β
T i) (35)

2.5.5 Sub-module NEW_MESH

The sub-module NEW_MESH outputs the local sub-mesh Ĝi+1 corresponding to the refinement
ofMi, and the locally refined mesh Gi+1 covering the whole computational domain Ω corresponding
to the new mesh for h-adaptive methods and to the composite mesh for LDC method.

Gi+1, Ĝi+1 := NEW_MESH(Mi, {βT i}T i∈Mi
,Gi, Ĝi) (36)
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Figure 9: Example for the sub-module DIVIDE(T i, β
T i) for an element T i and resulting sets of

refined elements ⋃T i+1 ⊂ T i; (a) DIVIDE2D with refinement ratio set β
T i = {β1

T i , β2
T i} = {2, 3};

(b) DIVIDE3D with refinement ratio set β
T i = {β1

T i , β2
T i , β3

T i} = {4, 3, 2}

with the refined sub-mesh Ĝi+1:

Ĝi+1 := DIVIDE(Mi, {βT i}T i∈Mi
) (37)

and the global (composite) mesh Gi+1:

Gi+1 := {Gi\Mi}
⋃
{Ĝi+1} (38)

Remark. In the case of nested refinement zones, the mesh Gi+1 can be defined as:

Gi+1 := {
⋃

l=0,...,i
Ĝl \Ml}

⋃
{Ĝi+1} (39)

3 Numerical experiments
In this section, the AMR approaches considered here are compared on 2D and 3D numerical test
cases. The studied problems are implemented through the Cast3M finite elements software [69],
developed by CEA (French Alternative Energies and Atomic Energy Commission).

3.1 Post-processing
The achieved global and local accuracies are verified through the following metrics:

• Number of performed refinement iterations k (maximal number of iterations i in Algorithm 1)

• Relative global exact error in energy norm:

eex
Gk

=
ξex
Gk

ωex
Gk

(40)
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with ξex
Gk

and ωex
Gk

computed using Eq.(9) and (11) respectively, with analytical or reference
solutions σsk = σex

k and εsk = εex
k .

A mesh that satisfies eex
Gk
≤ εΩ is said to be globally acceptable. The globally optimal mesh

is the one that fulfills this condition with the minimum number of nodes.

• Relative local exact error, evaluated quantitatively with the following measure:

η = µ(ΩDk
)

µ(Ω) (41)

where µ(ΩDk
) is the measure of the zone ΩDk

= {⋃ T̄ k; T k ∈ Dk} with Dk – the set
of elements where the real local relative error eex

Tk exceeds the prescribed error tolerance:
Dk = {T k ∈ Gk; eex

Tk > εΩ}. The local relative error is defined as

eex
Tk = ξex

Tk

ωex
Tk

(42)

where ξex
Tk (Eq.(8)) and ωex

Tk (Eq.(12)) are computed with σsk = σex
k and εsk = εex

k .
The value η indicates that the local error eex

Tk (Eq.(42)) is respected on (100 − η)% of the
computational domain.
The measure η has to be compared to the user-defined local volume control parameter δ. A
mesh is said to be locally acceptable if it meets η ≤ δ. The locally optimal mesh is the one
that fulfills this condition with the minimum number of nodes.

The following metrics are used to compare the efficiency of the considered AMR methods:

• Number of nodes: total number of nodes Ntot is defined as Ntot = NGk
for h-adaptive

methods and Ntot = ∑k
i=0NĜi

for LDC approach, where N∗ refers to the number of nodes
of corresponding sub-mesh. Number NGk

for the LDC approach refers to the number of
nodes of the composite final mesh Gk. The number of degrees of freedom (DOFs) is directly
proportional to the number of nodes: #DOFs = D × N∗, with D being the problem’s
dimension.

• Linear system: maximal size of linear systems to be solved ((D × Nmax) × (D × Nmax))
with Nmax = max

i
NGi

for h-adaptive methods and Nmax = max
i

NĜi
for LDC approach. As

unrefinement is not allowed during refinement steps, Nmax = NGk
for h-adaptive techniques.

Number of hanging nodes is explicitly given for the non-conforming h-adaptive method.

• CPU time: total runtime including the construction of new global meshes for h-adaptive
methods or local sub-meshes for the LDC approach, the definition and resolution of prob-
lems on the generated refined meshes. Time consumptions for problems resolution (module
SOLVE), error estimation and marking stage (modules ESTIMATE and MARK) and
mesh refinement itself (module REFINE) are explicitly given for each AMR technique.

