
HAL Id: hal-02135891
https://hal.science/hal-02135891v2

Submitted on 11 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attributing and Referencing (Research) Software: Best
Practices and Outlook from Inria

Pierre Alliez, Roberto Di Cosmo, Benjamin Guedj, Alain Girault,
Mohand-Said Hacid, Arnaud Legrand, Nicolas P. Rougier

To cite this version:
Pierre Alliez, Roberto Di Cosmo, Benjamin Guedj, Alain Girault, Mohand-Said Hacid, et al.. At-
tributing and Referencing (Research) Software: Best Practices and Outlook from Inria. Computing
in Science and Engineering, 2019, pp.1-14. �10.1109/MCSE.2019.2949413�. �hal-02135891v2�

https://hal.science/hal-02135891v2
https://hal.archives-ouvertes.fr


1

Attributing and Referencing (Research) Software:

Best Practices and Outlook from Inria

Pierre Alliez, Université Côte d’Azur, Inria, France, mailto:pierre.alliez@inria.fr
Roberto Di Cosmo, Inria, Software Heritage, University of Paris, France, mailto:roberto@dicosmo.org

Benjamin Guedj, Inria, France and University College London, United Kingdom, mailto:benjamin.guedj@inria.fr
Alain Girault, Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France,

mailto:alain.girault@inria.fr
Mohand-Saïd Hacid, Univ. Lyon, University Claude Bernard Lyon 1, LIRIS, Lyon France,

mailto:mohand-said.hacid@univ-lyon1.fr
Arnaud Legrand, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France,

mailto:arnaud.legrand@inria.fr
Nicolas Rougier, Univ. Bordeaux, Inria, CNRS, IMN, Labri, Bordeaux, France, mailto:nicolas.rougier@inria.fr

Abstract—Software is a fundamental pillar of modern
scienti�c research, across all �elds and disciplines. However,
there is a lack of adequate means to cite and reference
software due to the complexity of the problem in terms
of authorship, roles and credits. This complexity is further
increased when it is considered over the lifetime of a software
that can span up to several decades. Building upon the
internal experience of Inria, the French research institute
for digital sciences, we provide in this paper a contribution
to the ongoing e�orts in order to develop proper guidelines
and recommendations for software citation and reference.
Namely, we recommend: (1) a richer taxonomy for software
contributions with a qualitative scale; (2) to put humans at
the heart of the evaluation; and (3) to distinguish citation
from reference.

Keywords — Software citation; software reference; author-
ship; development process.

I. Introduction

Software is a fundamental pillar of modern scienti�c

research, across all �elds and disciplines, and the actual

knowledge embedded in software is contained in software

source code which is, as written in the GPL license, “the

preferred form [of a program] for making modi�cations to it

[as a developer]” and “provides a view into the mind of the

designer” [18]. With the rise of Free/Open Source Software,

which requires and fosters source code accessibility, access

has been provided to an enormous amount of software source

code that can be massively reused. Similar principles are

now permeating the Open Science movement, in particular

after the attention drawn to it by the crisis in scienti�c

reproducibility [20], [12]. All this has recently motivated

the need of properly referencing and crediting software in

scholarly works [13], [19], [9].

In this context, we provide a contribution to the ongoing

e�orts to develop proper guidelines and recommendations,

building upon the internal experience of Inria, the French

research institute for digital sciences (h�p://www.inria.fr).
Born in 1967, more 50 years ago, Inria has grown to directly

employ 2,400 people, and its 190 project-teams involve more

than 3,000 scientists working towards meeting the challenges

of computer science and applied mathematics, often at the

interface with other disciplines. Software lies at the very

heart of the Institute’s activity, and it is present in all its

diversity, ranging from very long term large systems (e.g.,

the award winning Coq proof assistant, to the CompCert

certi�ed compiler, through the CGAL Computational Geom-

etry Algorithms Library to name only a few of most the

well-known ones), to medium sized projects and small but

sophisticated codes implementing advanced algorithms.

Inria has always considered software as a �rst class noble

product of research, as an instrument for research itself, and

as an important contribution in the career of researchers.

As such, whenever a team is evaluated or a researcher

applies for a position or a promotion, a concise and precise

self-assessment notice must be provided for each software

developed in the team or by the applicant, so that it can be

assessed in a systematic and relevant way.

With the emerging awareness of the importance of making

research openly accessible and reproducible, Inria has stepped

up its engagement for software: (i) it has been working for

years on reproducible research, and is running a MOOC on

this subject; (ii) it has been at the origin of the Software

Heritage initiative, which is building a universal archive of

source code [1]; and (iii) it has experimented a novel process

for research software deposit and citation by connecting

the French national open access publication portal, HAL

(hal.archives-ouvertes.fr), to Software Heritage [1].

