
HAL Id: hal-02135891
https://hal.science/hal-02135891v1

Preprint submitted on 27 May 2019 (v1), last revised 11 Nov 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attributing and Referencing (Research) Software: Best
Practices and Outlook from Inria

Pierre Alliez, Roberto Di Cosmo, Benjamin Guedj, Alain Girault,
Mohand-Said Hacid, Arnaud Legrand, Nicolas P. Rougier

To cite this version:
Pierre Alliez, Roberto Di Cosmo, Benjamin Guedj, Alain Girault, Mohand-Said Hacid, et al.. At-
tributing and Referencing (Research) Software: Best Practices and Outlook from Inria. 2019. �hal-
02135891v1�

https://hal.science/hal-02135891v1
https://hal.archives-ouvertes.fr


1

Attributing and Referencing (Research) Software:
Best Practices and Outlook from Inria
Pierre ALLIEZ, Université Côte d’Azur, Inria, France, mailto:pierre.alliez@inria.fr

Roberto DI COSMO, Inria, Software Heritage, University of Paris, France, mailto:roberto@dicosmo.org
Benjamin GUEDJ, Inria, France and University College London, United Kingdom,

mailto:benjamin.guedj@inria.fr
Alain GIRAULT, Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France,

mailto:alain.girault@inria.fr
Mohand-Saïd HACID, Univ. Lyon, University Claude Bernard Lyon 1, LIRIS, Lyon France,

mailto:mohand-said.hacid@univ-lyon1.fr
Arnaud LEGRAND, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France,

mailto:arnaud.legrand@inria.fr
Nicolas ROUGIER, Univ. Bordeaux, Inria, CNRS, IMN, Labri, Bordeaux, France, mailto:nicola.rougier@inria.fr

Abstract—Software is a fundamental pillar of modern scientific
research, not only in computer science, but actually across all
fields and disciplines. However, there is a lack of adequate means
to cite and reference software, for many reasons. An obvious
first reason is software authorship, which can range from a
single developer to a whole team, and can even vary in time.
The panorama is even more complex than that, because many
roles can be involved in software development: software architect,
coder, debugger, tester, team manager, and so on. Arguably, the
researchers who have invented the key algorithms underlying the
software can also claim a part of the authorship. And there are
many other reasons that make this issue complex. We provide in
this paper a contribution to the ongoing efforts to develop proper
guidelines and recommendations for software citation, building
upon the internal experience of Inria, the French research
institute for digital sciences. As a central contribution, we make
three key recommendations. (1) We propose a richer taxonomy
for software contributions with a qualitative scale. (2) We claim
that it is essential to put the human at the heart of the evaluation.
And (3) we propose to distinguish citation from reference.

Keywords—Software citation; authorship; development pro-
cess.

I. INTRODUCTION

Software is a fundamental pillar of modern scientific re-
search, across all fields and disciplines [41], and the actual
knowledge embedded in software is contained in software
source code which is, “the preferred form [of a program] for
making modifications to it [as a developer]” [18] and “provides
a view into the mind of the designer” [35]. With the raise
of Free/Open Source Software (FOSS), which requires and
fosters source code accessibility, access has been provided to
an enormous amount of software source code that can be mas-
sively reused. Similar principles are now permeating the Open
Science movement [8], [11], in particular after the attention
drawn to it by the crisis in scientific reproducibility [38], [23],
[6], [34]. All this has recently drawn attention to the need
of properly referencing and crediting software in scholarly
works [24], [37], [28], [14].

In this context, we provide a contribution to the ongoing
efforts to develop proper guidelines and recommendations,
building upon the internal experience of Inria, the French
research institute for digital sciences1. Born in 1967, more 50
years ago, Inria has grown to directly employ 2,400 people,
and its 180 project-teams involve more than 3,000 scientists
working towards meeting the challenges of computer science
and applied mathematics, often at the interface with other
disciplines. Software lies at the very heart of the Institute’s
activity, and it is present in all its diversity, ranging from very
long term large systems (e.g., the award winning Coq proof
assistant [39], to the CompCert certified compiler [30], through
the CGAL Computational Geometry Algorithms Library [40]
to name only a few of most the well-known ones), to medium
sized projects and small but sophisticated codes implementing
advanced algorithms.

Inria has always considered software as a first class noble
product of research, as an instrument for research itself, and
as an important contribution in the career of researchers. As
such, whenever a team is evaluated or a researcher applies for a
position or a promotion, a concise and precise self-assessment
notice must be provided for each software developed in the
team or by the applicant, so that it can be assessed in a
systematic and relevant way.

With the emerging awareness of the importance of making
research openly accessible and reproducible, Inria has stepped
up its engagement for software. It has been working for
years on reproducible research, and is running a MOOC on
this subject [26]; it has been at the origin of the Software
Heritage initiative, which is building a universal archive of
source code [1]; and it has experimented a novel process
for research software deposit and citation by connecting the
French national open access publication portal, HAL [22], to
Software Heritage [1].

Yet, citing and referencing software is a very complex

1http://www.inria.fr

mailto:pierre.alliez@inria.fr
mailto:roberto@dicosmo.org
mailto:benjamin.guedj@inria.fr
mailto:alain.girault@inria.fr
mailto:mohand-said.hacid@univ-lyon1.fr
mailto:arnaud.legrand@inria.fr
mailto:nicola.rougier@inria.fr
http://www.inria.fr


2

task, for several reasons. For once, software authorship is
extremely varied, involving many roles: software architect,
coder, debugger, tester, team manager, and so on. Another
reason is that some software projects have a very long lifespan,
so sometimes one may want to reference a particular version
of a given software (this is crucial for reproducible research),
while at other times one may want to cite the software as a
whole.

In this article, we report on the practices, processes, and
vision, both in place and under consideration at Inria, to
address the challenges of referencing and accessing software
source code, and properly crediting the people involved in their
development, maintenance, and dissemination.