The following global error thresholds (Eq.(20)) are studied in this paper: εΩ = 4%, 2%, 1%, 0.5%.
The volume control parameter δ (Eq.(21)) is set to 3% for all numerical examples.
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Linear elastostatic framework is considered for all numerical examples treated in this paper.
Denoting σ and ε the stress and strain tensors, E the Young’s modulus and ν the Poisson coeffi-
cient, the problem reads:

div σ(u) = 0 in Ω

σ(u) = E

1 + ν

(
ε(u) + ν

1− 2ν tr(ε(u))I
)

in Ω

ε(u) = 1
2(grad u+ gradT u) in Ω

Boundary conditions on ∂Ω

(43)

with “tr” the trace operator and I the identity matrix.
For this comparison study, each associated discrete linear problem (Pi) defined either on the global
mesh Gi or on each sub-mesh Ĝi, is solved with the same direct linear solver (based here on a Crout
factorization). The use of the same linear solver for systems arising from the three AMR methods
allows the comparison to be as fair as possible. For the non-conforming h-adaptive approach, a
static condensation of Lagrange multipliers and associated hanging unknowns is used to avoid a
saddle-point structure problem.
For all numerical examples the obtained results are post-processed in the same way. We verify
the fulfillment of the global and the local conditions for all considered AMR methods, mesh op-
timality criteria and refinement ratios. To demonstrate the distribution of the local error (42)
and to identify critical regions Dk, the local error maps are shown for each AMR method, mesh
optimality criteria and certain refinement ratios. Note, that for the LDC method, the local error
obtained after convergence of the iterative process are presented on each sub-mesh {Ĝi}ki=0 sepa-
rately and on the composite mesh Gk. For comparison purposes, results obtained with hierarchical
uniform refinements are also provided. Performances of the studied AMR methods with respect
to the aforementioned metrics are then discussed. We determine also the most efficient refinement
strategy in terms of the mesh optimality criteria and refinement ratio.

3.2 Plate with circular hole

r

e1

e2

φ

σ∞σ∞

R

a

and
conditions

Neumann 
boundary conditions 
(analytical solution)

I

II
IV

III

I IV Symmetry

II and III

Figure 10: Infinite plate with central circular
hole. Left: Sketch of the problem; Right: Com-
putational domain and boundary conditions

The first numerical example is the well-
established benchmark problem of an infinite
plate with a circular hole subject to a prescribed
loading σ∞ = 1 Pa in the e1 direction (cf. Fig-
ure 10). The material is supposed to be lin-
ear elastic with Young’s modulus E = 103 Pa
and Poisson’s ratio ν = 0.3. For symmetry rea-
sons, only a quarter of the plate with a = 10
m and radius R = 1 m is considered. Dirich-
let boundary conditions expressing the symme-
try (u = 0) are prescribed on edges I and IV ,
while tractions computed from the exact solu-
tion (σn), cf. expression (44), are imposed on
edges II and III, see Figure 10-right. The an-
alytical solution of this problem has been pro-
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vided in [39] and in polar coordinates (r, ϕ) reads:

σ11(r, ϕ) = σ∞

(
1− R2

r2

(3
2 cos 2ϕ+ cos 4ϕ

)
+ 3

2
R4

r4 cos 4ϕ
)

σ12(r, ϕ) = σ21(r, ϕ) = σ∞

(
− R2

r2

(1
2 sin 2ϕ+ sin 4ϕ

)
+ 3

2
R4

r4 sin 4ϕ
)

σ22(r, ϕ) = σ∞

(
− R2

r2

(1
2 cos 2ϕ− cos 4ϕ

)
− 3

2
R4

r4 cos 4ϕ
) (44)

This analytical solution is used in this numerical example for error monitoring.
We rely on a hierarchical refinement which implies that the initial approximation of the hole is

not improved. In view of the results, the geometry approximation error is very low compared to
the discretization error. However, if we are interested in very low error tolerances (e.g. εΩ ≤ 0.3%),
the hole approximation has to be updated during the refinement process (i.e., quasi-hierarchical
strategy, see [17]), see Figure 11.

Nodes of the fine mesh

Nodes of the coarse mesh

Hierarchical refinement Quasi-hierarchical refinement

Figure 11: Illustration of hierarchical and quasi-hierarchical mesh refinement strategies

Figure 12 presents sub-meshes generated with the LDC method for different global error tol-
erances εΩ. Quantitative-based marking strategy naturally yields nested refinement zones. One
can remark in Figure 12 that the sequence of meshes varies with the prescribed tolerance. For
the chosen example, it can be seen that by fixing εΩ = 4%, a real error eex

Gk
= 2.63 % is reached

with 2 sub-meshes. To satisfy εΩ = 2%, larger refinement zones and an additional sub-mesh are
automatically generated which lead to a real error eex

Gk
= 1.35 %.

Local error maps. The generation of the series of refined meshes {Gi}ki=0 starts from the
same initial coarse mesh (as uniform as possible) G0. The relative local error maps (local error
distribution eex

Tk) obtained for the error tolerance εΩ = 2% with the OB and LOC optimality
criteria are reported in Figures 13 and 14, respectively, for various refinement ratios. It can be
seen that the meshes generated automatically by the three AMR methods are similar, with refined
elements concentrated around the central hole, as expected. Moreover, the sets of elements Di are
also more and more localized around the hole. For each case, values of the relative global error eex

Gk

(Eq.(40)) as well as the local error measure η (Eq.(41)) are explicitly provided. For a given AMR
technique, the use of the considered refinement ratios (fixed, adjusted and mean adjusted ratios)
leads to similar results in terms of the eex

Gk
and η values. It can be noted that the OB and LOC

optimality criteria both allow us to reach the prescribed accuracies.
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Figure 12: Infinite plate with circular hole – LOC optimality criterion – levels of sub-meshes {Ĝi}ki=0
and composite grid Gk generated with the LDC method for different global error tolerances εΩ

Local error verification. The comparison of the three mesh optimality criteria is performed
with regard to the local error. Values of the local error measure η are illustrated in Figure 15 for
all refinement ratios, mesh optimality criteria and AMR methods. It can be seen that the OB and
LOC criteria both provide locally acceptable meshes satisfying η ≤ δ, independently of the AMR
technique and refinement ratio strategies.

