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This paper describes an extension of the two-dimensional approach to particle-rough wall collision mod- 

elling (Sommerfeld and Huber, 1999; Konan et al., 2009) to the case of three-dimensional particle re- 

bound from an isotropic rough wall surface. The virtual three-dimensional rough wall is represented as

a Gaussian correlated surface. Normal vector angle statistical distributions are investigated in detail for

such virtual rough walls, and a statistical modelling approach for these angles is proposed and validated

in the frame of the low roughness approximation. Next, deterministic simulations of fully elastic particle

collisions with the three-dimensional virtual wall roughness structure are carried out for various parti- 

cle incident angles. It is shown that the rebound angle, in the bouncing plane of the particle, obeys the

distribution given by the two-dimensional modelling approach. However, the three-dimensional structure

induces a transverse deviation bouncing angle that obeys a Gaussian distribution with a standard devi- 

ation that increases with increase in incident angle. A statistical modelling approach for the virtual wall

normal vector seen by any particle for a given incident angle is proposed and validated from determin- 

istic simulation results. The probability that particles make only one rebound is in agreement with the

two-dimensional multiple-collision model assumption. A new stochastic procedure for particle-isotropic

rough wall interactions in a Lagrangian framework is developed and verified by comparisons with deter- 

ministic simulations and available experimental results.
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. Introduction

Particle-laden wall-bounded turbulent flows have wide indus-

rial applications and for that reason they have been studied exten-

ively using both numerical and experimental approaches. These

ows are highly complex in space and time and many mechanisms

re often coupled. Experimental studies ( Sommerfeld and Kussin,

0 04; Benson et al., 20 05 ) and numerical studies ( Tsuji et al., 1987;

ommerfeld, 2003; Squires and Simonin, 2006; Vreman, 2007; Ko-

an et al., 2011; Breuer et al., 2012; Malloupas and van Wachem,

013; Vreman, 2015 ) have indicated that the wall roughness can

ignificantly influence both particle and fluid flows. The main effect

f wall roughness in confined particle-laden flows is re-dispersion

f particles by amplification of the particle wall-normal velocity

omponent. This leads to more uniform particle profiles, a higher

all collision frequency and consequently a greater pressure drop

n particle-laden flow than in single-phase flow, increasing with

olid mass loading. 
∗ Corresponding author.

E-mail address: dradenkovic@mas.bg.ac.rs (D. Radenkovic).
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In the particle-rough wall modelling approach, the actual rough

all is often replaced with a virtual wall (see, for example,

ommerfeld and Huber, 1992 ). In such an approach, the compu-

ation of the interaction between a spherical particle and a true

ough surface is replaced with an equivalent interaction between

he particle centre and an effective virtual wall. 

Deterministic and stochastic modelling approaches may be dif-

erentiated according to the method used for prediction of the wall

nclination seen by incident particles (see Fig. 1 ). In the determin-

stic wall modelling approach, a rough wall surface is generated

eforehand and the wall inclination seen by any incident particle

s calculated when the distance between the particle centre and

he rough surface is equal to the particle radius ( Vreman, 2015 ) or

ess than the particle radius ( De Marchis et al., 2016; Milici, 2018 ).

n deterministic simulations whose results are shown in this pa-

er wall inclination is calculated when particle centre intersects

irtual wall which is identical to the case where the distance be-

ween particle centre and true rough surface is equal to particle ra-

ius. In the stochastic modelling approach, when the particle cen-

re reaches particle radius distance from a certain limit boundary, a

irtual wall inclination is generated according to a random process



Fig. 1. Modelling approaches of particle - wall interaction. (a) In stochastic approach, when particle centre comes at a half of particle diameter D p distance from smooth

macroscopic boundary, virtual wall with inclination angle α is generated. (b) In deterministic approach, particle - wall collision is detected when particle centre crosses

virtual wall (sketched with dashed line in figure). The virtual wall properties at the true particle - wall contact is taken identical to the one of the crossing point of the

particle centre. The sketched roughness height is exaggerated with respect to the particle diameter.
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(a) Stochastic approach (b) Deterministic approach 
following a given probability distribution dependent on the parti-

cle incident angles. Deterministic models are more computationally

expensive owing to the need to find the exact point of impact of

the particle surface on the rough wall (or in the case of virtual wall

generation, the exact point of impact of the particle centre on the

virtual wall) and, in practical Lagrangian simulations of particle-

laden flows, stochastic modelling approaches are preferred. 

The virtual wall concept was introduced by

Tsuji et al. (1985) and subsequently redefined ( Tsuji et al.,

1987 ). In these models, parameters were empirical, determined

by comparisons between experimental and numerical studies in

a horizontal pipe. The virtual wall was introduced for incident

particle angles less than 7 °. For larger incident angles, the vir-

tual wall was not introduced, assuming that after collision of

the particles with the flat wall, the particles returned into the

flow with a significant wall normal component. However, more

correct particle rebound would be calculated if a virtual wall was

introduced for all particle incident angles. The reader is referred

to Konan et al. (2009) for a detailed review of other virtual wall

concepts. 

For most surfaces in engineering practice, virtual wall rough-

ness inclinations may be represented using Gaussian distributions,

with zero mean and standard deviations �γ that depend on the

wall structure and the particle diameter ( Sommerfeld and Hu-

ber, 1992; 1995; Konan et al., 2009 ). However, owing to the in-

cident perspective, particles at low incident angles do not see

the lee side of roughness with the same probability as the luv

side of the roughness. This is called the shadow effect and was

originally introduced by Sommerfeld and Huber (1999) . Following

Sommerfeld and Huber (1999) , the inclination angle of a virtual

wall can be sampled from a given modified Gaussian distribution

(here referred to as the effective Sommerfeld distribution) or using

a simplified procedure to account for the shadow effect (here re-

ferred to as the shadow effect model). In the shadow effect model,

the virtual wall angle is sampled from a truncated Gaussian dis-

tribution to ensure that the particle incidence towards the virtual

wall is realizable. Finally, in both approaches, if a particle does not

return to the flow after collision with the wall, virtual wall angle

sampling and particle-wall collision computation are repeated. 

With an effective Sommerfeld distribution or by using the

shadow effect model, a large number of grazing particles were pre-

dicted corresponding to particles with small incident angle. This

was explained by the fact that these models did not account for

the multiple rebounds ( Konan et al., 2007 ) that may occur if the

particle is bouncing with a small positive angle so that the particle

collides with another asperity in the wall region before returning

to the flow. 

Konan et al. (2009) computed in a deterministic simulation the

probability that a particle with a small bouncing angle will have
 second collision with the wall before leaving the wall region. An

nalytical function depending only on the standard deviation of the

all roughness angle was proposed for this probability distribu-

ion. Finally, multiple rebounds were modelled using the stochastic

pproach, allowing an effective method in the Lagrangian frame-

ork called the rough wall multiple-collision model to be pro-

osed. 