The article is structured as follows: Section II briefly
surveys previous work and provides a high level view of the
complexity of the issues that we face. Section III presents the
three key internal processes that Inria has put in place over
the last decades to track the hundreds of software projects to
which the institute contributes, and the criteria and taxonomies
they use. Section IV draws the main lessons that have been
learnt from this long term experience. Section V reports on the
ongoing efforts to leverage this experience and to contribute
to a better handling of research software worldwide. Finally,
Section VI concludes by providing a set of recommendations
for the future.

II. A COMPLEX SUBJECT

Software is very different from articles and data, with which
we have much greater familiarity and experience, as they have
been produced and used in the scholarly arena long before the
first computer program was ever written.

In this section, after briefly surveying some key previous
work in this area, we highlight some of the main characteristics
that render the task of assessing, referencing, attributing and
citing software a problem way more complex than what it may
appear at first sight.

A. Survey of previous work

The astrophysics community is one of the oldest ones
having attempted to systematically describe the software de-
veloped and use in their research work. The Astrophysics
Source Code Library was started in 1999. Over the years it
has put in place a curation process that enables the production
of quality metadata for research software. These metadata can
be used for citation purposes, and they are widely used in the
astrophysics field [3]. Around 2010, interest in software arose
in a variety of domains: a few computer science conferences
started an artefact evaluation process [2], which has spread to
many top venues in computer science. This led to the badging
system that ACM promotes for articles presenting or using
research software [5] and to the cloud-based solution used
and put forward by IEEE and Taylor & Francis for their
journals (Code Ocean). The need to take research software
into account, making it available, referenceable, and citable,
became apparent in many research communities [8], [38], [23],
[17], and the limitation of the informal practices currently in
use quickly surfaced [24], [12], [25]. An important effort to

bring together these many different experiences, and to build
a coherent point of view has been made by the FORCE11
Software Citation Working Group in 2016, which led to state
a concise set of software citation principles [36]. In a nutshell,
this document recognizes the importance of software, credit
and attribution, persistence and accessibility, and provides
several recommendations based on use-cases that illustrate the
different situations where one wants to cite a piece of software.

We do acknowledge these valuable efforts, which have
contributed to raise the awareness about the importance of
research software in the scholarly world.

Nonetheless, we consider that a lot more work is needed
before we can consider this problem settled: the actual rec-
ommendations that can be found on how to make software
citable and referenceable, and how to give credit to its authors,
fall quite short of what is needed for an object as complex
as software. For example, in most of the guidelines we have
seen, making software referenceable for reproducibility (where
the precise version of the software needs to be indicated),
or citable for credit (to authors or institutions), seems to
boil down to simply finding a way to attach a DOI [33]
to it, typically by depositing a copy of the source code in
repositories like Zenodo or Figshare.

This simple approach, inspired by common practices for
research data, is not appropriate for software.

When our goal is giving credit to authors, attaching an
identifier to metadata is the easy part, and any system of
digital identifiers, be it DOI, Ark or Handles, will do. The
difficulty lies in getting quality metadata, and in particular in
determining who should get credit, for what kind of contri-
bution, and who has authority to make these decisions. The
heated debate spawned by recent experiments that tried to
automatically compute the list of authors out of commit logs
in version control systems [9] clearly shows how challenging
this can be.

As we will see later in Section V-B, when looking for
reproducibility, it is necessary to precisely identify not only
the main software but also its whole environment and to make
it available in an open and perenial way. In this context, we
need verifiable build methods and intrinsic identifiers that do
not depend on resolvers that can be abused or compromised2,
and DOIs are not designed for this use case [14].

To make progress in our effort to make research soft-
ware better recognized, a first step is to acknowledge
its complexity, and to take it fully into account in
our recommendations.

B. Complexity of the software landscape

Software development is a multifaceted and continuously
evolving activity, involving a broad spectrum of goals, actors,
roles, organizations, practices and time extents. Without pre-
tending to be exhaustive, we detail here the most important
aspects that need to be taken into account.

2See Wiley using fake DOIs to trap web crawlers . . . and researchers as
well.

https://blogs.wayne.edu/scholarscoop/2016/06/02/wiley-using-fake-dois-to-trap-web-crawlers-and-researchers/
https://blogs.wayne.edu/scholarscoop/2016/06/02/wiley-using-fake-dois-to-trap-web-crawlers-and-researchers/


3

Structure
A software project can be organized either as a mono-
lithic program (e.g., the Netlib BLAS libraries), or
as a composite assembly of modules (e.g., the Clang
compiler). It can either be self-contained or have
many external dependencies. For example, the Eigen
C++ template library for linear algebra [21] aims for
minimal dependencies while listing an ecosystem of
unsupported modules3.

Lifetime
A software can be produced during a single, short
extent of time (referred to as one-shot contribution),
or over a long timespan, possibly fragmented into
several time intervals of activities. Some long run-
ning software projects extend over several decades.
For example, the CGAL project4 started in 1996 as a
European consortium, became open source in 2004,
and has provided more than 30 releases since then.

Community
A software can be the product of a single scholar, a
well-identified team or a scattered team of scholars
spanning a large scientific community that may be
difficult to track precisely. The CGAL open source
project lists more than 130 contributors, distinguish-
ing between the former and current developers, and
acknowledging the reviewers and initial consortium
members5. In contrast, the Meshlab 3D mesh pro-
cessing software6 is authored by a single team from
the CNR, Pisa.

Authorship
Software developer(s) writing the code are the most
visible authors of a software program, but they are
not, and by far, the only ones. A variety of activities
are involved in the creation of software, ranging from
stating the high-level specifications, to testing and
bug fixing, through designing the software architec-
ture, making technical choices, running use cases,
implementing a demonstrator, drafting the documen-
tation, deploying onto several platforms, and building
a community of users. In these contexts the roles
of a single contributor can be plural, with contri-
butions spanning variable time extents. Authorship
is even more complicated when developers resort to
pseudonimity, i.e., disguised identity in order to not
disclose their legal identities. For all these reasons,
evaluating the real contributions to a significant piece
of software is a very difficult problem: in our experi-
ence at Inria, automated tools may help in this task,
but are by far insufficient, and it is essential to have
humans in the loop.