Fixed refinement ratio. Figures 16a and 16b report evolution of the global relative error eex
Gk

in energy norm with respect to the number of nodes NGk
for OB and LOC criterion, respectively.

We see that all the considered refinement techniques, including the hierarchical uniform re-
finement, have the same convergence rates close to the optimal one in O(N−1/2

Gk
). Moreover, the

optimal convergences are reached already for relatively small numbers of nodes. It can be noted
that the non-conforming h-adaptive and LDC methods seems offer here an improvement of the con-
vergence in the pre-asymptotic regime (in this case occurring early, before NGk

= 1·103). Note that
the hierarchical uniform refinement yields an (almost) optimal convergence (O(h) ≈ O(N−1/2

Gk
))

due to the lack of singularities in the numerical example.
The moderate degradation of the slope for the smallest tolerances is due to the coarse approxima-
tion of the hole, as confirmed by Figure 16c which provides the convergence in number of nodes
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Figure 13: Infinite plate with circular hole – local error maps – OB optimality criterion – tolerance
on the global error εΩ = 2% – local volume control parameter δ = 3%
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Figure 14: Infinite plate with circular hole – local error maps – LOC optimality criterion – tolerance
on the global error εΩ = 2% – local volume control parameter δ = 3%
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Figure 15: Infinite plate with circular hole – local error measure η vs global error tolerance εΩ

obtained by performing a quasi-hierarchical mesh refinement. In latter case, the hole’s approxi-
mation is improved within the refinement process, see Fig 11. The optimal convergence rates for
all AMR methods and uniform refinement are then recovered.

Figure 17 depicts the global relative error eex
Gk

in energy norm with respect to the total runtime
for all user-prescribed tolerances εΩ. Globally, for all prescribed error tolerances εΩ, the OB and
LOC criteria lead to the similar outcomes in terms of the total CPU time. It can be observed, that
all AMR method enable to satisfy the prescribed global accuracy with lower CPU time, compared
to a hierarchical uniform global refinement. Moreover, the LDC approach clearly appears to be
the most efficient AMR strategy.

Table 1: Infinite plate with circular hole – Fixed refinement ratio

εΩ = 0.5%, δ = 3% Uniform Conforming Non-conforming Local Defect
refinement h-adaptive h-adaptive Correction

OB LOC OB LOC OB LOC
k 5 5 5 5 5 5 5

eex
Gk
,% 0.40 0.41 0.41 0.46 0.46 0.46 0.46

η, % 2.4 2.6 2.4 2.7 2.5 2.7 2.5
NGk

66049 24415 26471 13134 13257
13421 13555

Ntot 17712 17880
Nmax 10429 10543

Nhanging_nodes 285 296
CPU total 50.1s 33.8s 36.2s 8.4s 8.5s 4.8s 4.8s

CPU (SOLVE) 9.7s 3.0s 3.2s 4.7s 4.8s 1.2s 1.3s
CPU (EST.+MARK) - 2.2s 2.9s 1.0s 1.0s 1.0s 1.0s

CPU (REFINE) 40.4s 28.6s 30.1s 2.7s 2.7s 2.6s 2.5s

In Table 1 we provide a more detailed performance comparison of the refinement methods for
the tolerance εΩ = 0.5%. Firstly, we can see that all AMRmethods allow us to reach more efficiently
the global and local errors similar to those obtained with a hierarchical uniform refinement. The
following main differences between AMR techniques can be noted. For the given tolerance, LDC
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Figure 16: Infinite plate with circular hole – Fixed refinement ratio; Relative global error eex
Gk

in
energy norm vs number of nodes NGk

: (a) OB optimality criterion, (b) LOC optimality criterion
and (c) LOC optimality criterion with updated hole’s approximation

approach is less time consuming compared to h-adaptive techniques and leads to similar numbers
of nodes NGk

as hierarchical non-conforming strategy. However, the total number of stored nodes
Ntot is in between the numbers of nodes for non-conforming and conforming h-refinement methods.
The maximal size of systems of equations confronted with LDC approach is smaller than with h-
adaptive methods, which can provide high cost reduction, especially when direct solvers are used.

Adjusted and mean adjusted refinement ratio. We provide here performance results of
the two h-adaptive methods with the adjusted refinement ratio and LDC method with the mean
adjusted refinement ratio. Figures 18a and 18b present the global relative error eex

Gk
with respect to

the number of nodes eex
Gk

for OB and LOC criterion, respectively. Globally, the reached convergence
rates are close to those obtained with the fixed progressive refinement ratio. The (quasi) optimal
rates are recovered with all AMR methods, independently of the mesh optimality criterion applied.