Vreman (2007) carried out a DNS-DPS study of gas-particle flow

hrough a vertical pipe with modelled particle-rough wall interac-

ion. The virtual wall normal vector was calculated as n + χs / || n +
s || , where projections of vector s were uniform random val-

es from −1 / 
√ 

3 to 1 / 
√ 

3 (|| s || < 1) and the specularity coefficient

= 0 . 2 was roughly estimated for the aluminum pipe used in the

xperiment, since roughness was not measured in the original ex-

eriment. It was shown that the rough wall model resulted in bet-

er agreement with experimental results than was the case without

all roughness. 

Squires and Simonin (2006) studied the influence of wall

oughness on the disperse phase in a vertical channel gas-solid

ow. LES-DPS was applied with one-way coupling and without

nter-particle collisions. The virtual wall was defined from the

ormal surface vector n = [ sin (φ) cos (θ ) , cos (φ) , sin (φ) sin (θ ) ] ,

here φ and θ had a Gaussian distribution with standard devi-

tion �γ . After each particle-wall impact calculation, if the re-

ound wall-normal velocity component was not directed into the

ow, angle sampling was repeated. Particle wall bouncing was cal-

ulated as frictionless. 

Konan et al. (2011) compared the influences of the shadow ef-

ect model and rough wall multiple-collision model on the particle

hase properties from detached eddy simulations of particle-laden

ow in a horizontal rough wall channel. The effects of wall rough-

ess were less pronounced in the case of the shadow effect model

wing to the large number of grazing particles generated which led

o weaker particle vertical dispersion. This problem was efficiently

olved with the rough wall multiple-collision model. 

Breuer et al. (2012) proposed a model for particle-rough wall

nteraction in which the actual wall surface was replaced with a

urface covered by mono-sized spheres that represented simplified

and-grain roughness. The standard deviation of the wall rough-

ess angle was determined from the mean roughness height R z 
or RMS roughness R q ) and particle diameter. This choice of pa-

ameters permits easier application of the model in practical en-

ineering problems. Shadow effects were modelled, but multiple

ebounds were omitted. The model was applied in their LES-DPS

f horizontal particle-laden channel flow. 

Malloupas and van Wachem (2013) created a model for

article-wall interactions in a soft-sphere framework and verified

t in an LES-DPS of horizontal particle-laden channel flow. Mul-

iple particle rebounds were treated with successive addition of
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Fig. 2. Virtual rough wall with RMS roughness height h = 0 . 63 μm and correlation 

length scale c L = 10 μm. The mesh resolution is δx = δz = 1 μm. 

Fig. 3. Angles of the virtual wall normal vector with the coordinate axes.
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irtual walls. The first virtual wall was generated, with respect to

he shadow effect model when a particle reached the wall rough-

ess amplitude added to the smooth wall. If after impact with

hat virtual wall the particle moved closer to the wall, another vir-

ual wall was generated and the impact was again calculated. This

echanism was repeated until the particle left the wall region. 

Cheng and Zhu (2015) investigated particle-wall collisions in a

onnected system of virtual wall cells called a virtual-wall-group.

t was shown that an effective Sommerfeld distribution was a sim-

lified case of their new probability density function (PDF) for

all roughness angles. A distinction was made between particles

hat had positive and negative rebound angles. The rough wall

ultiple-collision procedure of Konan et al. (2009) was modified

nd the resulting procedure was applied in RANS-DPS simulation

f particle-gas flow in a confined planar jet. 

Vreman (2015) performed DNS-DPS in a vertical downward gas-

olid channel flow. Particle-rough wall collisions were calculated

n a deterministic manner with the wall roughness modelled as

ensely packed half-spheres with the flat sides fixed to a smooth

all. It was reported that the wall roughness enhanced turbu-

ence attenuation, although the diameters of the half-spheres were

maller than the viscous wall unit. The non-uniform part of mean

orce that free particles exerted on the gas phase, the so-called

wo-way coupling effect, was found to influence turbulence atten-

ation significantly. 

The aim of this study is to investigate particle-wall interactions

n a three-dimensional (3D) framework, for an isotropic rough sur-

ace, as natural extensions of the work of Sommerfeld and Hu-

er (1999) and Konan et al. (2009) in order to provide a greater

evel of detail for particle-rough wall interactions, especially re-

arding transverse rebound characteristics. 

The paper is organized as follows. In Section 2 , the generation

f the isotropic virtual rough wall surface is described and the an-

les of the normal vector to the virtual wall surface are examined

n a 3D frame and statistically modelled. In Section 3 , the proce-

ure for the deterministic simulation of particle 3D rough fully

lastic rebound is outlined and the results of this simulation are

escribed. The statistical model for 3D particle collision with an

sotropic rough virtual wall is proposed and verified in Section 4 .

n Section 5 , this 3D stochastic model is applied to the particles

ndergoing rough wall inelastic frictional collisions. Obtained re-

ults are compared with deterministic simulation results, the two-

imensional (2D) stochastic model predictions, and available ex-

erimental data. 

. Generation and properties of the virtual rough wall surface

.1. Description of Gaussian random rough surface generation 

A virtual 3D rough wall (see Fig. 2 ) is created according to

he procedure of Garcia and Stoll (1984) , as implemented by

ergström (2012) . In this procedure, a Gaussian correlated surface,

hich here represents a virtual rough wall, is obtained in terms of

MS roughness height h (in the y direction) and correlation length

cales in the x and z directions, c L x and c L z , respectively. In the case

f isotropic surfaces, studied in this work, the correlation length

cales in the x and z directions are identical c L x = c L z = c L . 

The first step in creating the rough surface is the generation of

ncorrelated Gaussian random numbers y u ( x, z ) with zero mean

nd standard deviation h on the mesh in the x − z plane. Correlated

ough wall surface coordinates are then obtained by convolution

ith a spatial filter as: 

 (x, z) = 

+ ∞ ∫ 
−∞ 

+ ∞ ∫ 
−∞ 

f (x − x ′ , z − z ′ ) y u (x ′ , z ′ ) d x ′ d z ′ (1)
here 

f (x, z) = 

2√ 

πc L 
exp 

−2 

(
x 2 + z 2 

)
c 2 

L 

(2) 

epresents a Gaussian filter for isotropic surface generation. The

q. (1) is calculated with the fast Fourier transform algorithm

FFT). Standard deviation of filtered roughness y ( x, z ) is the same

s the standard deviation of Gaussian random numbers y u ( x, z ). 

In the deterministic simulation, the particle-wall collision is de-

ected when a particle centre trajectory crosses the virtual rough

all surface through an elementary triangular cell. Unit vectors

an then be formed along the two sides of that cell in the y − x

nd y − z planes, and their vector product gives the normal sur-

ace vector directed towards the flow. 

.2. Characterization of the 3D virtual rough wall normal vector 

Let us define ( ξ , η, ζ ) ∈ [0, π ] 3 , vector angles between the vir-

ual rough wall normal vector n and the unit vectors along the x,

 and z axes, respectively, as shown in Fig. 3 . 