Authority
Beyond good practices, most quality or certified
software development projects define management

3Eigen’s unsupported modules: http://eigen.tuxfamily.org/dox/unsupported/
index.html

4CGAL project: https://www.cgal.org/project.html
5CGAL people: https://www.cgal.org/people.html
6MeshLab: https://en.wikipedia.org/wiki/MeshLab

processes and authority rules. Authorities are entitled
to make decisions, give orders, control processes,
enforce rules, and report. They can be institutions,
organizations, communities, or sometimes a sin-
gle person (e.g., Guido van Rossum for Python).
Some projects set up an editorial board, similar in
spirit to scientific journals, with reviewers, managers
and well-defined procedures7. Each new contribution
must be submitted for review and approval before
being integrated. Some decisions can be taken top-
down while others are bottom-up. In some cases, a
shared governance is implemented. This organization
can be somehow compared to the Linux kernel devel-
opment organization where Linus Torvalds integrates
contributions but delegates the responsability of soft-
ware quality evaluation to a few trusted colleagues.
Another important aspect is the traceability of who
did what during the software project. In its simplest
form, the number of lines or code or commit logs are
used for tracing contributions and changes, but more
advanced means such as repository mining-based
metrics [31], bug-related metrics, or peer evaluation
are common.

Another dimension that adds to the complexity is the variety
of levels at which a software project can be described, either
for citation or for reference. We detail here the main levels
that we have found in our practice at Inria.

Exact status of the source code
For the purpose of exact reproducibility, one
must be able to reference any precise point in
the development history of a software project,
even if it is not labeled as a release; in this
case, cryptographic identifiers like those used
in distributed version control systems, and now
generalized in Software Heritage [14], are necessary.
For instance, the sentence “you can find at
swh:1:cnt:cdf19c4487c43c76f3612557d4dc61f9131790a4;
lines=146-187 of swh:1:snp:c9c31ee9a3c631472cc881788
6aaa0d3784a3782;origin=https://github.com/rdicosmo/
parmap/ the exact core mapping algorithm used
in this article” makes two distinct references. The
former one points to the lines of a source file while
the later one points to the software context in which
this file is used.

(Major) release
When a much coarser granularity is sufficient, one
can designate a particular (major) release of the
project. For instance: “This functionality is available
in OCaml version 4” or “from CGAL version 3”.

Project
Sometimes one needs to cite a software project at
the highest level; a typical example is a researcher, a
team or an institution reporting the software projects
it develops or contributes to. In this case, one must
list only the project as a whole, and not all its

7CGAL Open Source Project Rules and Procedures:
https://www.cgal.org/project_rules.html

http://eigen.tuxfamily.org/dox/unsupported/\discretionary {}{}{}{}index.html
http://eigen.tuxfamily.org/dox/unsupported/\discretionary {}{}{}{}index.html
https://www.cgal.org/project.html
https://www.cgal.org/people.html
https://en.wikipedia.org/wiki/MeshLab
https://archive.softwareheritage.org/swh:1:cnt:cdf19c4487c43c76f3612557d4dc61f9131790a4;lines=146-187/
https://archive.softwareheritage.org/swh:1:cnt:cdf19c4487c43c76f3612557d4dc61f9131790a4;lines=146-187/
https://archive.softwareheritage.org/swh:1:snp:c9c31ee9a3c631472cc8817886aaa0d3784a3782;origin=https://github.com/rdicosmo/parmap/
https://archive.softwareheritage.org/swh:1:snp:c9c31ee9a3c631472cc8817886aaa0d3784a3782;origin=https://github.com/rdicosmo/parmap/
https://archive.softwareheritage.org/swh:1:snp:c9c31ee9a3c631472cc8817886aaa0d3784a3782;origin=https://github.com/rdicosmo/parmap/
https://www.cgal.org/project_rules.html


4

different versions. For instance: “Inria has created
OCaml and Scikit-Learn”.

III. THREE PROCESSES FOR THREE DIFFERENT USE CASES

There are three main reasons why the research software
produced at Inria is carefully referenced and evaluated:

Management
Software development is a research output taken into
account in the evolution of the career of individual
researchers and research engineers. Measuring the
impact of a software provides a means to measure
the scope and magnitude of contributions of research
results, when they are carefully translated into usable
software. Evaluating the maturity and breadth of soft-
ware is also essential to guide further developments
and resource allocation.

Technology Transfer
Information about authorship and intellectual prop-
erty is a key asset when technology transfer takes
place, either in industrial contracts or for the creation
of start-ups.

Outreach
Software is a part of the scientific production that
each research team exposes. Software that are dif-
fused to a large scholar audience or commercial-
ized to industrial users may become an important
source of inspiration for novel research challenges.
Feedback from practitioners or academic users is a
precious source of knowledge for determining the re-
search problems with high potential practical impact.
Software can also be a key instrument for research,
central to the daily research activity of a team,
and a main support for teaching and education. It
may also become a communication medium between
young researchers, e.g., Ph.D. students sharing their
research topics and experiments via a common set of
software components.

We now describe the processes in place at Inria, and the
information collected, to cater to these different needs.

A. Career of an individual

Inria has an internal evaluation body, the Evaluation Com-
mittee (EC), the role of which includes evaluating both in-
dividual researchers when they apply for various positions
(typically ranging from junior researcher to leading roles
such as senior researcher or research director), and organizing
the evaluations of whole research teams, which take place
every 4 years. In both cases, evaluating a given software
revolves around three items: (i) the software itself, which
can be downloaded and tested; (ii) precise self-assessment
criteria filled-in by the developers themselves; and (iii) a
factual and high-level description of the software, including the
programming language(s) used along with the number of lines
of code, the number of man-months of development effort, and
the web site from where the software and any other relevant
material (a user manual, demos, research papers, ...) can be
downloaded.