Figure 19 presents the global relative error eex
Gk

with respect to the total runtime. We observe
that the use of adjusted refinement ratios for h-adaptive methods results in similar (non-conforming
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Figure 17: Infinite plate with circular hole – Fixed refinement ratio; Relative global error eex
Gk

in
energy norm vs total CPU time: (a) OB optimality criterion and (b) LOC optimality criterion
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Figure 18: Infinite plate with circular hole – Adjusted and mean adjusted refinement ratios; Rel-
ative global error eex

Gk
in energy norm vs number of nodes NGk

; (a) OB optimality criterion, (b)
LOC optimality criterion

technique) or much lower (conforming technique) CPU times compared to the fixed refinement ratio
strategy. In fact, if only one refinement iteration is sufficient to reach the prescribed accuracies,
the use of adjusted refinement ratio can be beneficial in terms of CPU time, even if more refined
meshes are generated. It worth to mention that resolution times are similar between fixed and
adjusted/mean refinement strategies and the main difference relies in mesh refinement. Indeed,
the key advantage of the adjusted refinement ratio is the possibility to reduce the number of
refinement iterations, limiting the computational time for the hierarchical mesh refinement. It can
be noticed that the non-conforming h-adaptive technique becomes more time consuming compared
to the conforming strategy, certainly due to the high number of hanging nodes to be handled. We
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Figure 19: Infinite plate with circular hole – Adjusted and mean refinement ratios; Relative global
error eex

Gk
in energy norm vs total CPU time: (a) OB optimality criterion and (b) LOC optimality

criterion

observe that LOC optimality criterion leads to slightly higher total runtimes, at the same time,
naturally providing lower global and local errors, compared to the OB criterion.

Table 2 details results for εΩ = 0.5%. It can be seen that in nearly every case, more refined
meshes are generated without significant improvement of global and local errors, compared to the
fixed ratio. Indeed, for εΩ = 0.5%, the final meshes are nearly twice more refined compared to
those obtained with the fixed ratio refinement. It has to be noted that in this case, more refined
meshes are generated even with more progressive mean adjusted refinement applied to the LDC
method. It can be explained by the fact that the adjusted refinement ratio may be excessively
high and sometimes inappropriate to meet the required precision.

Table 2: Infinite plate with circular hole – Adjusted refinement ratio (h-adaptive methods),
Mean adjusted refinement ratio (Local Defect Correction)

εΩ = 0.5%, δ = 3% Uniform Conforming Non-conforming Local Defect
refinement h-adaptive h-adaptive Correction

OB LOC OB LOC OB LOC
k 1 (βT i = 32) 1 1 1 1 2 2

eex
Gk
,% 0.40 0.43 0.35 0.51 0.49 0.41 0.40

η, % 2.4 2.6 1.9 3.0 2.6 2.6 2.3
NGk

66049 22990 42504 20549 23013
20041 28350

Ntot 20850 29165
Nmax 18476 26791

Nhanging nodes 301 263
CPU total 10.2s 4.6s 9.2s 5.7s 6.8s 4.2s 6.6s

CPU (SOLVE) 8.5s 2.7s 4.4s 3.5s 4.6s 1.8s 3.3s
CPU (EST.+MARK) - 1.1s 3.6s 1.4s 1.4s 1.6s 2.5s

CPU (REFINE) 1.7s 0.8s 1.2s 0.8s 0.8s 0.8s 0.8s

For the sake of pertinent comparative study, the mean adjusted refinement ratio has been also
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tested on h-adaptive techniques. For this numerical example, it results in more costly computa-
tions, in terms of both, number of nodes and CPU times, compared to the fixed and adjusted ratio
strategies.

General remarks. The efficiency of LDC method in term of CPU time versus number of
nodes clearly appears independently of the mesh optimality criterion used, especially for the fixed
ratio refinement strategy. In this case, the same level of accuracy is reached with a total CPU time
50 to 80% less compared to the conforming h-adaptive approach, and 30 to 60% less compared to
the non-conforming h-adaptive method. Progressive refinement with mean adjusted ratio applied
for LDC method competes even the direct refinement (in one iteration) possible with h-adaptive
methods.

For this academic numerical example, it has been observed that OB and LOC criteria both
permit to construct locally and globally acceptable meshes for each prescribed tolerance. We also
conclude that final meshes generated with the adjusted or mean adjusted refinement ratios are
not optimal in terms of the number of nodes. Concerning the CPU time, the application of the
adjusted refinement ratio to h-adaptive techniques is beneficial, since only one refinement iteration
is sufficient to reach the prescribed accuracy.

3.3 Industrial test case: mechanical Pellet-Cladding Interaction
The so-called Pellet-Cladding interaction (PCI) is part of a wide range of physical and mechanical
phenomena occurring in Pressurized Water Reactor (PWR) during irradiation. In 2D, two test
cases are usually used to separately model the two phenomena (namely the hourglass deformation
and the pellets fragmentation) characterizing the PCI, as proposed in [27, 15, 42]. In 3D, these two
phenomena are combined on a three-dimensional geometry. The cladding’s material is supposed
to be linear elastic with Young’s modulus E = 1011 Pa and Poisson ratio ν = 0.3.