As shown in Fig. 3 , projections of the virtual normal vector n

re defined with , 

 x = cos (ξ ) , n y = cos (η) , n z = cos (ζ ) , (ξ , η, ζ ) ∈ [0 , π ] 3 

(3) 

o that the virtual wall normal unit vector n may be written as, 

 = cos (ξ ) i + cos (η) j + cos (ζ ) k (4)

here i, j and k are the orthogonal unit vectors in the direction of

he x, y and z axes, respectively. Scatter plots of virtual wall nor-

al vector angles ( η, ξ ), ( η, ζ ) and ( ζ , ξ ) are shown in Fig. 4 , from



Fig. 4. Scatter plots of virtual rough wall normal vector angles (in degrees): ξ , η and ζ . The bold numbers represent the correlation coefficients between the corresponding

angles. The virtual rough wall examined is characterized by a ratio of RMS height to correlation length scale: h/c L = 0 . 031 , numbers of mesh nodes in the x and z directions 

N x = N z = 500 . The dimension of the sampled domain is much larger than the correlation length scale c L . 

Fig. 5. Dependence of the RMS virtual wall slope in the x and z directions, σ x and

σ z , respectively, and virtual wall normal vector standard deviations �ξ and �ζ ,

on the ratio of the RMS roughness height h to the correlation length scale c L of the

virtual rough wall. The virtual rough walls examined have N x = N z = 500 nodes. The 

sampled domain is much larger than the correlation length scale c L .
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angles ξ , η and ζ calculated in every triangular cell of the vir-

tual wall. The corresponding distributions show that angles ξ and

ζ obey two uncorrelated Gaussian distributions, with mean values

ξ = ζ = π/ 2 . 

From Tsang et al. (20 0 0) , it is known that for a one-dimensional

Gaussian roughness profile it holds that, 

σ = 

√ 

2 

h 

c L 
(5)

where σ is the RMS value of the wall roughness slope. 

In Fig. 5 , (5) is compared with the RMS of the virtual wall

slopes along the x and z directions, where these slopes s x = −n x /n y 
and s z = −n z /n y , respectively, are calculated in every triangular cell
nd projections of the virtual normal vector n are defined in (3) .

he agreement is very good for all values compared. 

The angle η can be directly computed in terms of angles ξ and

: 

= arcsin 

(√
cos 2 (ξ ) + cos 2 (ζ ) 

)
, η ∈ 

[
0 , 

π

2 

]
(6)

ince angles ξ , η and ζ are linked by (6) , they are not three inde-

endent processes. 

.3. Statistical modelling of the virtual wall normal vector angles in 

he case of low roughness 

Let us assume that the virtual wall normal vector angles ξ and

are independent random variables as has been confirmed with

he ( ζ , ξ ) scatter plots shown in Fig. 4 . The joint probability den-

ity function P ξζ ( θ , ϕ) of angles ξ and ζ can then be written as:

 ξζ (θ , ϕ) = P ξ (θ ) P ζ (ϕ) (θ, ϕ) ∈ [ 0 , π ] 
2 (7)

he isotropic wall roughness is characterized by equal PDFs of an-

les ξ and ζ : 

 ξ (θ ) = P ζ (θ ) , θ ∈ [ 0 , π ] (8)

ith mean values ξ = ζ = π /2 and standard deviations �ξ = �ζ
f angles ξ and ζ , respectively. 

Angles ξ and ζ may be written in the following form: 

= 

π

2 

+ ξ ′ , ζ = 

π

2 

+ ζ ′ (9)

urther, the case of low roughness is studied which means that the

ffective values of the vector angles satisfy the relations: 

 ξ ′ | � π
and | ζ ′ | � π

(10)

2 2 



Table 1

Virtual wall normal vector angle statistical characteristics (in degrees). The

virtual rough walls examined are characterized by the ratio of RMS height

to correlation length scale: h / c L . The mean value of the angle η is η and the

standard deviations of angles ξ , η and ζ are �ξ , �η and �ζ respectively; the

subscript NS stands for numerical simulation and SM stands for the statistical

model (16) and (17) .

h / c L �ξNS �ζ NS

√
2 ·180
π h/ c L ηNS �ηNS ηSM �ηSM

0.031 2.42 2.45 2.51 3.05 1.60 3.03 1.58

0.037 2.98 3.02 3.00 3.75 1.99 3.73 1.95

0.044 3.54 3.60 3.56 4.49 2.33 4.44 2.32

0.050 3.97 4.00 4.05 5.03 2.58 4.97 2.60

0.056 4.55 4.53 4.54 5.72 2.96 5.70 2.98

0.063 5.08 5.05 5.10 6.39 3.28 6.36 3.33
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o the corresponding standard deviations of the angle PDFs satisfy:

ξ � π

2 

and �ζ � π

2 

(11) 

For low roughness angles (in radians), (5) simplifies to, 

ξ = �ζ = 

√ 

2 

h 

c L 
(12) 

ince s x ≈ ξ ′ and s z ≈ ζ ′ . It can be seen from Fig. 5 that the low

oughness approximation (12) is valid up to approximately 0.15 rad

around 8 °). 

.4. Modelled distribution of angle η and validation from 

eterministic simulation 

Using (6), (9) and (10) , angle η may be written in the frame of

he low roughness approximation as, 

= 

√
ξ ′ 2 + ζ ′ 2 (13) 

sing (13) , the probability density function P η( θ ) of angle η is ob-

ained by integration of the bi-Gaussian joint probability density

unction P ξζ on a circle of radius η and, for an isotropic rough

all: 

 η(θ ) = 

θ

�ξ 2 
exp 

(
− θ2

2 �ξ 2 

)
(14) 

ith, by definition: 
 π/ 2

0

θ

�ξ 2 
exp 

(
− θ2

2 �ξ 2 

)
d θ = 1 (15) 

The mean value and variance of the probability density function

f angle η, defined with (14) are: 

= 

√ 

π

2 

�ξ (16) 

η2 = 

[ 
2 − π

2 

]
�ξ 2 (17) 

In Table 1 , the mean values and standard deviations of angle

obtained from the statistical model (16) and (17) are compared

ith the angle η of the generated virtual surface, for different ra-

ios of RMS height h to correlation length scale c L . The agreement

etween these compared values is very good. The standard devia-

ions �ξ and �ζ obtained from the numerical simulation are al-

ost identical as expected for an isotropic rough wall. 

. Numerical simulation of particle 3D elastic bouncing on a

ough wall and statistical analysis

.1. Description of a numerical simulation 

The numerical simulation is realized as follows. An isotropic

irtual wall with RMS height h and correlation length scale c 
L 
s generated according to the procedure outlined in Section 2.1 .

hese wall generation parameters lead to virtual normal vector an-

le deviations �ξ = �ζ given by (12) . In this section virtual walls

ith virtual normal vector angle deviations �ξ = �ζ = 2 . 5 ◦ and

ξ = �ζ = 5 ◦ are examined. 