Among these three items, the self-assessment criteria play
a crucial role because they provide key information on the
software, how it was developed, and what role each devel-
oper played. Version 1 of these “Criteria for Software Self-
Assessment” dates from August 2011 [27]. They are also used
by the Institute for Information Sciences and Technologies
(INS2I) of The French National Centre for Scientific Research
(CNRS). It comprises two lists of criteria using a qualitative
scale. The first list characterizes the software itself:

Audience
Ranging from A1 (personal prototype) to A5 (usable
by a wide public).

Software Originality
Ranging from SO1 (none) to SO4 (original software
implementing a fair number of original ideas).

Software Maturity
Ranging from SM1 (demos work, rest not guaran-
teed) to SM5 (high-assurance software, certified by
an evaluation agency or formally verified).

Evolution and Maintenance
Ranging from EM1 (no future plans) to EM4 (well-
defined and implemented plan for future maintenance
and evolution, including an organized users group).

Software Distribution and Licensing
Ranging from SDL1 (none) to SDL5 (external pack-
aging and distribution either as part of e.g., a Linux
distribution, or packaged within a commercially dis-
tributed product).

As an example, the OCaml compiler is assessed as: Audi-
ence A5, Software Originality SO3, Software Maturity SM4,
Evolution and Maintenance EM4, Software Distribution and
Licensing SDL5.

The second list characterizes the contribution of the devel-
opers and comprises the following criteria: Design and Archi-
tecture (DA), Coding and Debugging (CD), Maintenance
and Support (MS), and Team/Project Management (TPM).
Each contribution ranges from 1 (not involved) to 4 (main
contributor).

As an example, the personal contribution of one of OCaml’s
main developer might be: Design and Architecture DA3,
Coding and Debugging CD4, Maintenance and Support MS3,
Team/Project Management TPM4.

Overall, these self-assessment criteria have been in used
at Inria for several years now. The feedback from both
jury members (for individual researchers) and international
evaluators (for research teams) is that they are extremely
useful, despite their coarse granularity and being based on self-
statement. All praise the relevance of the criteria and the fact
that they provide a mean to assess the scope and magnitude
of contributions to a given software, much more accurately.

B. Technology transfer

Technology transfer is at the heart of Inria’s strategy to
increase its societal and economical impact. However, in the
particular case of software, technology transfer raises a number
of difficulties. Most of the time, transferring a software to
industry starts by sending a copy of the software to a French



5

registration agency named Agence pour la Protection des
Programmes (APP8). When doing so, a dedicated form has
to be filled that requires to specify all the contributors of
the software, and for each of them the percentage of her/his
contribution.

When the software is old (typically more than 10 years
old), this involves carrying on some archaeology to retrieve
the contribution of the first developers (some of whom may
have left Inria, or may have not been Inria employees at
all). A dedicated technology transfer team interacts with the
researchers in this process, taking into account all the different
contributions to software development. In particular, they use
a taxonomy of roles that includes the following:

Coding
This seems the most obvious part, but it is actually
complex, as one cannot just count the number of
lines of codes written, or the number of accepted
pull requests. Sometimes a long code fragment may
be a straightforward reimplementation of a very
well known algorithm or data structure, involving
no complexity or creativity at all, while at other
times a few lines of code can embody a complex and
revolutionary approach (e.g., speeding up massively
the execution time). Often, a major contribution to
a project is not adding code, but fixing code or
removing portions of code by factoring the project
and increasing its modularity and genericness.

Testing and debugging
This is an essential role when developing software
that is meant to be used more than once. This activity
may require setting up a large database of relevant
use cases and devising a rigorous testing protocol
(e.g., non-regression testing).

Algorithm design
Inventing the underlying algorithm that forms the
very basis of the software being transferred to in-
dustry is, of course, a key contribution.

Software architecture design
This is another important activity that does not
necessarily show up in the code itself, but which is
essential for maintenance, modularity, efficiency and
evolution of the software. As Steve Jobs famously
said while promoting Object Oriented Programming
and the NeXT computer more than twenty-five years
ago, “The line of code that has no bug and that costs
nothing to maintain, is the line of code that you never
wrote”.

Documentation
This activity is essential to ease (re)usability and
to support long term maintenance and evolution.
It ranges from internal technical documentation to
drafting the user manual and tutorials.

The older and bigger the software, the more difficult this
authorship identification task is.

8APP’s web site: https://www.app.asso.fr

C. Visibility and impact of a research team

Inria considers (research) software to be a valuable output
of research, and has always encouraged its research teams
to advertise the software project they contribute to: this can
be on the public web page of the team, or in its annual
activity report. To simplify the collection of the information
concerning the software projects, an internal database, called
BIL9, has been in use for several years. It allows research
teams to deposit very detailed metadata describing the software
projects they are involved in. The BIL can then be used to
generate automatically the list of software descriptions for
the team webpage, for the activity report, and also to prefill
part of the forms used in the two processes described above
for individual career evaluation and for technology transfer,
avoiding the burden of typing in the same information over
and over again.

IV. LESSONS LEARNED ON CREDITING SOFTWARE

The processes described above have been put in place inside
Inria and refined over decades to answer the internal needs of
the institution. While their goal has not been to guide external
processes such as software citation, we strongly believe they
provide a solid basis to build a universal framework for
software citation and reference.

Here are a few important lessons we learned from all the
above: (research) software projects present a great degree of
variability along many axes; contributions to software can take
many forms and shapes; and there are key contributions that
must be recognised but do not show up in the code nor in
the logs of the version control systems. This has several main
consequences:

• the need of a rich metadata schema to describe software
projects;

• the need of a rich taxonomy for software contributions,
that must not be flattened out on the simple role of
software developer;

• last but not least, while tools may help, a careful human
process involving the research teams is crucial to produce
the qualified information and metadata that is needed for
proper credit and attribution in the scholarly world.