Nevertheless, citing and referencing software is a very

complex task, for several reasons. First, software authorship

is extremely varied, involving many roles: software architect,

coder, debugger, tester, team manager, and so on. Second,

software itself is a complex object: the lifespan can range

from a few months to decades, the size can range to a

few dozens of lines of code to several millions, and it can

be stand-alone or rely on multiple external packages. And

�nally, sometimes one may want to reference a particular

version of a given software (this is crucial for reproducible

mailto:pierre.alliez@inria.fr
mailto:roberto@dicosmo.org
mailto:benjamin.guedj@inria.fr
mailto:alain.girault@inria.fr
mailto:mohand-said.hacid@univ-lyon1.fr
mailto:arnaud.legrand@inria.fr
mailto:nicolas.rougier@inria.fr
http://www.inria.fr
hal.archives-ouvertes.fr


2

research), while at other times one may want to cite the

software as a whole.

In this article, we report on the practices, processes, and

vision, both in place and under consideration at Inria, to

address the challenges of referencing and accessing software

source code, and properly crediting the people involved in

their development, maintenance, and dissemination.

The article is structured as follows: Section II brie�y

surveys previous work. Section III describes the inherent

complexity of software, which is the main reason why

the topic studied in this paper is challenging. Section IV

presents the key internal processes that Inria has established

over the last decades to track the hundreds of software

projects to which the institute contributes, and the criteria

and taxonomies they use. Section V draws the main lessons

that have been learned from this long term experience. In

particular, we state three recommendations to contribute to

a better handling of research software worldwide. Finally,

Section VI concludes by providing a set of recommendations

for the future.

II. Survey of previous work

The astrophysics community is one of the oldest ones

having attempted to systematically describe the software

developed and use in their research work. The Astrophysics

Source Code Library was started in 1999. Over the years it

has established a curation process that enables the production

of quality metadata for research software. These metadata

can be used for citation purposes, and they are widely

used in the astrophysics �eld [2]. Around 2010, interest in

software arose in a variety of domains: a few computer

science conferences started an artefact evaluation process

(see www.artifact-eval.org) which has spread to many top

venues in computer science. This led to the badging system

that ACM promotes for articles presenting or using research

software [4] and to the cloud-based software hosting solution

used and put forward by IEEE and Taylor & Francis for

their journals (Code Ocean). The need to take research

software into account, making it available, referenceable, and

citable, became apparent in many research communities [5],

[20], [12], [11], and the limitation of the informal practices

currently in use quickly surfaced [13], [7], [14]. An important

e�ort to bring together these many di�erent experiences, and

to build a coherent point of view has been made by the

FORCE11 Software Citation Working Group in 2016, which

led to state a concise set of software citation principles [19].

In a nutshell, this document recognizes the importance of

software, credit and attribution, persistence and accessibility,

and provides several recommendations based on use-cases

that illustrate the di�erent situations where one wants to

cite a piece of software.

We do acknowledge these valuable e�orts, which have

contributed to raise the awareness about the importance of

research software in the scholarly world.

Nonetheless, we consider that a lot more work is needed

before we can consider this problem settled: the actual

recommendations that can be found on how to make software

citable and referenceable, and how to give credit to its

authors, fall quite short of what is needed for an object as

complex as software. For example, in most of the guidelines

we have seen, making software referenceable for reproducibil-

ity (where the precise version of the software needs to be

indicated), or citable for credit (to authors or institutions),

seems to boil down to simply �nding a way to attach a DOI

to it, typically by depositing a copy of the source code in

repositories like Zenodo or Figshare.

This simple approach, inspired by common practices for

research data, is not appropriate for software.

When our goal is giving credit to authors, attaching an

identi�er to metadata is the easy part, and any system of

digital identi�ers, be it DOI, Ark or Handles, will do. The

di�culty lies in getting quality metadata, and in particular

in determining who should get credit, for what kind of con-
tribution, and who has authority to make these decisions. The

heated debate spawned by recent experiments that tried to

automatically compute the list of authors out of commit logs

in version control systems [6] clearly shows how challenging

this can be.

As we will see in Section IV-D, when looking for repro-

ducibility, it is necessary to precisely identify not only the

main software but also its whole environment and to make

it available in an open and perennial way. In this context, we

need veri�able build methods and intrinsic identi�ers that do

not depend on resolvers that can be abused or compromised

(see Wiley using fake DOIs to trap web crawlers . . . and

researchers as well), and DOIs are not designed for this use

case [9].

To make progress in our e�ort to make research

software better recognized, a �rst step is to ac-

knowledge its complexity, and to take it fully into

account in our recommendations.

III. Complexity of the software landscape

Software is very di�erent from articles and data, with

which we have much greater familiarity and experience, as

they have been produced and used in the scholarly arena

long before the �rst computer program was ever written. In

this section, we highlight some of the main characteristics

that render the task of assessing, referencing, attributing and

citing software a problem way more complex than what it

may appear at �rst sight.

Software development is a multifaceted and continuously

evolving activity, involving a broad spectrum of goals, actors,

roles, organizations, practices and time extents. Without

pretending to be exhaustive, we detail here in bold the most

important aspects that need to be taken into account for

assessing, referencing, attributing or citing software.