Problem definitions and boundary conditions of both, 2D and 3D test cases, are depicted in
Figure 20. We prescribe symmetry conditions due to the partial modeling of the cladding

u · n = 0 on the surfaces θ = 0, θ = π/8 and z = 0 (45)

and an uniform normal displacement

u · n = const. on z = L/2, ∀θ and ∀r (46)

Internal discontinuous pressure representing the contact with the cracked pellet are prescribed on
r = Rint = 4.1mm:

σn = 0 MPa on 0 ≤ θ ≤ θf ,∀z
σn = −150 MPa on θf < θ ≤ π/8 and z ≤ Lh

σn = −80 MPa on θf < θ ≤ π/8 and z > Lh

(47)

External pressure is imposed on r = Rext = 4.7mm:

σn = −15.5 MPa ∀θ, ∀z (48)

In the numerical application, θf = arctan( f
Rint

) with f = 8µm, Lh = 0.6mm.
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Figure 20: Industrial test case: Mechanical Pellet-Cladding Interaction; (a) Hourglass shape de-
formation; Computational domain and boundary conditions for (b) bi-dimensional axisymmetric
test case and (c) three-dimensional test case

3.3.1 Bi-dimensional axisymmetric case

The 2D case studied here consists in modeling the cladding’s response to the pellet’s hourglass
deformation, sketched in Figure 20a. This case can be seen as a pre-study for the three-dimensional
more realistic test case. We focus here on determining the most efficient refinement strategy in
terms of mesh optimality criterion and refinement ratio in presence of local singularity. The contact
is modeled as a discontinuous pressure applied on the cladding’s internal part (cf. Figure 20b).
For symmetry reasons, only a half of the pellet’s height is represented. In order to allow an overall
normal displacement of the cladding, an uniform normal (a priori unknown) translation condition
is assumed at the mid-pellet plane (top of the modeled domain). This test case reveals a local
singularity in stress (of order 0.5) near the pressure discontinuity zone, see [42]. A bi-dimensional
axisymmetric formulation is used (cf. Figure 20b).

Since the analytical solution of this problem is unknown, as the reference solution we here con-
sider the one obtained with a very fine uniform discretization adapted to the pressure discontinuity
with a mesh-step of approximately 2.8 µm (' 1 · 106 nodes).

Local error maps. The relative local error maps obtained using OB and LOC criteria for
εΩ = 2% are presented in Figure 21.

As we can see, whatever the AMR method, similar regions are refined. It can be noticed that
regardless the AMR method, mesh optimality criterion and refinement ratio, the desired local
accuracy (η ≤ δ) is reached for this error threshold. In this numerical example, the LOC mesh
optimality criterion leads to locally more precise simulations (lower η values) compared to OB
criterion. One can observe that for hierarchical non-conforming h-refinement and LDC methods,
the local accuracy may be not satisfied on some elements which have not been marked within the
refinement iterations. It occurs mostly due to the under-estimation of the real error by the ZZ
error estimator. Such an issue is compensated by the use of more local LOC mesh optimality
criterion, resulting in the improvement of the local error’s measure η.

Local error verification. The local error measure η is reported in Figure 22. For this test
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Figure 21: Mechanical Pellet-Cladding Interaction: 2D test case – local error maps – tolerance on
the global error εΩ = 2% – local volume control parameter δ = 3%; (a) OB optimality criterion
and (b) LOC optimality criterion

case, only the LOC criterion guarantees the control of critical zone in the final mesh (η ≤ δ) for
all imposed εΩ values, independently of the refinement ratio and AMR method. In the presence
of local singularity, the OB criterion does not allow us to satisfy the condition η ≤ δ, especially
for lower error tolerances εΩ. Thus, the LOC optimality criterion is chosen for the remaining part
of this comparative study. As expected, the conforming h-refinement leads to over-refined meshes
accompanied with very limited η values at nearly every case. The non-conforming h-adaptive and
LDC methods naturally lead to the same levels of final local accuracy.

Refinement ratios. Table 3 details the results for the global threshold εΩ = 0.5% obtained
for the LOC criterion with fixed and adjusted/mean refinement ratios. It can be seen that the
application of adjusted refinement ratio results in more refined meshes, not optimal in terms of
number of nodes. Moreover, the adjusted ratio refinement demands higher computational time,
especially for the conforming h-adaptivity. It is due to a badly estimated adjusted refinement ratio
βadjT i , whose values, in this numerical example, are not sufficiently high to reach the user-prescribed
accuracy in one refinement iteration. Since the refinement has to be repeated, the CPU time
required for the hierarchical mesh adaptation becomes higher. Thus, the hierarchical conforming
h-refinement technique becomes in this case really inefficient, in terms of the both, memory space
and CPU time. Adjusted refinement ratio applied to the non-conforming h-adaptive technique
leads to similar refined meshes than those obtained with the LDC method and mean refinement
ratio. It has to be noted, that for this numerical example, application of the mean adjusted ratio
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Figure 22: Mechanical Pellet-Cladding Interaction: 2D test case – local error measure η vs global
error tolerance εΩ

yields similar results in terms of number of nodes as well as CPU time, as the results obtained
with the fixed ratio. Indeed, for the error tolerance εΩ = 0.5%, the minimal mesh-step is equal
to hT 2 = 1

16hT 0 (with β̄T i=1,2 = {8, 2}), which is the minimal mesh-step obtained for the fixed
refinement (with k = 4 refinement iterations). The only visible difference resides in the number of
generated refinement steps.