We focus here mostly on the two latter issues, as the
question of metadata for software has already attracted sig-
nificant attention, with the Codemeta initiative providing a
good vehicle for standardisation, and for incorporating the new
entities that may be needed [29].

A. Taxonomy of contributor roles: a proposal

The need to recognise different levels and forms of contribu-
tions is not new in academia: in Computer Science and Mathe-
matics we are quite used to separate, for example, the persons
that are named as authors, and those that are only mentioned in
the acknowledgements. More recently, other disciplines have
pushed efforts to create a richer taxonomy of contributions for
research articles, with the CRediT system [10], [4] detailing

9BIL stands for “Base d’Information des Logiciels”, i.e. “database of
information on software”.

https://www.app.asso.fr


6

14 different possible roles, one of which is software: the key
idea is that each person listed as an author needs to specify
one or more of the 14 roles.

Proposal #1: A richer taxonomy for software con-
tributions with a qualitative scale

When we come to giving credit to contributors of a
software project, we are in a very similar situation,
and we need a rich taxonomy. In the previous sections
we have seen two taxonomies, developed and used in
two different contexts inside Inria: despite minor dif-
ferences (for example, maintenance and user support
are not taken into account for technology transfer), one
can extract rather easily the following taxonomy of
contributor roles that covers all the use case seen, and
that may be extended in the future:

• Design
• Architecture
• Coding

• Testing
• Debugging
• Documentation

• Maintenance
• Support
• Management

But this is only part of the story: in both of the internal
Inria processes we described, contributions are not just
classified in different roles, they are also quantified,
either at a coarse grain (from 1 to 5 for career
evaluation), or at a very fine grain (percentages are
used for technology transfer, where a financial return
needs to be precisely redistributed). We recommand
using a coarse grain qualitative scale as it is easy to
implement and proves to be very helpful whenever
technology transfer occurs.

B. The importance of the human in the loop

This quantification is essential, in particular considering that
an academic credit system will be inevitably built on top of
software citations, which brings us to our next key point: the
importance of having humans in the loop, which has already
been clearly advocated in a different context by the team
behind the Astronomic Source Code Library [3].

As we have already noted, many of the contributor roles
identified above are not reflected in the code. In order to assess
these roles, in kind and quantity, it is necessary to interact with
the team that has created and evolved the software: this is what
the technology transfer service at Inria routinely does.

What about the activities that are tightly related to the
software source code itself, like coding, testing, and debug-
ging? Here it is very tempting to try to use automated tools
to determine the role of a contributor, and the importance
of each contribution. There are indeed a wealth of different
developer scoring algorithms that target GitHub contributors10.
Unfortunately these measures are far from robust: refactoring
(that may be just renaming or moving file around or even

10See for example http://git-awards.com/,
https://github.com/msparks/git-score and GitHub’s own scoring using the
number of commits, deletions, or additions.

changing tabs in spaces!) can lead to huge score increases,
while the actual developer contribution is marginal. And even
if one could rule out irrelevant code changes, our experience
at Inria is that the importance and quality of a contribution
cannot be assessed by counting the number of lines of code
that have been added (see our description of the coding role
in Section III-B). This is particularly the case for research
software that involves significant innovations.

Proposal #2: Putting human in the heart of the
evaluation

As a bottomline, we strongly suggest to refrain, for
research software, from trying to generate software
citation and credit metadata, and in particular the list of
(main) authors, using automated tools: we need quality
information in the scholarly world, and currently this
can only be achieved with qualified human interven-
tion. We strongly encourage the authors of research
software to provide such qualitative information, for
example in an AUTHORS file, and to use the afore-
mentioned taxonomy and scale.

V. OUTLOOK: CITING AND REFERENCING RESEARCH
SOFTWARE

We have extensively covered the best practices for assessing
and attributing software artefacts: they are essential for giving
qualified academic credit to the people that contribute to
them, and are key prerequisites for creating citations for
software. This complex undertaking requires significant human
intervention, and proper processes and tools to support it.

Another important issue is supporting reproducibility of
research results and in particular getting stable references to
the software artefact themselves. The focus is no longer on
giving credit, but on finding, rebuilding, and running the exact
software referenced in a research article. The reproducibility
crisis takes a whole new dimension when software is involved,
and scholars are struggling to find ways to aggregate in a co-
herent compendium the data, the software, and the explanations
of their experiments.

On the one hand, the frequent lack of availability of the
software source code, and/or of precise references to the
right version of it, is a major problem [12]. Solving this
issue requires long term source code archives and specialised
identifiers [14].

On the other hand, characterizing and reproducing the full
software environment that is used in an experiment requires
tracking a potentially huge graph of dependencies (a small
example is shown in Figure 1).

The overall problem is extremely complex: while there are
examples of rather comprehensive solutions in very specialised
domains (e.g., the one deployed for the IPOL journal11), it
seems very difficult to find a unique solution general enough
to cover all the use cases.

11Image Processing On Line (https://www.ipol.im/) is an Open Science
journal dedicated to image processing. Each article describe an algorithm and
contains its source code, with an online demonstration facility and an archive
of experiments.

http://git-awards.com/
https://github.com/msparks/git-score
https://www.ipol.im/


7

python3-matplotlib

python3-dateutil

python3-six

(>= 1.4)

python3:any

python-matplotlib-data

(>= 3.0.2-2)

python3-pyparsing

(>= 1.5.6)

libjs-jquery

libjs-jquery-ui

python3-numpy

(>= 1:1.14.3)

python3

(<< 3.8) (>= 3.7~)

python3-numpy-abi9

python3-cycler

(>= 0.10.0)

python3-kiwisolver

libfreetype6

(>= 2.2.1)

libpng16-16

(>= 1.6.2-1)

python3-pil

python3-tk

(>= 1.5)

(>= 3.2~)

tzdata

[python3] [python3]

{debconf} debconf-2.0

(>= 0.5)