Structure
A software project can be organized either as a monolithic
program (e.g., the Netlib BLAS libraries), or as a composite
assembly of modules (e.g., the Clang compiler). It can either

be self-contained or have many external dependencies. For

example, the Eigen C++ template library for linear algebra

(h�p://eigen.tuxfamily.org) aims for minimal dependencies

while listing an ecosystem of unsupported modules.

https://www.artifact-eval.org/
http://eigen.tuxfamily.org


3

Lifetime
A software can be produced during a single, short extent

of time (referred to as one-shot contribution), or over a long

time span, possibly fragmented into several time intervals

of activities. Some long running software projects extend

over several decades. For example, the CGAL project

(h�ps://www.cgal.org/project.html) started in 1996 as a

European consortium, became open source in 2004, and

has provided more than 30 releases since then.

Community
A software can be the product of a single scholar, a

well-identi�ed team or a scattered team of scholars

spanning a large scienti�c community that may be

di�cult to track precisely. The CGAL open source

project lists more than 130 contributors, distinguishing

between the former and current developers, and

acknowledging the reviewers and initial consortium

members (h�ps://www.cgal.org/people.html). In

contrast, the Meshlab 3D mesh processing software

(h�ps://en.wikipedia.org/wiki/MeshLab) is authored by a

single team from the CNR, Pisa.

Authorship
Software developer(s) writing the code are the most visible

authors of a software program, but they are not, and by far,

the only ones. A variety of activities are involved in the

creation of software, ranging from stating the high-level

speci�cations, to testing and bug �xing, through design-

ing the software architecture, making technical choices,

running use cases, implementing a demonstrator, drafting

the documentation, deploying onto several platforms, and

building a community of users. In these contexts the roles

of a single contributor can be plural, with contributions

spanning variable time extents. Authorship is even more

complicated when developers resort to pseudonimity, i.e.,

disguised identity in order to not disclose their legal

identities. For all these reasons, evaluating the real contri-

butions to a signi�cant piece of software is a very di�cult

problem: in our experience at Inria, automated tools may

help in this task, but are by far insu�cient, and it is

essential to have humans in the loop.

Authority
Beyond good practices, most quality or certi�ed software

development projects de�ne management processes and

authority rules. Authorities are entitled to make deci-

sions, give orders, control processes, enforce rules, and

report. They can be institutions, organizations, commu-

nities, or sometimes a single person (e.g., Guido van

Rossum for Python). Some projects set up an edito-

rial board, similar in spirit to scienti�c journals, with

reviewers, managers and well-de�ned procedures (See

CGAL’s Open Source Project Rules and Procedures at

h�ps://www.cgal.org/project_rules.html). Each new con-

tribution must be submitted for review and approval

before being integrated. Some decisions can be taken

top-down while others are bottom-up. In some cases, a

shared governance is implemented. This organization can

be somehow compared to the Linux kernel development

organization where Linus Torvalds integrates contribu-

tions but delegates the responsibility of software quality

evaluation to a few trusted colleagues. Another important

aspect is the traceability of who did what during the

software project. In its simplest form, the number of lines

or code or commit logs are used for tracing contributions

and changes, but more advanced means such as repository

mining-based metrics [17], bug-related metrics, or peer

evaluation are common.

Levels of description
Another dimension that adds to the complexity is the

variety of levels at which a software project can be

described, either for citation or for reference.

Exact status of the source code. For the purpose

of exact reproducibility, one must be able to reference
any precise point in the development history of

a software project, even if it is not labeled as a

release; in this case, cryptographic identi�ers like

those used in distributed version control systems,

and now generalized in Software Heritage [9], are

necessary. For instance, the sentence “you can �nd
at swh:1:cnt:cdf19c4487c43c76f3612557d4dc61f9131790a4;
lines=146-187 of swh:1:snp:c9c31ee9a3c631472cc881788
6aaa0d3784a3782;origin=https://github.com/rdicosmo/
parmap/ the exact core mapping algorithm used in this
article” makes two distinct references. The former one

points to the lines of a source �le while the later one

points to the software context in which this �le is used.

(Major) release. When a much coarser granularity is

su�cient, one can designate a particular (major) release

of the project. For instance: “This functionality is available
in OCaml version 4” or “from CGAL version 3”.
Project. Sometimes one needs to cite a software project
at the highest level; a typical example is a researcher, a

team or an institution reporting the software projects it

develops or contributes to. In this case, one must list only

the project as a whole, and not all its di�erent versions.

For instance: “Inria has created OCaml and Scikit-Learn”.

IV. Four processes for four different needs

There are four main reasons why the research software

produced at Inria is carefully referenced and evaluated:

(i) managing the career of individual researchers and research

engineers, (ii) assessing the technology transfer, (iii) visibility

and impact of a research team, and (iv) promote reproducible

research practices. We detail next these four topics, and the

information collected, to cater to these di�erent needs.