Table 3: Mechanical Pellet-Cladding Interaction: 2D test case – LOC optimality criterion

εΩ = 0.5%, δ = 3% Fixed refinement ratio Adjusted/mean refinement ratio
Conf. Non-conf. Local Defect Conf. Non-conf. Local Defect

h-adaptive h-adaptive Correction h-adaptive h-adaptive Correction
k 4 4 4 2 2 2

eex
Gk
,% 0.27 0.35 0.35 0.19 0.34 0.36

η, % 0.28 0.31 0.37 0.02 0.08 0.37
NGk

14586 11965
12075

23267 12349
12075

Ntot 16237 14613
Nmax 9728 9728

Nhanging nodes 109 141
CPU total 22.5s 4.9s 3.8s 38.5s 4.6s 3.1s

CPU (SOLVE) 1.5s 1.9s 0.9s 2.8s 2.2s 0.6s
CPU (EST. + MARK) 0.9s 0.8s 0.6s 1.2s 0.7s 0.7s

CPU (REFINE) 20.1s 2.2s 2.3s 34.5s 1.7s 1.8s

It can be seen in Table 3 that, regardless the AMR method and optimality criterion, the global
and local accuracies are respected. The LDC method confirms to be the most efficient approach in
terms of the total runtime, regardless the refinement ratio applied. One gains approximately 30%
of the total runtime compared to the hierarchical non-conforming h-refinement (non-conformity
relations to be managed) and about 80% compared to the hierarchical conforming h-adaptive ap-
proach (global conforming meshes to be generated). Concerning the number of nodes, all AMR
techniques lead to quite similar outcomes for the fixed refinement ratio strategy, but the ad-
justed/mean refinement ratio strategy is only interesting for non-conforming h-adaptive and LDC
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methods.
General remarks. Based on both 2D numerical examples, one can observe that application

of the fixed refinement ratio βfixT i = 2 seems the most robust refinement strategy. It permits to
progressively improve the mesh, finally generating the optimal one, and to precisely reach the
prescribed level of accuracy. The direct use of adjusted refinement ratio has to be done with
precaution, especially while dealing with problems having localized effects. However, its potential
to achieve the imposed thresholds in fewer refinement iterations is a very attractive and promising
feature. Nevertheless, the use of convergence rule (Eq.24) with two important hypotheses (i.e.,
independence of the constant CT i from the mesh-step and accordance of the local convergence
order p to the one obtained globally) may be questioned. It seems natural that the constant
CT i may depend on the mesh size as the constant of the global a priori estimator depends on the
domain’s measure [65], as already suggested in [41]. Moreover, it is likely that the local convergence
order may change, for example near boundaries of the domain or singularities. Therefore, further
exploration of a priori local error estimators may be greatly interesting in order to improve the
formulation of the adjusted refinement ratio βadjT i .

Finally, in presence of local singularities, only the LOC mesh optimality criterion enables to
precisely control the local error.

3.3.2 Three-dimensional case

The three-dimensional case combines two phenomena representing the PCI, cf. Figure 20c. The
interest of this problem is to obtain a realistic 3D simulation of the cladding’s response on the
pellet modifications. For symmetry reasons, only 1/32 of the cladding in front of a pellet is repre-
sented (0 ≤ θ ≤ π/8, 0 ≤ z ≤ L/2).
This realistic industrial example reveals several crossed singularities of different characteristic
length-scales. From the numerical point of view, finding an accurate solution to such three-
dimensional problem is a challenging task since it may require solving high-dimensional (possibly
ill-conditioned) systems. Thereby, this problem represents an attractive industrial benchmark to
study the AMR methods considered here.

Since the reference solution is inaccessible in this example, the post-processing is based on
estimated errors : eest

Gk
:= ξGk

ωGk

and ηest :=
µ(ΩM0

k
)

µ(Ω) These error metrics are the one used for the
module STOP, cf. Section 2.4.

Here, the combination of the LOC optimality criterion and the fixed refinement ratio βfixT i = 2
is chosen due to its good performance in the previous numerical examples. Generation of the
refined meshes {Gi}ki=1 starts with a coarse mesh G0 with NG0 = 1596, which is not adapted to the
pressure singularities.

As an example, Figure 23 depicts the sub-meshes obtained at each refinement iteration with the
LDC approach and error tolerance εΩ = 1%. We observe that the marked zones are progressively
localized near the crossed singularities. The singularities become particularly well captured already
at the refinement step i = 4, which validates the robustness of the ZZ error estimator and LOC
criterion for this numerical example.