[debconf] {cdebconf}

fonts-lyx ttf-bitstream-vera

(>= 3.3.2-2~)

jquery javascript-common

(>= 1.7)

(<< 3.8)(>= 3.7~)python3.7:any

libblas3 libblas.so.3

liblapack3 liblapack.so.3python3-pkg-resources

python3-minimal

(= 3.7.3-1)

python3.7

(>= 3.7.3-1~) libpython3-stdlib

(= 3.7.3-1)

python3.7-minimal

(>= 3.7.3-1~)

{dpkg} install-info

(>= 1.13.20)

libpython3.7-minimal

(= 3.7.3-2)

libexpat1

(>= 2.1~beta3)

libssl1.1

(>= 1.1.1)

libpython3.7-stdlib

(>= 0.5)

(= 3.7.3-2)

mime-support

libbz2-1.0

liblzma5

(>= 5.1.1alpha+20120614)

libdb5.3 libffi6

(>= 3.0.4)

libmpdec2 libncursesw6

(>= 6)

libtinfo6

(>= 6) libreadline7

(>= 7.0~beta)

libsqlite3-0

(>= 3.7.15)

libuuid1

(>= 2.20.1)

bzip2file xz-utils

(= 1.0.6-9)

libmagic1

(= 1:5.35-4)

libmagic-mgc

(= 1:5.35-4)

(>= 5.2.2)xz-lzma

(= 6.1+20181013-2)

libgpm2

(>= 6)

readline-common

(>= 1.15.4)

libreadline-common

(>= 1.16.1)

uuid-runtime

(>= 2.25-5~) (>= 2.31.1)

adduserlibsmartcols1

(>= 2.27~rc1)

libsystemd0

(>= 0.5)

passwd

(>= 5.1.1alpha+20120614)

libgcrypt20

(>= 1.8.0)

liblz4-1

(>= 0.0~r122)

libgpg-error0

(>= 1.25)

libgpg-error-l10n

(= 3.7.3-2)

(= 3.7.3-2)

(>= 3.7.3-1~)

[python3.7] [python3.7]

libgfortran5

(>= 8)

libquadmath0

(>= 4.6) ...

-6-

gcc-9-base

(= 9-20190428-1)

(>= 4.6)

(= 9-20190428-1)

(>= 8)

(>= 4.6)

...

-3-

(>= 3.3.2-2~) (<< 3.8)(>= 3.6~)

(>= 1.6.2-1)

(<< 3.8) (>= 3.7~)

(>= 2.2.1)

[mime-support] python3-pil.imagetk libimagequant0

(>= 2.11.10)

libjpeg62-turbo

(>= 1.3.1) liblcms2-2

(>= 2.2+git20110628)

libtiff5

(>= 4.0.3)

libwebp6

(>= 0.5.1) libwebpdemux2

(>= 0.5.1)

libwebpmux3

(>= 0.6.1-2)

python3-olefile

(<< 3.8)(>= 3.7~)

(= 6.0.0-1)

(>= 3.4.1-2)

(>= 3.7.1-1~)(<< 3.9)

blt

(>= 2.4z-9)

tk8.6-blt2.5

(>= 2.5.3)

libtcl8.6

(>= 8.6.0)

libtk8.6

(>= 8.6.0)(= 2.5.3+dfsg-5)

(>= 8.6.0)

(>= 8.6.0)

blt4.2blt8.0 blt8.0-unoff

(>= 2.2.1)

(>= 8.6.0-2)

libfontconfig1

(>= 2.12.6)

libxext6

libxft2

(>> 2.1.1)

libxss1

(>= 2.3.5)(>= 2.12.6)

libxrender1 x11-common

libjpeg62

(>= 5.1.1alpha+20120614)

(>= 1.3.1)

libjbig0

(>= 2.0) (>= 0.5.1)

libzstd1

(>= 1.3.2) (>= 0.5.1)(>= 0.5.1)

Matplotlib library

Python dependencies

Real dependencies

Fake OS dependencies
induced by package granularity

Fig. 1. Transitive dependencies of the software environment required by a simple “import matplotlib” command in the Python 3 interpreter.

Proposal #3: Distinguish citation from reference

It is essential to distinguish citations to projets or
results from exact references to software and their
environment, and we believe that both should be used
in articles, although no standard exists yet for the
former.

In recent years, though, various building blocks have
emerged that may lead to such a global approach. Inria has
fostered and supported a few of them, that we recall briefly
here.

A. Software Heritage: a universal archive of source code

Software Heritage (SWH) was started in 2015 to collect,
preserve and share the source code of all software ever written,
together with its full development history [1]. As of today, it
has already collected almost 6 billions unique source code files
coming from over 85 million software origins that are regularly
harvested. The recently added “save code now” feature enables
users to request proactively the addition of new software
origins or to update them. Source code and its development
history are stored in a universal data model based on Merkle
DAGs [32], [15], providing persistent, intrinsic, unforgeable,
and verifiable identifiers for the more than 10 billion objects
it contains [14]. This universal archive of all software source
code addresses the issue of preserving and referencing source
code for reproducibility.

B. Reproducible builds

In the early 2000’s, the ground-breaking notion of functional
package manager was introduced by the Nix system [16],
using cryptographic hashes to ensure that binaries are rebuilt

and executed in the exact same software environment. Similar
notions provide the foundation of the Guix toolchain, which
has been developed over the last decade under the umbrella
of the GNU project, with key contributions from Inria [13].
The essential property of these tools is that, given the same
source files and the associated functional build recipes, one
can obtain as a result of the build process the very same
binary files in the same environment. Very recently, Guix
has been connected with SWH to ensure long term repro-
ducibility: when the source code (currently downloaded from
the upstream distribution sites) disappears from the designated
location, Guix uses transparently the SWH intrinsic identifiers
to fetch the archived copy from its archive. Functional build
recipes are themselves a form of source code, and they too can
be archived and given intrinsic identifiers, which will provide
proper references also for software environments.