Starting particle centre coordinates x and z are sampled from

he uniform distribution, while the starting y position is the same

or all particles and slightly higher than the highest asperity in

he simulated domain. The point of impact of the particle on the

irtual surface is found and a unit normal vector n is calculated.

rojections of the incident velocity vector U 

−
p are calculated us-

ng transformation matrices in a local coordinate system ( x ′ , y ′ , z ′ ),
here the y ′ axis is along the virtual wall normal vector n (parti-

le incident properties are denoted with superscript - and particle

ebound properties with superscript + ). Fully elastic impacts are

alculated ( u ′ + p = u ′ −p , v ′ +p = −v ′ −p , w 

′ + 
p = w 

′ −
p ) and the velocity

omponents obtained are written back in the general coordinate

ystem ( x, y, z ). After rebound, the particle is tracked and further

mpacts with the wall are calculated, if they exist. The particle is

racked until it overshoots the highest asperity in the domain. 

10,0 0 0 particle trajectories are simulated per simulation, which

s sufficient to obtain converged statistics. In the numerical simu-

ation concerning the incident particle velocity, the velocity projec-

ion u −p is specified as input data in addition to the angles α−
p and

−
p , as shown in Fig. 6 .

.2. Statistical analysis of 3D particle rebound from isotropic rough 

all 

PDFs of the first virtual normal vector angles ξ and ζ seen

y particles with incident angles α−
p and β−

p , and different virtual

alls characterized with virtual normal vector standard deviations

ξ = �ζ , are shown in Fig. 7 and Fig. 8 , respectively. 

It can be seen from Fig. 7 that at large incident angles α−
p 

 | α−
p | 
 �ξ and �ζ ), the distribution of the first angle ξ seen

y incident particles is Gaussian with a mean value equal to π /2

nd a standard deviation equal to the value calculated from (12) .

n contrast, as the particle incident angle | α−
p | decreases, the PDF

f the first angle ξ seen by incident particles becomes asymmetric

ith a mean value shifted towards higher values. Both of these ef-

ects are enhanced with increase in the virtual wall normal vector

tandard deviation �ξ = �ζ from 2.5 ° to 5 °. These effects may be

ue the so-called shadow effect as pointed out by Sommerfeld and

uber (1999) . For low particle incident angles | α−
p | , the PDFs look

ery slightly sensitive to the particle incident angle β−
p .

Fig. 8 shows that the PDF of the first angle ζ seen by incident

articles follows the same trend as the angle ξ with a mean value

qual to π /2 and a standard deviation equal to that of ξ . Also, the

DF becomes dependent on the particle incidence angles α−
p and

−
p with decreasing values of | α−

p | . This effect is more pronounced

or high wall roughness values. Therefore, the effect of incident an-

le β−
p for small incident angle amplitudes α−

p is larger on the PDF

f angle ζ than on the PDF of angle ξ . 

Figs. 9 and 10 show PDFs of particle bouncing angles α+ 
p and

+ 
p computed from deterministic simulations, according to defini-

ions shown in Fig. 6 . 

Fig. 9 shows the PDFs of angles α+ 
p obtained from determin-

stic simulations for different incident particle angles α−
p and β−

p .

t large particle incident angles α−
p ( | α−

p | 
 �ξ and �ζ ), the dis-

ribution of the rebound angle α+ 
p is nearly Gaussian with a mean

alue equal to the absolute value of the particle incident angle | α−
p |

nd a standard deviation approximately equal to that of the virtual

all normal vector �ξ = �ζ . When the particle incident angle

 α−
p | decreases, a strong shift towards small values is observed and

he PDF is no longer Gaussian. This behaviour is consistent with

he 2D shadow effect analyzed by Sommerfeld and Huber (1999) . 



Fig. 6. Characteristic angles of particle incident velocity U 

−
p and characteristic angles of particle velocity after rebound U 

+ 
p . The virtual normal vector n and vector n γ are

defined in (4) and (21) , respectively, and angle γ satisfies (23) .

Fig. 7. PDFs of the first vector angle ξ seen by incident particles computed from the deterministic simulations (DS) for isotropic walls characterized by normal vector angle

standard deviations �ξ = �ζ , for different particle incident angles α−
p and β−

p . 
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These PDFs of rebound angle α+ 
p from deterministic simu-

lation are then compared with the results of the 2D multiple

particle-wall collision model of Konan et al. (2009) applied in the

incident particle plane. The agreement between these two dis-

tributions is very good, which suggests that the 2D model of

Konan et al. (2009) can be applied to calculate the final rebound

angle α+ 
p in the case of 3D particle rebound from a wall.
However, the 2D approach of Konan et al. (2009) cannot pre-

ict the transverse deviation bouncing angle β+ 
p − β−

p . The PDFs

f this angle are shown in Fig. 10 , for cases of the first and final

article rebound, for different incident angles α−
p and β−

p and two

irtual wall roughness values. These PDFs agree very well for the

ase of the first and final rebounds, which leads to the conclusion

hat the transverse angle distribution is not influenced by multiple



Fig. 8. PDFs of the first vector angle ζ seen by incident particles computed from the deterministic simulations (DS) for isotropic walls characterized by normal vector angle

standard deviations �ξ = �ζ , for different particle incident angles α−
p and β−

p . Legend is the same as in Fig. 7 . 

p  

t

a  

a  

c  

a  

a

t

4

4

f

 

|
a

s  

s  

d  

l  

t

 

d  

o

w

U  

w

i

t  

 

p

U

T  

c

 

i

n

0.2 

0.15 ~ 
VI ' 

J \ "-
Ci 0. 1 i '? p.. + ()~ 

i {q ' ~ 
0.05 . ~ \ 

w ~~ 
0 
70 80 90 100 11 0 

( 

(a) aP = - 2.5°, /3p = - 30° 
0.2 ,------------

0.15 

"-Ci 0. 1 
p.. 

0.05 

80 90 100 

( 

(c) aP = -12.5° , /3P = - 30° 

11 0 

0.2 -----------

0. 15 ~ v 
"- v \ Ci 0. 1 
p.. ' w "'-~~\ 

0.05 l ~ , . V'G fl} V . • 
.lf . 'i'i ~-~ 

0 
70 80 90 100 11 0 

( 

(e) aP = - 32.5°, /3p = - 30° 

0.2 

0. 15 Y';, 
'y \ 

"- i w 
Ci 0. 1 ~~ p.. 

,~ ' 0.05 !i> i #) 
~ "fi . 

oflJ VI 'i'i'<,,~ 
0 
70 80 90 100 11 0 

( 

(b) aP = - 2.5°, /3p = 15° 

0.2 -----------

0.1 5 

"-Ci 0. 1 
p.. 

0.05 

80 90 100 

( 

(d) aP = -12.5°, /3P = 15° 

11 0 

0.2 -----------

0. 15 ~ r V 
"- + ~ Ci 0. 1 
p.. r~~-~-

0.05 x,· , w~-
(lj </1 · &. 