The displacement fields in the x direction (plotted on the deformed configuration) obtained
with each studied AMR method for the global error tolerance εΩ = 4% are depicted in Figure 24.
It can be observed that the same regions are automatically detected and refined with each AMR
method. One can also see that the global estimated error eest

Gk
is twice lower than the prescribed
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Figure 23: Mechanical Pellet-Cladding Interaction: 3D test case – LOC optimality criterion –
tolerance on the global error εΩ = 1% – local volume control parameter δ = 3%; Example of the
generated sub-meshes for the LDC method with sets of marked elementsM0

i in red

tolerance of εΩ = 4%. Moreover, the LOC criterion allows the estimated local error measure
ηest to vanish (i.e., Mk = ∅), which is a very satisfying result. Moreover, the generated refined
sub-meshes for LDC approach have clearly much less elements compared to the global refined
meshes generated with h-adaptive methods. Finally, it has to be noted that in this numerical
example, the usage of h-adaptive techniques (especially of the conforming approach) can be very
computationally expensive due to the perpendicularity of the singularities (see Table 4 for more
details).

Global and local accuracies. Figure 25 shows the evolution of the estimated global error eest
Gk

and the local error measure ηest with respect to the number of refinement iterations for tolerance
εΩ = 2%, First, it can be seen that the number of performed refinement iterations is k = 3,
regardless the applied AMR method. It is worth to note that one less refinement iteration could
be carried out if the global accuracy was only of interest. For each case, the last iteration is
performed to reach the local tolerance, i.e, the prescribed local control parameter δ = 3%.

Figure 26 provides the global estimated error eest
Gk

with respect to the number of nodes NGk
for

all error tolerances (εΩ = 4, 2, 1%). The optimal rate of convergence O(N−1/3
Gk

) is observed for all
AMR methods. Note, that in this case, the uniform refinement would lead to a error in O(N−1/6

Gk
)

due to the stress singularity, see [15]. Hence, AMR techniques enable to recover the optimal rate
of convergence with respect to the number of nodes. It has to be noted, that for NGk

< 1 · 105 an
improved convergence could be obtained with the non-conforming h-adaptive and LDC methods.

AMR methods comparison. Table 4 details the results obtained for error thresholds εΩ =
4, 2, 1%, respectively, for all studied AMR methods. It can be seen, that essentially the same
estimated global and local accuracies are reached by each AMR method. LDC technique enables
to easily reach even the lowest error tolerances, for which the h-adaptive methods entail much
higher computational cost. The cost associated with the conforming h-adaptive technique becomes
dramatically high for low error tolerances εΩ. It has to be mentioned that for error tolerances
εΩ = 2% and 1%, the conforming h-adaptive technique requires to refine the whole computational
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Figure 24: Mechanical Pellet-Cladding Interaction: 3D test case – Displacement field ux on the
deformed configuration – LOC optimality criterion – tolerance on the global error εΩ = 4% – local
volume control parameter δ = 3%

domain several times. For εΩ = 1%, the last generated mesh is very computationally demanding
and counts almost 5 millions of nodes, thus the associated problem solving has not been carried
out. Furthermore, even though the computational cost of the conforming h-adaptive method is not
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Figure 26: Mechanical Pellet-Cladding Interaction: 3D test case; Estimated global error eest
Gk

in
energy norm vs number of nodes NGk

that dramatic for the error tolerances εΩ > 1%, it is still much higher than for the non-conforming
and LDC methods. Concerning the non-conforming h-adaptive technique, the final refined meshes
have similar number of nodes than the composite mesh of LDC approach. However, LDC method
is much more efficient since it proceeds with smaller systems to be solved, see Nmax for LDC that
is almost 30% lower than Ntot of the non-conforming h-adaptive method (and four to ten times
smaller than Ntot of the conforming h-adaptive approach). LDC method also enables to save the
pre-processing time (e.g. for mesh enrichment) which can be quite important for complex realistic
problems. Moreover, the computational cost of performing several iterations of the multigrid
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iterative process is negligible compared to the cost of handling the non-conformity relations for
the non-conforming h-adaptive strategy (cf. times of problems definition for non-conforming h-
adaptive method).

Finally, in terms of total CPU time, LDC method is then computationally attractive: it allows
us to save from 30% to 50% of the total runtime compared to the non-conforming h-adaptive
method, and over 80% compared to the conforming h-adaptive technique. The LDC method com-
putational savings are then really attractive despite the little extra storage consumption (storage
of all the dofs of the generated sub-meshes (see Ntot), stiffness matrices factorizations, etc.).