A. Career management

Software development is a research output taken into

account in the evolution of the career of individual researchers
and research engineers. Measuring the impact of a software

provides a means to measure the scope and magnitude of

contributions of research results, when they are carefully

translated into usable software. Evaluating the maturity and

breadth of software is also essential to guide further devel-

opments and resource allocation.

https://www.cgal.org/project.html
https://www.cgal.org/people.html
https://en.wikipedia.org/wiki/MeshLab
https://www.cgal.org/project_rules.html
https://archive.softwareheritage.org/swh:1:cnt:cdf19c4487c43c76f3612557d4dc61f9131790a4;lines=146-187/
https://archive.softwareheritage.org/swh:1:cnt:cdf19c4487c43c76f3612557d4dc61f9131790a4;lines=146-187/
https://archive.softwareheritage.org/swh:1:snp:c9c31ee9a3c631472cc8817886aaa0d3784a3782;origin=https://github.com/rdicosmo/parmap/
https://archive.softwareheritage.org/swh:1:snp:c9c31ee9a3c631472cc8817886aaa0d3784a3782;origin=https://github.com/rdicosmo/parmap/
https://archive.softwareheritage.org/swh:1:snp:c9c31ee9a3c631472cc8817886aaa0d3784a3782;origin=https://github.com/rdicosmo/parmap/


4

Inria has an internal evaluation body, the Evaluation

Committee (EC), the role of which includes evaluating both

individual researchers when they apply for various positions

(typically ranging from junior researcher to leading roles

such as senior researcher or research director), and orga-

nizing the evaluations of whole research teams, which take

place every 4 years. In both cases, evaluating a given software

revolves around three items: (i) the software itself, which

can be downloaded and tested; (ii) precise self-assessment

criteria �lled-in by the developers themselves; and (iii) a

factual and high-level description of the software, including

the programming language(s) used along with the number

of lines of code, the number of man-months of development

e�ort, and the web site from where the software and any

other relevant material (a user manual, demos, research

papers, ...) can be downloaded.

Among these three items, the self-assessment criteria play

a crucial role because they provide key information on the

software, how it was developed, and what role each devel-

oper played. Version 1 of these “Criteria for Software Self-

Assessment” dates from August 2011 [15]. They are also used

by the Institute for Information Sciences and Technologies

(INS2I) of The French National Centre for Scienti�c Research

(CNRS). It comprises two lists of criteria using a qualitative
scale. The �rst list characterizes the software itself:

Audience. Ranging from A1 (personal prototype) to A5
(usable by a wide public).

So�ware Originality. Ranging from SO1 (none) to SO4
(original software implementing a fair number of original

ideas).

So�ware Maturity. Ranging from SM1 (demos work, rest

not guaranteed) to SM5 (high-assurance software, certi-

�ed by an evaluation agency or formally veri�ed).

Evolution and Maintenance. Ranging from EM1 (no fu-

ture plans) to EM4 (well-de�ned and implemented plan for

future maintenance and evolution, including an organized

users group).

So�ware Distribution and Licensing Ranging from

SDL1 (none) to SDL5 (external packaging and distribution

either as part of e.g., a Linux distribution, or packaged

within a commercially distributed product).

As an example, the OCaml compiler is assessed as: Audi-

ence A5, Software Originality SO3, Software Maturity SM4,

Evolution and Maintenance EM4, Software Distribution and

Licensing SDL5.

The second list characterizes the contribution of the de-

velopers and comprises the following criteria: Design and
Architecture (DA), Coding and Debugging (CD), Mainte-
nance and Support (MS), and Team/Project Management
(TPM). Each contribution ranges from 1 (not involved) to 4
(main contributor). As an example, the personal contribution

of one of OCaml’s main developer might be: Design and

Architecture DA3, Coding and Debugging CD4, Maintenance

and Support MS3, Team/Project Management TPM4.

Overall, these self-assessment criteria have been in used

at Inria for several years now. The feedback from both

jury members (for individual researchers) and international

evaluators (for research teams) is that they are extremely

useful, despite their coarse granularity and being based on

self-statement. All praise the relevance of the criteria and

the fact that they provide a mean to assess the scope and

magnitude of contributions to a given software, much more

accurately.

B. Technology transfer

Information about authorship and intellectual property is

a key asset when technology transfer takes place, either in

industrial contracts or for the creation of start-ups. Besides,

technology transfer is at the heart of Inria’s strategy to

increase its societal and economical impact. However, in the

particular case of software, technology transfer raises a num-

ber of di�culties. Most of the time, transferring a software

to industry starts by sending a copy of the software to a

French registration agency named Agence pour la Protection
des Programmes (APP: h�ps://www.app.asso.fr). When doing

so, a dedicated form has to be �lled that requires to specify

all the contributors of the software, and for each of them the

percentage of her/his contribution.

When the software is old (typically more than 10 years

old), this involves carrying on some archaeology to retrieve

the contribution of the �rst developers (some of whom may

have left Inria, or may have not been Inria employees at

all). A dedicated technology transfer team interacts with

the researchers in this process, taking into account all the

di�erent contributions to software development. In particular,

they use a taxonomy of roles that includes the following:

Coding.
This seems the most obvious part, but it is actually

complex, as one cannot just count the number of lines

of codes written, or the number of accepted pull requests.

Sometimes a long code fragment may be a straightforward

re-implementation of a very well known algorithm or

data structure, involving no complexity or creativity at

all, while at other times a few lines of code can embody

a complex and revolutionary approach (e.g., speeding up

massively the execution time). Often, a major contribution

to a project is not adding code, but �xing code or removing

portions of code by factoring the project and increasing

its modularity and genericity.

Testing and debugging.
This is an essential role when developing software that is

meant to be used more than once. This activity may re-

quire setting up a large database of relevant use cases and

devising a rigorous testing protocol (e.g., non-regression

testing).