(Y w ~-
0 
70 80 90 100 110 

( 

(f) aP = - 32.5°, /3p = 15° 
article-wall collisions. It can be seen that the transverse devia-

ion bouncing angle β+ 
p − β−

p obeys a Gaussian distribution with

 standard deviation that increases with increasing incident angle

mplitude | α−
p | . It is also observed that this standard deviation in-

reases with increasing virtual normal vector angle standard devi-

tions �ξ = �ζ . The PDFs of the transverse deviation bouncing

ngle β+
p − β−

p are independent of the incident angle β−
p which is

o be expected, since the virtual walls are isotropic. 

. Statistical modelling of the 3D rough wall-particle collisions

.1. Modelling the first virtual wall normal vector seen by particles 

or large incident angles 

As shown in Figs. 7 and 8 , for large particle incident angles

 α−
p | , with respect to the angle standard deviations, | α−

p | 
 �ξ
nd �ζ , and low wall roughness (11) , the first angles ξ and ζ
een by particles have Gaussian distributions, with zero mean and

tandard deviation equal to the virtual wall normal vector standard

eviations �ξ = �ζ . Compared with this case, for particles with

ow incident angles | α−
p | , the PDFs of angles ξ and ζ change since

here is a conditioning effect by the incident particle angle α−
p .
In this section, statistical modelling is developed for large inci-

ent angles, so that we can neglect the shadow effect on the PDF

f the wall normal vector angle seen by particles. 

According to Fig. 6 , the incident particle velocity U 

−
p can be

ritten , 

 

−
p = | U 

−
p | cos (α−

p ) t 
−
p + | U 

−
p | sin (α−

p ) j , α−
p ∈ 

[
−π

2 

, 0 

]
(18)

here t −p is the unit vector collinear with the projection of the

ncident particle velocity U 

−
p on the horizontal plane,

 

−
p = cos (β−

p ) i − sin (β−
p ) k , β−

p ∈ [ −π, π ] (19)

It can be noted that any unit vector n seen by a given incident

article velocity U 

−
p must verify,

 

−
p · n < 0 (20) 

his condition is part of the shadow effect leading to realizability

onditions for the virtual wall normal unit vector angles. 

Let us define the unit vector n γ in the incident plane written

n terms of the angle γ with the y -axis as, 

 γ = − sin (γ ) t −p + cos (γ ) j , γ ∈ 

[
−π

2 

,
π

2 

]
(21)



Fig. 9. PDFs of the final rebound angle α+ 
p of the particle returning to the flow for different initial incident angles α−

p and β−
p for isotropic surfaces defined with the normal 

vector angle standard deviation �ξ = �ζ . DS stands for deterministic simulation and 2DRWCM for the 2D rough wall multiple-collision model ( Konan et al., 2009 ) applied 

in the particle incident plane for 2D wall normal vector angle standard deviation �γ = �ξ . 
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by imposing that the scalar projection of n γ onto the particle inci-

dent velocity U 

−
p is equal to that of the wall normal vector n ,

U 

−
p · n γ = U 

−
p · n (22)

Using (18) and (21), (22) can be written, 

| U 

−
p | sin (α−

p − γ ) = U 

−
p · n (23)

which is equivalent to the following scalar equation , 

sin (α−
p − γ ) = cos (β−

p ) cos (α−
p ) cos (ξ ) + sin (α−

p ) cos (η)

− sin (β−
p ) cos (α−

p ) cos (ζ )
(24)

The above equation always has a unique solution for γ ∈
[ −π/ 2 , π/ 2] . In the frame of the low roughness approximation,

(24) leads to the first-order approximation for γ ,

γ = cos (β−
p ) ξ

′ − sin (β−
p ) ζ

′ (25)

For a large particle incident angle α−
p and low wall roughness,

since angles ξ ′ and ζ ′ are random independent processes with

zero mean values ξ ′ = ζ ′ = 0 and standard deviation �ξ and �ζ ,

angle γ is a random process with zero mean value γ = 0 and vari-

ance �γ 2 as follows: 

�γ 2 = cos 2 (β−
p ) �ξ 2 + sin 

2 (β−
p ) �ζ 2 (26)
f angles ξ ′ and ζ ′ are Gaussian processes, the probability density

unction P γ ( θ ) of angle γ is Gaussian: 

 γ (θ ) = 

1 √
2 π�γ 2 

exp 

(
−θ2 

2 �γ 2 

)
, θ ∈ 

[
−π

2 

,
π

2 

]
(27)

n Fig. 11 , the first vector angle γ distribution seen by an inci-

ent particle in the deterministic simulation is compared with the

irtual wall angle distribution obtained from the 2D effective dis-

ribution (44) given by Sommerfeld and Huber (1999) calculated

n the incident particle plane, with a wall roughness angle stan-

ard deviation �γ equal to the normal vector angle standard de-

iation �ξ = �ζ . The agreement between the compared distri-

utions is excellent for any particle incident angle α−
p . At large

ncident angles α−
p , the distribution of angle γ is nearly Gaus-

ian with �γ = �ξ, in agreement with the statistical model as-

umption (27) . At low incident amplitude angles | α−
p | , due to the

hadow effect, the PDF of angle γ shifts to the right. In addition,

he PDF of angle γ is found to be independent of the transverse

ncident angle β−
p .

Let us introduce an additional angle γ ∗ such that, 

∗ = sin (β−
p ) ξ

′ + cos (β−
p ) ζ

′ (28)



Fig. 10. PDFs of the transverse deviation bouncing angle β+ 
p − β−

p computed from deterministic simulations for different incident angles α−
p and β−

p for surfaces with normal

vector angle standard deviations �ξ = �ζ . 1C denotes the distribution with the first rebound angle β+ 
p , and MC represents the distribution with final rebound angle β+ 

p . 
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ngle γ ∗ is a random process with zero mean value γ ∗ = 0 and

ariance �γ ∗2 expressed as: 

γ ∗2 = sin 

2 (β−
p ) �ξ 2 + cos 2 (β−

p ) �ζ 2 (29) 

f angles ξ ′ and ζ ′ are Gaussian processes, probability density func-

ion P γ ∗ (θ ) of angle γ ∗ is Gaussian : 

 γ ∗ (θ ) = 

1 √
2 π�γ ∗2 

exp 

(
−θ2 

2 �γ ∗2 

)
, θ ∈ 

[
−π

2 

,
π

2 

]
(30)