Table 4: Mechanical Pellet-Cladding Interaction: 3D test case – tolerances on the global error
εΩ = 4, 2, 1% – local volume control parameter δ = 3%

εΩ = 4% εΩ = 2% εΩ = 1%
Conf. Non-conf. Local Defect Conf. Non-conf. Local Defect Conf. Non-conf. Local Defect

h-adaptive h-adaptive Correction h-adaptive h-adaptive Correction h-adaptive h-adaptive Correction
k 2 2 2 3 3 3 4 4 4

eest
Gk
,% 1.45 1.93 1.95 0.57 0.88 0.88 - 0.55 0.55

ηest,% 0 0 0 0.06 0.06 0.06 - 0.08 0.08
NGk

43875 18766
19269

632345 122799
125727

4961841 737789
746236

Ntot 21722 142991 848487
Nmax 12739 84943 495365

Nhanging nodes - 1387 - - 7059 - - 33767 -
CPU total 72.8s 14.9s 10.5s 7330s 366s 202s ≈ 500000s 12211s 6476s

CPU (SOLVE + 41.9s 10.6s 6.5s 683s 236s 100s - 2857s 850sEST. + MARK)
CPU (REFINE) 30.9s 4.3s 4s 6647s 130s 102s - 9354s 5626s

It has to be underlined, that the hierarchical mesh refinement (based on elements subdivision)
affects the total computational time for each AMR method. The time required for constructing
refined meshes grows with the number of elements to be refined. Thus, it demands from 30% to 80%
of the total runtime for the non-conforming h-adaptive and the LDC approaches, and it particularly
badly affects the total runtime of the conforming h-adaptive method. It has to be emphasized that
such an issue can be circumvented by using more efficient meshing techniques particularly using a
parallelization of the sub-module DIVIDE applied on the marked zone procedure (only the final
assembly must be done on the master processor).

To conclude, this nontrivial numerical example confirms the main conclusions deduced from
more academic 2D problems presented in Sections 3.2 and 3.3.1. The adaptive multigrid LDC
method is an attractive numerical tool to solve complex problems that proved its efficiency and
robustness. Compared to the widely-used h-adaptive hierarchical techniques, LDC approach leads
to promising results: it allows us to satisfy the imposed accuracy requirements with considerable
computational savings. This 3D numerical test case clearly pointed out the limitations of the
dicing-like hierarchical conforming h-refinement, with over-refined final meshes requiring expensive
computations. The non-conforming h-refinement generally generates optimal meshes in terms of
number of nodes, but its main difficulty resides in handling a large number of irregular nodes
which, in addition, requires dedicated solvers or intrusive developments.

General remarks. It is worth underlying that the computations for this 3D test case were
performed on a cluster with 240 Gb RAM. Note, that the computations on a workstation with 60
Gb RAM were possible only for LDC method. Indeed, systems solving on meshes implying more
than 700 thousand nodes isn’t reachable for this RAM. This implies that the solution for the error
threshold εΩ = 1% could not be obtained for the h-adaptive methods.
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4 Conclusions
In this study, the widely used h-refinement methods have been compared to the adaptive multi-
grid Local Defect Correction (LDC) method in the context of linear elasticity for quadrilat-
eral/hexahedral finite elements. Academic and more realistic engineering numerical examples
in 2D and 3D revealing local stress concentrations or local stress singularities have been used to
perform this comparison. The main conclusions can be summarized as follows:

• The LDC multigrid method permits to ensure the local character of the refinement (as
non-conforming h-adaptive approaches) while circumventing the difficulties related to non-
conforming meshes. It can be implemented in a non-intrusive way (only the pre- and post-
processing operations to be carried out) in any existing software.
Even if the LDC method needs little extra storage memory compared to non-conforming
hierarchical h-adaptive approaches, the random-access memory requirements by problem
resolution is really lower since problems sizes are limited. Hence, from the numerical point
of view, the LDC method is shown to be attractive in terms of overall runtimes compared to
both the hierarchical conforming and non-conforming h-adaptive approaches.

• The main bottleneck of the hierarchical conforming h-adaptive strategy resides in the mesh
refinement: the conforming all-quadrangular or all-hexahedral mesh refinement is still an
undergoing research field. Generally, local conforming mesh refinement is non trivial (based
on patterns) while sheet-based refinement is far from being local, which naturally results in
over-refined final meshes, affecting the computational time. In its turn, the main complexity
of the hierarchical non-conforming h-adaptive technique resides in handling continuity con-
straints. The resulting system of equations to be solved is often computationally demanding.

• This comparative study intrinsically leads to a comparison of refinement strategies related
to mesh optimality criterion and refinement ratio. For all numerical examples considered in
this study, the so-called LOC mesh optimality criterion seems to be the most adapted to
precisely control the local error. The OB criterion is not as much locally precise as the LOC
criterion, especially in presence of local singularities, but is sufficient if only global accuracy
is of interest. Finally, setting an a priori chosen fixed mesh-step refinement ratio (of value
2) on the detected elements has been proven to be the most efficient strategy. However, it
appeared interesting to further explore the determination of an optimal adjusted refinement
ratio enabling to reduce the number of refinement iterations.

The really promising results obtained with the locally adaptive multigrid LDC method open
the way to apply this approach on nonlinear solids mechanics problems. Moreover, this technique
offers others potentialities which would be interesting to test, especially the possibility to change
the model (multimodel approach) between levels of refinement.
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