Algorithm design.
Inventing the underlying algorithm that forms the very

basis of the software being transferred to industry is, of

course, a key contribution.

Software architecture design
This is another important activity that does not necessar-

ily show up in the code itself, but which is essential for

maintenance, modularity, e�ciency and evolution of the

software. As Steve Jobs famously said while promoting

Object Oriented Programming and the NeXT computer

https://www.app.asso.fr


5

Fig. 1. Example of the complexity in direct and indirect dependencies for a speci�c python package (matplotlib). Boxes represent actual packages (libraries

that need to be installed on the system), arrows indicates dependencies to other packages, labels indicates the minimal/maximal version number. In blue

the Python dependencies, in red the “true” system dependencies incurred by python (e.g., the libc or libjpeg62), in green some “fake” dependencies

incurred by the package management system but which are very likely not used by python (e.g., adduser or dpkg).

more than twenty-�ve years ago, “The line of code that
has no bug and that costs nothing to maintain, is the line
of code that you never wrote”.

Documentation.
This activity is essential to ease (re)usability and to

support long term maintenance and evolution. It ranges

from internal technical documentation to drafting the user

manual and tutorials.

The older and bigger the software, the more di�cult this

authorship identi�cation task is.

C. Visibility and impact of a research team

Software is a part of the scienti�c production that any

research team exposes. Software that are di�used to a large

scholar audience or commercialized to industrial users may

become an important source of inspiration for novel research

challenges. Feedback from practitioners or academic users is

a precious source of knowledge for determining the research

problems with high potential practical impact. Software can

also be a key instrument for research, central to the daily

research activity of a team, and a main support for teaching

and education. It may also become a communication medium

between young researchers, e.g., Ph.D. students sharing their

research topics and experiments via a common set of soft-

ware components.

Inria considers (research) software to be a valuable output

of research, and has always encouraged its research teams

to advertise the software project they contribute to: this can

be on the public web page of the team, or in its annual

activity report. To simplify the collection of the information

concerning the software projects, an internal database, called

BIL (“Base d’Information des Logiciels”, i.e. “database of

information on software”), has been in use for several years.

It allows research teams to deposit very detailed meta-data

describing the software projects they are involved in. The

BIL can then be used to generate automatically the list of

software descriptions for the team web page, for the activity

report, and also to pre�ll part of the forms used in the two

processes described above for individual career evaluation

and for technology transfer, avoiding the burden of typing

in the same information over and over again.

D. Reproducible Research
Another important concern of Inria is supporting repro-

ducibility of research results and the reproducibility crisis

takes a whole new dimension when software is involved.

Scholars are struggling to �nd ways to aggregate in a coher-

ent compendium the data, the software, and the explanations

of their experiments. The focus is no longer on giving credit,

but on �nding, rebuilding, and running the exact software
referenced in a research article. We identi�ed at least three

major issues:

First, the frequent lack of availability of the software source
code, and/or of precise references to the right version of it,

is a major issue [7]. Solving this issue requires stable and

perennial source code archives and specialized identi�ers [9].

Second, characterizing and reproducing the full software
environment that is used in an experiment requires tracking

a potentially huge graph of dependencies (a small example

is shown in Figure 1). Speci�c tools to identify and express

such dependencies are needed. Finally, although the notion of

research compendium is seducing, it should aggregate objects

of very di�erent nature (article, data, software) for which



6

speci�c archives and solutions may already exist. To ease the

deposit of such objects, we believe the compendium should

thus rather build on stable references to objects than try to

address all problems at once.

In recent years, various building blocks have emerged

to address these challenges and may lead to such a global

approach and stable references to the software artifact them-

selves. Inria has fostered and supported a few of them, that

we brie�y present here.

Software Heritage: a universal archive of source code.
Software Heritage (SWH) was started in 2015 to collect,

preserve and share the source code of all software ever

written, together with its full development history [1].

As of today, it has already collected almost 6 billions

unique source code �les coming from over 85 million

software origins that are regularly harvested. The

recently added “save code now” feature enables users to

request proactively the addition of new software origins

or to update them. Source code and its development

history are stored in a universal data model based

on Merkle DAGs [9], providing persistent, intrinsic,
unforgeable, and veri�able identi�ers for the more

than 10 billion objects it contains [9]. Each intrinsic

identi�er is computed on the content and meta-data of

the software itself, through cryptographic hashes, and is

embedded into the software’s persistent identi�er. This

universal archive of all software source code addresses

the issue of preserving and referencing source code for

reproducibility.

Reproducible builds.
In the early 2000’s, the ground-breaking notion of

functional package manager was introduced by the Nix

system [10], using cryptographic hashes to ensure that

binaries are rebuilt and executed in the exact same

software environment. Similar notions provide the foun-

dation of the Guix toolchain, which has been developed

over the last decade under the umbrella of the GNU

project, with key contributions from Inria [8]. The essen-

tial property of these tools is that, given the same source

�les and the associated functional build recipes, one can

obtain as a result of the build process the very same

binary �les in the same environment. Very recently,

Guix has been connected with SWH to ensure long term

reproducibility: when the source code (currently down-

loaded from the upstream distribution sites) disappears

from the designated location, Guix uses transparently

the SWH intrinsic identi�ers to fetch the archived copy

from its archive. Functional build recipes are themselves

a form of source code, and they too can be archived

and given intrinsic identi�ers, which will provide proper

references also for software environments.