Fig. 12 shows PDFs of angle γ ∗ computed from deterministic

imulations using (28) and the model Gaussian distribution given

y (30) , for the different particle incident angles α−
p and β−

p . The

greement between the two PDFs is excellent. Although angle γ ∗

epends on the angles ξ and ζ , as seen in (28) , where both angles

and ζ depend on the incident angles α−
p and β−

p , the γ ∗ distri-

ution does not depend on the particle incident angles α−
p and β−

p 

nd, in particular, is not affected by the shadow effect. Hence, by

onstruction, angles γ and γ ∗ are orthogonal independent Gaus-

ian processes. Finally, for the isotropic rough wall, γ and γ ∗ are

andom variables obeying two independent Gaussian distributions

ith zero means and standard deviations �γ = �γ ∗, equal to the

dentical standard deviations �ξ = �ζ of the virtual wall normal

ector angle distributions. 
Hence, angles ( ξ , η, ζ ) of the first virtual rough wall normal

ector n seen by any incident particle can be computed from a

air of random variables γ and γ ∗ given by independent stochastic

rocesses according to the Gaussian PDF given by (27) and (30) .

ndeed, using (25) and (28) , ξ and ζ are written, 

= cos (β−
p ) γ + sin (β−

p ) γ
∗ + 

π

2 

(31) 

= − sin (β−
p ) γ + cos (β−

p ) γ
∗ + 

π

2 

(32) 

nd, using (13) , η may be written, 

= 

√
γ 2 + γ ∗2 (33) 

herefore, for large incident particle velocity angles, no multiple

ollisions are expected and the first elastic particle-wall collision

ffect leads to the following expression for the final bouncing par-

icle velocity U 

+ 
p :

 

+ 
p = U 

−
p − 2 

[
U 

−
p · n 

]
n (34)

his equation can be written in the following form, 

 

+ 
p = U 

−
p − 2 

[
U 

−
p · n γ

]
n γ − 2 

[
U 

−
p · n

][
n − n γ

]
(35)



Fig. 11. Comparison of the PDFs of the first vector angle γ seen by incident particles in deterministic simulations (DS) for isotropic walls characterized by normal vector

angle standard deviation �ξ = �ζ and effective Sommerfeld distribution (ES) calculated in the particle incident plane with angle standard deviation �γ = �ξ, for different 

particle incident angles α−
p and β−

p . 
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where the second term represents the 2D elastic bouncing of the

incident particle on a virtual surface with a normal vector n γ in

the incident plane and the third term represents a transverse effect

on the particle velocity due to 3D particle rebound on the isotropic

rough wall surface. 

4.2. Characterization of transverse bouncing effect for large incident 

particle angle 

Let us define the unit vector normal to particle incident plane:

s −p = t −p ∧ j = sin (β−
p ) i + cos (β−

p ) k (36)

In the frame of the low roughness approximation (11) , the trans-

verse virtual wall normal vector component may be written, using

(4), (21) and (36) , as: 

n − n γ = −γ ∗ s −p (37)

Therefore, according to (35) and (37) , the 3D effect on elas-

tic bouncing velocity of particles with large incident particle angle

may be written: 

δU 

+ 
p = 2 [ U 

−
p · n ] γ ∗ s −p = w 

+ 
p s 

−
p (38)
qs. (23) and (38) lead to: 

 

+ 
p = 2 | U 

−
p | sin (α−

p ) γ
∗ (39)

inally, for any given particle incident velocity norm | U 

−
p | , velocity

 

+ 
p is a random variable with zero mean and a standard deviation
+ 
p given by,

+
p = 2 | U 

−
p | sin (| α−

p | ) �γ ∗ (40)

By definition, the transverse bouncing angle β+
p − β−

p is written,

in (β+
p − β−

p ) = − w 

+ 
p 

U 

+ 
p cos (α+ 

p )
(41)

rom (39) and (41) , for elastic particle bouncing, it follows that, 

+
p = β−

p − 2 tan (α−
p ) γ

∗ (42)

inally, it is found that angle β+ 
p − β−

p is a random variable with

zero mean and a standard deviation: 

β+
p = 2 tan (| α−

p | ) �γ ∗ (43)

ith �γ ∗ given by (29) . 

Fig. 13 shows the transverse bouncing characteristic parameters,
+ 
p and �β+ 

p , due to 3D elastic rebound on an isotropic rough



Fig. 12. PDFs of the first angle γ ∗ seen by incident particles in deterministic simulation (DS), calculated using (28) , and comparison with the statistical model (SM), equation 

(30) , for different particle incident angles α−
p and β−

p . 

Fig. 13. Dependence of non-dimensional transversal particle characteristics on the particle incident angle α−
p , for virtual walls with normal vector angle standard deviations 

�ξ = �ζ : (a) ratio of standard deviation �β+ 
p of the wall-induced transversal particle angle dispersion to angle standard deviation �ξ (b) ratio of standard deviation σ + 

p 

of the wall- induced transversal velocity dispersion to the product of incident velocity norm | U 

−
p | and angle standard deviation �ξ . 
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wall, in terms of the particle incident angle α−
p . The agreement

between the parameters from deterministic simulations and model

predictions, using (40) and (43) , is excellent, even for low values

of the particle incident angle amplitude | α−
p | . 

4.3. Modelling the first virtual wall normal vector seen by a particle 

for any incident angle 

For low incident particle velocity angle α−
p , of the order of the

virtual wall normal vector angle γ , the statistical approach pro-

posed in Section 4.1 to represent the virtual wall normal vector n

does not ensure that the realizability condition U 

−
p · n < 0 is sat-

isfied. This realizability condition is part of the shadow effect de-

scribed by Sommerfeld and Huber (1999) for 2D rebound from a

rough wall. They proposed a modified virtual wall normal vector

angle probability distribution, conditioned by the incident velocity,

which satisfies, by construction, the realizability condition. In the

proposed 3D approach, according to (23) , the realizability condi-

tion may be written as γ > α−
p and leads to the use of the modi-

fied PDF for the γ angle alone. Hence, γ ∗ is assumed to obey the

standard Gaussian distribution given by (30) whereas γ is assumed

to obey the effective Sommerf eld distribution. Therefore, in prac-

tice, angles γ and γ ∗ are computed from two independent random

processes (γ , γ ∗) ∈ [ −π/ 2 , π/ 2 ] x [ −π/ 2 , π/ 2 ] : 

• Angle γ obeys the effective Sommerfeld distribution accounting

for the shadow effect given by :

if γ > α−
p :

P e f f (γ | α−
p ) = 

1 √
2 π�γ 2 

sin ( α−
p − γ )

sin ( α−
p )

exp 

(
− γ 2

2�γ 2 

)
g(α−

p , γ )

(44)

if γ ≤ α−
p :

P e f f (γ | α−
p ) = 0 (45)

with 

g 
(
α−

p , �γ
)

= 1 / 

∫ π/ 2

α−
p 

1 √
2 π�γ 2 

sin 

(
α−

p − γ
)

sin 

(
α−

p 

) ·

exp 

(
− γ 2

2�γ 2 

)
d γ (46)

and standard deviation �γ that follows from (26) . 
• Angle γ ∗ obeys a standard Gaussian PDF given by (30) .

Finally, the first virtual rough wall normal vector angles are

computed from Eqs. (31) –(33) . 