C. Curation of research software deposit in HAL for SWH

Over the past two years, Inria has fostered a collaboration
between SWH and HAL, the French national open access
archive [22], with the goal of providing a process of research
software deposit that supports the human in the loop rec-
ommendation [7]. Figure 2 provides a high level overview
of this process: researchers submit software source code and
metadata to the HAL portal; these submissions are placed in
a moderation loop where humans interact with the researchers
to improve the quality of the metadata and to avoid duplicates;
once a submission is approved, it is sent to SWH via a generic
deposit mechanism, based on the SWORD standard archive
exchange protocol; it is then ingested in the SWH archive;
finally, the unique intrinsic identifier needed for reproducibility
is returned to the HAL portal, which displays it alongside
the identifier for the metadata. Detailed guidelines have been
developed to help researchers [19] and moderators [20] get to



8

Fig. 2. Moderated software deposit in SWH via HAL.

a high quality deposit of their source code. The rich metadata
collected by HAL in the deposit process are sent to SWH
using the now standard CodeMeta schema [29], and will be
soon extended with the taxonomy of Section IV-A.

VI. CONCLUSION

It this article we presented for the first time the internal
processes in place at Inria for assessing, attributing, and
refrencing research software. They play an essential role for
the careers of individual Inria researchers and engineers, the
evaluation of whole research teams, the technology transfer
activities and incentive policies, and the visibility of research
teams.

These processes have to cope with the great complexity and
variability of research software, in terms of the nature of its
relating activities and practices, roles of its contributing actors,
and diversity of lifespans.

Recommendations

Based on our experience over several decades, we have
distilled the important lessons learned and are happy to provide
a set of recommendations that can be summarised as follows:

Recognise the diversity of contributor roles
The taxonomy of contributors described in Sec-
tion IV-A has been extensively tested internally at
Inria. We recommend that it be incorporated in the
CodeMeta standard, and all the platforms and tools
that support software attribution and citation. In the
meanwhile, researchers can adopt it right away in the
metadata they incorporate in their own source code.

Keep the human in the loop
To obtain quality metadata, as seen in Section IV-B,
it is essential to have humans in the loop. We strongly
advise against the unsupervised use of automated
tools to create such metadata, and recommend the
implementation of a metadata curation and modera-
tion mechanism in all tools and platforms that are
involved in the creation of metadata for research
software, like Zenodo or FigShare. We also recom-
mend that research institutions and academia in gen-
eral rely on human experts to assess the qualitative

contributions of research software, and refrain from
adopting as evaluation criteria automated metrics that
are easily biased.

Distinguish citation from reference
As explained in Section II-B, citations, used to pro-
vide credit to contributors, are conceptually different
from references designed to support reproducibility.
While the latter can be largely automated, using
platforms like Software Heritage and tools like Guix,
the former require careful human curation. Research
articles will then be able to provide both software ci-
tations and software references, and we are currently
working on concrete guidelines that we will make
publicly available.

REFERENCES

[1] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli. Building the universal
archive of source code. Commun. ACM, 61(10):29–31, Sept. 2018.

[2] Artifact evaluation for software conferences. https://www.artifact-
eval.org/, 2011. Retrieved April 2nd 2019.

[3] A. Allen and J. Schmidt. Looking before leaping: Creating a software
registry. Journal of Open Research Software, 3(e15), 2015.

[4] L. Allen, A. O’Connell, and V. Kiermer. How can we ensure visibility
and diversity in research contributions? How the Contributor Role Tax-
onomy (CRediT) is helping the shift from authorship to contributorship.
Learned Publishing, 32(1):71–74, 2019.

[5] Association for Computing Machinery. Artifact review and
badging. https://www.acm.org/publications/policies/artifact-review-
badging, Apr 2018. Retrieved April 27th 2019.

[6] M. Baker. 1, 500 scientists lift the lid on reproducibility. Nature,
533(7604):452–454, may 2016.

[7] Y. Barborini, R. Di Cosmo, A. R. Dumont, M. Gruenpeter, B. Marmol,
A. Monteil, J. Sadowska, and S. Zacchiroli. The creation of a new type
of scientific deposit: Software. https://www.rd-alliance.org/rda-11th-
plenary-poster-session, 2018.

[8] C. L. Borgman, J. C. Wallis, and M. S. Mayernik. Who’s got the data?
interdependencies in science and technology collaborations. Computer
Supported Cooperative Work, 21(6):485–523, 2012.

[9] C. T. Brown. Revisiting authorship, and JOSS software publications.
http://ivory.idyll.org/blog/2019-authorship-revisiting.html, jan 2019.
Retrieved April 2nd, 2019.

[10] CASRAI. The credit taxonomy. https://casrai.org/credit/, 2015.
Retrieved January 2019.

[11] B. R. Childers, G. Fursin, S. Krishnamurthi, and A. Zeller. Artifact
Evaluation for Publications (Dagstuhl Perspectives Workshop 15452).
Dagstuhl Reports, 5(11):29–35, 2016.

[12] C. Collberg and T. A. Proebsting. Repeatability in computer systems
research. Communications of the ACM, 59(3):62–69, feb 2016.

[13] L. Courtès and R. Wurmus. Reproducible and user-controlled software
environments in HPC with Guix. In Euro-Par 2015: Parallel Processing
Workshops, pages 579–591, 2015.

[14] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli. Identifiers for digital
objects: the case of software source code preservation. In Proceedings
of the 15th International Conference on Digital Preservation, iPRES
2018, Boston, USA, Sept. 2018. Available from https://hal.archives-
ouvertes.fr/hal-01865790.

[15] R. Di Cosmo and S. Zacchiroli. Software heritage: Why and how to
preserve software source code. In Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017, Sept. 2017.

[16] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free
system for software deployment. In L. Damon, editor, Proceedings of
the 18th Conference on Systems Administration (LISA 2004), Atlanta,
USA, November 14-19, 2004, pages 79–92. USENIX, 2004.