Curation of software deposit in HAL for SWH.
Over the past two years, Inria has fostered a collabora-

tion between SWH and HAL, the French national open

access archive, with the goal of providing an e�cient

process of research software deposit. Figure 2 provides

a high level overview of this process: researchers submit

software source code and meta-data to the HAL portal;

these submissions are placed in a moderation loop

where humans interact with the researchers to improve

the quality of the meta-data and to avoid duplicates;

once a submission is approved, it is sent to SWH via

a generic deposit mechanism, based on the SWORD

standard archive exchange protocol; it is then ingested in

the SWH archive; �nally, the unique intrinsic identi�er

needed for reproducibility is returned to the HAL portal,

which displays it alongside the identi�er for the meta-

data. Detailed guidelines have been developed to help

researchers and moderators get to a high quality deposit

of their source code.

Fig. 2. Moderated software deposit in SWH via HAL.

V. Lessons learned on crediting software

The processes described above have been established inside

Inria and re�ned over decades to answer the internal needs of

the institution. While their goal has not been to guide exter-

nal processes such as software citation, we strongly believe

they provide a solid basis to build a universal framework for

software citation and reference.

Here are a few important lessons we learned from all the

above: (research) software projects present a great degree of
variability along many axes; contributions to software can

take many forms and shapes; and there are key contributions
that must be recognised but do not show up in the code nor in
the logs of the version control systems. This has several main

consequences:

• the need of a rich metadata schema to describe software

projects;

• the need of a rich taxonomy for software contributions,

that must not be �attened out on the simple role of

software developer;

• last but not least, while tools may help, a careful human
process involving the research teams is crucial to produce

the quali�ed information and metadata that is needed

for proper credit and attribution in the scholarly world.

We focus here mostly on the two latter issues, as the

question of metadata for software has already attracted

signi�cant attention, with the Codemeta initiative providing



7

a good vehicle for standardisation, and for incorporating the

new entities that may be needed [16].

A. Taxonomy of contributor roles: a proposal

The need to recognise di�erent levels and forms of con-

tributions is not new in academia: in Computer Science and

Mathematics we are quite used to separate, for example, the

persons that are named as authors, and those that are only

mentioned in the acknowledgements.

In the speci�c case of software projects, the

Software Credit Ontology h�ps://dagstuhleas.github.io/
So�wareCreditRoles/doc/index-en.html proposes a total of 23

roles, among which 13 are directly concerned with an actual

contribution to a software project, under the contributor

category: code reviewer; community contributor; designer;

developer; documenter; idea contributor; infrastructure

supporter; issue reporter; marketing and sales; model

driven software engineering expert; packager; requirement

elicitator; systems and network engineer. As we can see,

this ontology in more focused on the business aspect

of software projects (see for instance the marketing and

sales role) than on technology aspect (for instance, the

developer role is further re�ned into bug �xer, core

developer, and maintainer). The taxonomy we propose in

the recommendation below is a re�nement and combination

of the taxonomies presented in Section IV-A and IV-B.

Recommendation #1: A richer taxonomy for
software contributions, with a qualitative scale

Giving credit to contributors of a software project

is very similar to giving credit to contributors to

research articles. We thus need a rich taxonomy. In

the previous sections we discussed two taxonomies,

developed and used in two di�erent contexts inside

Inria: despite minor di�erences (for example, mainte-

nance and user support are not taken into account for

technology transfer), one can extract rather easily the

following taxonomy of contributor roles that covers

all the use case seen, and that may be extended in

the future:

• Design • Debugging • Maintenance
• Coding • Architecture • Documentation
• Testing • Support • Management

But this is only part of the story: in both of the

internal Inria processes we described, contributions

are not just classi�ed in di�erent roles, they are also

quanti�ed, either at a coarse grain (from 1 to 5 for

career evaluation), or at a very �ne grain (percentages

are used for technology transfer, where a �nancial

return needs to be precisely redistributed). We thus

recommend using a coarse grain qualitative scale as

it is easy to implement and proves to be very helpful

whenever technology transfer occurs.

Other disciplines too have pushed e�orts to create a richer

taxonomy of contributions for research articles, with the

CRediT system [3] detailing 14 di�erent possible roles, one

of which is software: the key idea is that each person listed

as an author needs to specify one or more of the 14 roles.

B. The importance of the human in the loop

This quanti�cation is essential, in particular considering

that an academic credit system will be inevitably built on

top of software citations, which brings us to our next key

point: the importance of having humans in the loop, which

has already been clearly advocated in a di�erent context by

the team behind the Astronomic Source Code Library [2].

As we have already noted, many of the contributor roles

identi�ed above are not re�ected in the code. In order to

assess these roles, in kind and quantity, it is necessary to

interact with the team that has created and evolved the

software: this is what the technology transfer service at Inria

routinely does.