4.4. Modelling of multiple particle collisions with the virtual wall 

Sommerfeld and Huber (1999) pointed out that the post-

rebound condition α+ 
p > 0 is needed to allow the particle to return

to the main flow. In their applications, they overcame this problem

simply by repeating the particle-wall rebound procedure with the

generation of a new first virtual wall normal vector angle γ . There-

fore, Konan et al. (2009) showed that “grazing” particles 2D bounc-

ing with a small α+ 
p > 0 may suffer several particle-wall collisions

before going back to the main flow. Their approach is based on

an analytical model of the probability of having only one particle-

wall collision and on the repetition of the particle-wall rebound

procedure in the case of a multiple particle-wall collision effect.

The same methodology may be extended directly for 3D particle

rebound from rough wall. 

The standard deviation �β+ 
p remains small, of the order of �ξ ,

as shown in Fig. 13 , and decreases for particles with small incident
ngles that have the highest probability of enduring multiple col-

isions. Hence, we propose to neglect the 3D deviation effect on

he multiple particle-wall collision probability modelling. There-

ore, according to Konan et al. (2009) , the probability that particles

or a given incident angle α+ 
p make only one impact is written as:

 

∗(n = 1 | α+ 
p ) =

{
tanh (ψ 

α+
p 

�γ
) if α+ 

p ≥ 0 

0 if α+ 
p < 0

(47)

ith ψ = 1 . 5 . 

Fig. 14 compares the probabilities that particles make only one

mpact at different particle incident angles α−
p and β−

p in deter-

inistic simulation with the theoretical probability that particles

ake only one impact (47) , with varied coefficient ψ . Better agree-

ent with deterministic simulations is obtained for ψ = 2 than for

 = 1 . 5 , probably because the procedure for generating the sur-

ace is not identical with that used by Konan et al. (2009) . This

ifference in coefficient ψ does not have a significant effect on

he particle rebound statistics and the original value ψ = 1 . 5 is re-

ained for this paper. 

It follows that the probability that particles make only one im-

act does not depend on the transverse incident angle β−
p and

transverse rebound angle β+ 
p :

 

∗(n = 1 | α+ 
p , β

+ 
p , β

−
p 

)
= P 

∗(n = 1 | α+
p

)
(48)

.5. Stochastic procedure for calculation of 3D rebound of a particle 

rom an isotropic rough wall with low roughness in a Lagrangian 

ramework 

In a Lagrangian framework, particles are tracked in the flow and

hen the centre of any particle reaches half of the particle diam-

ter distance from the boundary surface, the modelling of the ef-

ective virtual rough wall is carried out according to the following

ew stochastic procedure, derived in agreement with the statistical

odel proposed in Section 4.3 to represent γ and γ ∗ PDFs. 

This procedure can be summarized into five steps: 

1) Angle γ ∗ is sampled according to the Gaussian distribution (30)

2) Angle γ is sampled according to the effective Sommerf eld dis-

tribution (44)

3) Angles ξ , η and ζ are calculated with (31) –(33) . The virtual

wall normal vector n is defined with (4) .

4) A sliding or non-sliding impact is calculated for a particle col-

liding with the virtual smooth wall determined with the normal

vector n found in step (3)

5) Multiple collisions are treated as in Konan et al. (2009) .

(5.1) if the rebound angle α+ 
p ≤ 0 , the procedure is repeated from

step (2). 

(5.2) if the rebound angle α+ 
p > 0 , another number s ∈ [0, 1] is

sampled according to the uniform distribution. 

(5.2.1) if s ∈ [0 , P ∗(n = 1 | α+ 
p )] , the particle leaves wall region 

(5.2.2) if s ∈ [ P ∗(n = 1 | α+ 
p ) , 1] , the procedure is repeated from

step (2). 

.6. Validation of the modelled virtual wall normal angles at the first 

article rebound 

Fig. 15 compares the PDFs of virtual wall normal vector angles

, η and ζ at the first wall impact from deterministic simulation

ith the corresponding modelled virtual wall normal vector angles

btained from the procedure outlined in Section 4.5 , steps from (1)

o (4), since only the first wall impact is modelled. Different inci-

ent angles α−
p and β−

p and two isotropic virtual walls are exam-

ned. The agreement between the 3D deterministic simulation and

D stochastic model is very good. 



Fig. 14. Comparison of the theoretical probability (47) for different coefficients ψ with probabilities from deterministic simulations that particles make only one rebound

before leaving the wall region, for an isotropic wall with virtual wall normal vector angle standard deviations �ξ = �ζ, for different particle incident angles α−
p and β−

p . 

Fig. 15. Dependence of the first wall normal vector angle distributions on the particle incident angles α−
p and β−

p . Comparison between stochastic model predictions, SM,

and deterministic simulations results, DM.
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Fig. 16. Final rebound angles PDFs of the particles returning to the flow from experimental results of Sommerfeld and Huber (1999) , 3D stochastic model predictions (SM),

deterministic simulation results (DS) and 2D rough wall multiple-collision model predictions (2DRWCM) for different initial incident angle α−
p values (β−

p = 0 ◦) with virtual 

wall normal vector angle standard deviation �ξ = �ζ = 3 . 8 ◦ . 
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5. Applications

5.1. Comparison of PDFs of particle rebound angles from the 

experimental measurements and, deterministic and stochastic 

simulations 

In Fig. 16 the derived stochastic model is compared in the x − y

plane with the experimental measurements of Sommerfeld and

Huber (1999) , the 2D rough wall multiple-collision model and the

3D deterministic simulation, whereas in the y − z plane the 3D

stochastic model is compared only with the 3D deterministic sim-

ulation, since there are no available experimental results in that

plane. In order to compare the results of the 3D stochastic model

and the 3D deterministic simulation with the available experimen-

tal measurements in the x − y plane, angle α+ 
p ,xy ( Fig. 6 ) is defined

as: 

α+ 
p ,xy = arctan 

(
tan (α+ 

p )

cos (β+ 
p )

)
(49)

A total of 10 0,0 0 0 particle impacts are simulated with the

stochastic method and also with deterministic simulation. 

For the experimental configuration of Sommerfeld and Hu-

ber (1999) , the wall was made of steel and the particles were
ade of glass with a diameter D p = 500 μm. The wall rough-

ess angle standard deviation was �γ = 3 . 8 ◦ and the horizon-

al particle mean velocity projection was u −p = 5 . 91 m / s with root

ean square value u RMS = 1 . 16 m / s . Angular velocity was not mea-

ured in the experiment, so angular velocity mean and root mean

quare values are estimated according to the principle outlined in

ommerfeld and Huber (1999) as ω p z = 16 , 336 rad / s and ω p z, RMS =
655 rad / s , respectively, as also used by Konan et al. (2009) . The

ow regime in the experiment was hydraulically smooth. 