[17] Y. Gil, C. H. David, I. Demir, B. Essawy, W. Fulweiler, J. Goodall,
L. Karlstrom, H. Lee, H. Mills, J.-H. Oh, S. Pierce, A. Pope, M. Tzeng,
S. Villamizar, and X. Yu. Towards the geoscience paper of the future:
Best practices for documenting and sharing research from data to
software to provenance. Earth and Space Science, 3, 07 2016.

[18] GNU. Gnu general public license, version 2, 1991. Retrieved September
2015.

https://www.artifact-eval.org/
https://www.artifact-eval.org/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.rd-alliance.org/rda-11th-plenary-poster-session
https://www.rd-alliance.org/rda-11th-plenary-poster-session
http://ivory.idyll.org/blog/2019-authorship-revisiting.html
https://casrai.org/credit/
https://hal.archives-ouvertes.fr/hal-01865790
https://hal.archives-ouvertes.fr/hal-01865790


9

[19] M. Gruenpeter and J. Sadowska. Create software deposit. Technical
report, Inria ; CCSD ; Software Heritage, 2018. https://hal.inria.fr/hal-
01872189.

[20] M. Gruenpeter and J. Sadowska. La modération d’un dépôt logi-
ciel. Technical report, Inria ; CCSD ; Software Heritage, 2018.
https://hal.inria.fr/hal-01876705.

[21] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[22] Hal: Hyper articles en ligne. https://hal.archives-ouvertes.fr/, 2001.
Retrieved May 2019.

[23] K. Hinsen. Software development for reproducible research. Computing
in Science and Engineering, 15(4):60–63, 2013.

[24] J. Howison and J. Bullard. Software in the scientific literature: Problems
with seeing, finding, and using software mentioned in the biology
literature. Journal of the Association for Information Science and
Technology, 67(9):2137–2155, 2016.

[25] L. Hwang, A. Fish, L. Soito, M. Smith, and L. H. Kellogg. Software
and the scientist: Coding and citation practices in geodynamics. Earth
and Space Science, 4(11):670–680, 2017.

[26] Inria Learning Lab, K. Hinsen, A. Legrand, and C. Pouzat. Recherche
reproductible : principes méthodologiques pour une science transparente
(mooc), 2018. https://learninglab.inria.fr/en/mooc-recherche-
reproductible-principes-methodologiques-pour-une-science-
transparente/.

[27] INRIA’s Evaluation Committee. Criteria for software self-assessment.
Published online, Aug. 2011. Available from INRIA’s web site
https://www.inria.fr/en/content/download/11783/409884/version/4/file/
SoftwareCriteria-V2-CE.pdf.

[28] M. Jackson. How to cite and describe software.
https://www.software.ac.uk/how-cite-software. Accessed on
December 31st 2018.

[29] M. B. Jones, C. Boettiger, A. Cabunoc Mayes, A. Smith, P. Slaughter,
K. Niemeyer, Y. Gil, M. Fenner, K. Nowak, M. Hahnel, L. Coy, A. Allen,
M. Crosas, A. Sands, N. Chue Hong, P. Cruse, D. S. Katz, and C. Goble.
Codemeta: an exchange schema for software metadata, 2017. Version
2.0. KNB Data Repository.

[30] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[31] J. Lima, C. Treude, F. F. Filho, and U. Kulesza. Assessing developer
contribution with repository mining-based metrics. In 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pages 536–540, Sep. 2015.

[32] R. C. Merkle. A digital signature based on a conventional encryption
function. In C. Pomerance, editor, Advances in Cryptology - CRYPTO
’87, A Conference on the Theory and Applications of Cryptographic
Techniques, volume 293 of Lecture Notes in Computer Science, pages
369–378. Springer, 1987.

[33] N. Paskin. Digital object identifier (DOI) system. Encyclopedia of
library and information sciences, 3:1586–1592, 2008.

[34] R. Peng. The reproducibility crisis in science: A statistical counterattack.
Significance, 12(3):30–32, 2015.

[35] L. J. Shustek. What should we collect to preserve the history of
software? IEEE Annals of the History of Computing, 28(4):110–112,
2006.

[36] A. Smith, D. Katz, and K. Niemeyer. Software citation principles. PeerJ
Computer Science, 2:e86, 2016.

[37] A. M. Smith, D. S. Katz, and K. E. Niemeyer. Software citation
principles. PeerJ Computer Science, 2:e86, 2016.

[38] V. Stodden, R. J. LeVeque, and I. Mitchell. Reproducible research
for scientific computing: Tools and strategies for changing the culture.
Computing in Science and Engineering, 14(4):13–17, 2012.

[39] T. C. D. Team. The coq proof assistant, version 8.9.0, Jan. 2019.
[40] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial

Board, 4.14 edition, 2019.
[41] R. Van Noorden, B. Maher, and R. Nuzzo. The top 100 papers. Nature,

pages 550–553, Oct.4 2014.

https://hal.inria.fr/hal-01872189
https://hal.inria.fr/hal-01872189
https://hal.inria.fr/hal-01876705
http://eigen.tuxfamily.org
https://hal.archives-ouvertes.fr/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://www.inria.fr/en/content/download/11783/409884/version/4/file/SoftwareCriteria-V2-CE.pdf
https://www.inria.fr/en/content/download/11783/409884/version/4/file/SoftwareCriteria-V2-CE.pdf
https://www.software.ac.uk/how-cite-software

	Introduction
	A complex subject
	Survey of previous work
	Complexity of the software landscape

	Three processes for three different use cases
	Career of an individual
	Technology transfer
	Visibility and impact of a research team

	Lessons learned on crediting software
	Taxonomy of contributor roles: a proposal
	The importance of the human in the loop

	Outlook: citing and referencing research software
	Software Heritage: a universal archive of source code
	Reproducible builds
	Curation of research software deposit in HAL for SWH

	Conclusion
	References