What about the activities that are tightly related to the

software source code itself, like coding, testing, and de-

bugging? Here it is very tempting to try to use auto-

mated tools to determine the role of a contributor, and

the importance of each contribution. There are indeed a

wealth of di�erent developer scoring algorithms that target

GitHub contributors (see for example h�p://git-awards.com/,
h�ps://github.com/msparks/git-score and GitHub’s own scor-

ing using the number of commits, deletions, or additions).

Unfortunately these measures are far from robust: refactoring

(that may be just renaming or moving �le around or even

changing tabs in spaces!) can lead to huge score increases,

while the actual developer contribution is marginal. And even

if one could rule out irrelevant code changes, our experience

at Inria is that the importance and quality of a contribution

cannot be assessed by counting the number of lines of code

that have been added (see our description of the coding role

in Section IV-B). This is particularly the case for research
software that involves signi�cant innovations.

Recommendation #2: Putting human at the
heart of the evaluation

As a bottomline, we strongly suggest to refrain, for

research software, from trying to generate software

citation and credit metadata, and in particular the

list of (main) authors, using automated tools: we

need instead quality information in the scholarly

world, and currently this can only be achieved with

quali�ed human intervention. We strongly encourage

the authors of research software to provide such

qualitative information, for example in an AUTHORS
�le, and to use the aforementioned taxonomy and

scale.

As an illustration of this recommendation, the rich meta-

data collected by HAL in the deposit process are sent to SWH

using the now standard CodeMeta schema [16], and will be

soon extended with the taxonomy of Section V-A

https://dagstuhleas.github.io/\discretionary {}{}{}{}SoftwareCreditRoles/doc/index-en.html
https://dagstuhleas.github.io/\discretionary {}{}{}{}SoftwareCreditRoles/doc/index-en.html
http://git-awards.com/
https://github.com/msparks/git-score


8

C. Distinguish citation from reference
We have extensively covered the best practices for assess-

ing and attributing software artefacts: they are essential for

giving quali�ed academic credit to the people that contribute

to them, and are key prerequisites for creating citations
for software. This complex undertaking requires signi�cant

human intervention, and proper processes and tools.

The overall problem of reproducible research is quite

di�erent: while there are examples of rather comprehensive

solutions in very specialised domains, it seems very di�-

cult to �nd a unique solution general enough to cover all

the use cases. An example of domain speci�c solution is

provided by the IPOL journal (Image Processing On Line,

h�ps://www.ipol.im/, an Open Science journal dedicated to

image processing): Each article describes an algorithm and

contains its source code, with an online demonstration facil-

ity and an archive of experiments.

We believe that the three building blocks described in

Section IV-D (Software Heritage, NiX/GUIX, curated connec-

tions between SWH and HAL) will allow to provide precise

references (as illustrated in the end of Section III) to both

speci�c software excerpt, context, and environment and to

permanently bind them with research articles.

Recommendation #3: Distinguish citation from
reference

It is essential to distinguish citations to projects or

results from exact references to software and their

environment, and we believe that both should be used

in articles. We also strongly encourage the use of

tools like GUIX and Software Heritage to build such

perennial references.

Although neither a consensus nor a standard exists yet on

how to use references in articles, we are currently work-

ing on proposing concrete guidelines and adding support

in Software Heritage to easily provide the corresponding

LATEX snippets.

VI. Conclusion

It this article we presented for the �rst time the inter-

nal processes and e�orts in place at Inria for assessing,

attributing, and referencing research software. They play an

essential role for the careers of individual Inria researchers

and engineers, the evaluation of whole research teams, the

technology transfer activities and incentive policies, and the

visibility of research teams.

These processes have to cope with the great complexity

and variability of research software, in terms of the nature

of its relating activities and practices, roles of its contributing

actors, and diversity of lifespans.

Recommendations
Based on our experience over several decades, we have

distilled the important lessons learned and are happy to

provide a set of recommendations that can be summarized

as follows:

Recognise the diversity of contributor roles
The taxonomy of contributors described in Section V-A

has been extensively tested internally at Inria. We recom-

mend that it be incorporated in the CodeMeta standard,

and all the platforms and tools that support software

attribution and citation. In the meanwhile, researchers can

adopt it right away in the metadata they incorporate in

their own source code.

Keep the human in the loop
To obtain quality metadata, as seen in Section V-B, it is

essential to have humans in the loop. We strongly advise

against the unsupervised use of automated tools to create

such metadata. While these automated tools can save a lot

of time, we recommend instead the implementation of a

metadata curation and moderation mechanism in all tools

and platforms that are involved in the creation of metadata

for research software, like Zenodo or FigShare. We also

recommend that research institutions and academia in

general rely on human experts to assess the qualitative con-

tributions of research software, and refrain from adopting

as evaluation criteria automated metrics that are easily

biased.

Distinguish citation from reference
As explained in Section III, citations, used to provide credit

to contributors, are conceptually di�erent from references
designed to support reproducibility. While the latter can be

largely automated using platforms like Software Heritage

and tools like GUIX, the former require careful human

curation. Research articles will then be able to provide

both software citations and software references, and we

are currently working on concrete guidelines that we will

make publicly available.

References

[1] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli. Building the universal

archive of source code. Commun. ACM, 61(10):29–31, Sept. 2018.

[2] A. Allen and J. Schmidt. Looking before leaping: Creating a software

registry. Journal of Open Research Software, 3(e15), 2015.

[3] L. Allen, A. O’Connell, and V. Kiermer. How can we ensure visibility

and diversity in research contributions? How the Contributor Role

Taxonomy (CRediT) is helping the shift from authorship to contrib-

utorship. Learned Publishing, 32(1):71–74, 2019.

[4] Association for Computing Machinery. Artifact review and

badging. h�ps://www.acm.org/publications/policies/artifact-review-
badging, Apr 2018. Retrieved April 27th 2019.

[5] C. L. Borgman, J. C. Wallis, and M. S. Mayernik. Who’s got the data?

interdependencies in science and technology collaborations. Computer
Supported Cooperative Work, 21(6):485–523, 2012.

[6] C. T. Brown. Revisiting authorship, and JOSS software publications.

h�p://ivory.idyll.org/blog/2019-authorship-revisiting.html, jan 2019. Re-

trieved April 2nd, 2019.

[7] C. Collberg and T. A. Proebsting. Repeatability in computer systems

research. Communications of the ACM, 59(3):62–69, feb 2016.

[8] L. Courtès and R. Wurmus. Reproducible and user-controlled software

environments in HPC with Guix. In Euro-Par 2015: Parallel Processing
Workshops, pages 579–591, 2015.

[9] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli. Identi�ers for digital

objects: the case of software source code preservation. In Proceedings
of the 15th International Conference on Digital Preservation, iPRES
2018, Boston, USA, Sept. 2018. Available from h�ps://hal.archives-
ouvertes.fr/hal-01865790.

[10] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free

system for software deployment. In L. Damon, editor, Proceedings of
the 18th Conference on Systems Administration (LISA 2004), Atlanta,
USA, November 14-19, 2004, pages 79–92. USENIX, 2004.

https://www.ipol.im/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://ivory.idyll.org/blog/2019-authorship-revisiting.html
https://hal.archives-ouvertes.fr/hal-01865790
https://hal.archives-ouvertes.fr/hal-01865790


9

[11] Y. Gil, C. H. David, I. Demir, B. Essawy, W. Fulweiler, J. Goodall,

L. Karlstrom, H. Lee, H. Mills, J.-H. Oh, S. Pierce, A. Pope, M. Tzeng,

S. Villamizar, and X. Yu. Towards the geoscience paper of the future:

Best practices for documenting and sharing research from data to

software to provenance: Geoscience paper of the future. Earth and
Space Science, 3, 07 2016.

[12] K. Hinsen. Software development for reproducible research. Computing
in Science and Engineering, 15(4):60–63, 2013.

[13] J. Howison and J. Bullard. Software in the scienti�c literature: Problems

with seeing, �nding, and using software mentioned in the biology

literature. Journal of the Association for Information Science and
Technology, 67(9):2137–2155, 2016.

[14] L. Hwang, A. Fish, L. Soito, M. Smith, and L. H. Kellogg. Software and

the scientist: Coding and citation practices in geodynamics. Earth and
Space Science, 4(11):670–680, 2017.

[15] INRIA’s Evaluation Committee. Criteria for software self-assessment.

Published online, Aug. 2011. Available from INRIA’s web site

https://www.inria.fr/en/content/download/11783/409884/version/4/�le/

SoftwareCriteria-V2-CE.pdf.

[16] M. B. Jones, C. Boettiger, A. Cabunoc Mayes, A. Smith, P. Slaughter,

K. Niemeyer, Y. Gil, M. Fenner, K. Nowak, M. Hahnel, L. Coy, A. Allen,

M. Crosas, A. Sands, N. Chue Hong, P. Cruse, D. S. Katz, and C. Goble.

Codemeta: an exchange schema for software metadata, 2017. Version

2.0. KNB Data Repository.

[17] J. Lima, C. Treude, F. F. Filho, and U. Kulesza. Assessing developer

contribution with repository mining-based metrics. In 2015 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME),
pages 536–540, Sep. 2015.

[18] L. J. Shustek. What should we collect to preserve the history of

software? IEEE Annals of the History of Computing, 28(4):110–112, 2006.

[19] A. M. Smith, D. S. Katz, and K. E. Niemeyer. Software citation

principles. PeerJ Computer Science, 2:e86, 2016.

[20] V. Stodden, R. J. LeVeque, and I. Mitchell. Reproducible research for

scienti�c computing: Tools and strategies for changing the culture.

Computing in Science and Engineering, 14(4):13–17, 2012.

https://www.inria.fr/en/content/download/11783/409884/version/4/file/SoftwareCriteria-V2-CE.pdf
https://www.inria.fr/en/content/download/11783/409884/version/4/file/SoftwareCriteria-V2-CE.pdf

	Introduction
	Survey of previous work
	Complexity of the software landscape
	Four processes for four different needs
	Career management
	Technology transfer
	Visibility and impact of a research team
	Reproducible Research

	Lessons learned on crediting software
	Taxonomy of contributor roles: a proposal
	The importance of the human in the loop
	Distinguish citation from reference

	Conclusion
	References