The coefficient of restitution e w 

and the friction coefficient

w 

depend on the particle incident angle α−
p , as defined by

Sommerfeld and Huber (1999) : 

 w 

(α−
p ) =

{ 

e h − 1 

αe 
| α−

p | + 1 if | α−
p | ∈ [0 , αe ]

e h if | α−
p | > αe

(50)

nd 

w 

(α−
p ) =

{ μh − μ0 

αμ
| α−

p | + μ0 if | α−
p | ∈ [0 , αe ]

e h if | α−
p | > αe

(51)

To match the virtual wall roughness angle standard deviation

rom the experimental case �γ = 3 . 8 ◦, in deterministic simula-

ions the virtual surface has a ratio of RMS height to correlation
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Fig. 17. Comparison of deterministic simulation results (DS) and 3D stochastic model predictions (SM) of the ratio of wall-induced particle transverse velocity standard

deviation σ+ 
p to particle mean incident velocity magnitude σ+ 

p / | U 

−
p | in terms of the ratio of incident angle α−

p to angle standard deviation �ξ = �ζ for various wall 

materials and glass particles with diameters D p .
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ength scale h/c L = 0 . 047 which results in good agreement with

he 2D rough wall multiple-collision model for fully elastic colli-

ions. 

Since the exact particle incident angles β−
p from the experi-

ent are unknown, in the 3D stochastic model and 3D determin-

stic simulation, the particles have zero incident angle β−
p . In this

ay, the rebound of particles in the y − z plane is a direct conse-

uence of the 3D character of the roughness. 

In 3D procedures, particle collision with a wall is calculated ac-

ording to Tsuji et al. (1987) . A non-sliding collision occurs if the

ollowing condition holds: 

 

−
p < 

−2

7 μw 

(1 + e w 

) 
| U | (52)

here the intensity of the velocity | U | between the particle and

he wall at the contact point is: 

 U | = 

√ (
u 

−
p + 

D p 

2 

ω 

−
p z

)2

+ 

(
w 

−
p − D p 

2 

ω 

−
p x

)2

(53) 

he set of equations for the non-sliding collision is: 

u 

+ 
p = 

5

7 

(
u 

−
x −

D p 

5 

ω 

−
p z

)
v + p = −e w 

v −p 

w 

+ 
p = 

5

7 

(
w 

−
p + 

D p 

5 

ω 

−
p x

)

ω 

+ 
p x = 

2 w 

−
p 

D p 

ω 

+ 
p y = ω 

−
p y

ω 

+ 
p z = −2 u 

−
p 

D p 

(54) 

f the condition (52) is not fulfilled, a sliding collision of a spherical

article with the wall is calculated with the equations: 
u 

+ 
p = u 

−
p + ε x μw 

(1 + e w 

) v −p
v + p = −e w 

v −p
w 

+ 
p = w 

−
p + ε z μw 

(1 + e w 

) v −p

ω 

+ 
p x = ω 

−
p x − 5 ε z μw 

(1 + e w 

)
v −p 
D p 

ω 

+ 
p y = ω 

−
py

ω 

+ 
p z = ω 

−
p z + 5 ε x μw 

(1 + e w 

)
v −p 
D p 

(55) 

here εx and εz are: 

 x = 

(
u 

−
p + 

D p 

2 

ω 

−
p z

)/
| U | (56) 

 z = 

(
w 

−
p −

D p 

2 

ω 

−
p x

)/
| U | (57) 

In the application of the 2D rough wall multiple-collision pro-

edure, the particle impact with the wall is calculated according to

he procedure outlined by Konan et al. (2009) . 

As can be seen from Fig. 16 , in the x − y plane, the agreement

etween the experimental results, the 2D rough wall multiple-

ollision model and the 3D stochastic procedure is very good for

he incident angles α−
p = −5 ◦, α−

p = −15 ◦ and α−
p = −25 ◦.

Although friction is accounted for in particle-wall collisions, the

istribution of particle rebound angles β+ 
p is still Gaussian, as in

he case of fully elastic particle rebounds, with zero mean value

nd a standard deviation of the rebound angle β+ 
p that increases

ith the amplitude of the incident angle | α−
p | , as can be seen in

ig. 16 (b), (d) and (f). 

.2. Dependence of the transverse bouncing velocity standard 

eviation on the wall materials and particle diameter from 

eterministic and stochastic simulations 

Fig. 17 shows the dependence of the ratio of transverse veloc-

ty standard deviation to particle mean incident velocity magnitude
+ 
p / | U 

−
p | on the ratio of particle incident angle to virtual normal

ector angle standard deviation | α−
p | / �ξ using deterministic and

tochastic simulations carried out using the experimental parame-

ers from Sommerfeld and Huber (1999) for various wall materials

nd glass particles, for a particle transverse incident angle β−
p = 0 ◦.

owever, considering that the simulated virtual wall is isotropic,

he results obtained are independent of the particle incident angle
−
p .
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In all simulated cases, the angular velocity of particles is the

same as in Section 5.1 . Simulated incident particle angles are up

to around 40 °, since in the original experiment the channel was

narrow and the particle incident angles were small. 

Among the available wall materials and sizes of particles, the

largest transverse particle dispersion is observed for a steel wall

and glass particles with diameter D p = 100 μm (equivalent to an

isotropic wall with virtual normal angle standard deviation �ξ =
�ζ = 5 . 3 ◦). For this configuration, at the largest particle incident

angles the generated transverse velocity standard deviation σ+
p 

is around 8% of the inlet velocity. The lowest transverse parti-

cle dispersion is for a polished steel wall and particle diameter

D p = 100 μm (equivalent to an isotropic wall with virtual normal

angle standard deviation �ξ = �ζ = 2 . 3 ◦): at the largest particle

incident angles, the standard deviation of the generated transverse

velocity σ+ 
p is around 4% of the inlet velocity.

A steel wall and particle of diameter D p = 500 μm and a plexi-

glass wall and particle of diameter D p = 100 μm, both configura-

tions with normal vector angle standard deviation �ξ = �ζ =
3.8 °, have approximately equal transverse particle dispersions. Al-

though a rubber wall and particles of diameter D p = 100 μm have

a normal vector angle standard deviation �ξ = �ζ = 3.8 °, the

transverse particle dispersion is slightly lower than in the previous

two configurations with the same virtual normal angle standard

deviations. 

Overall, in the simulated cases, the agreement between the de-

terministic simulation results and the stochastic model predictions

is excellent. 

6. Conclusion

In this paper, a new stochastic procedure for 3D particle-rough

wall interaction in a Lagrangian framework has been developed.

This procedure represents an extension of the models developed

by Sommerfeld and Huber (1999) and Konan et al. (2009) , both

of which account for the particle-wall interaction by modelled 2D

wall roughness structures. Compared with these models, consid-

ering that the impact of a particle with a wall is generally 3D, the

new stochastic procedure predicts a more realistic particle rebound

with a transverse particle bouncing velocity component. 

Deterministic simulations using isotropic random rough sur-

faces generated by following Garcia and Stoll (1984) show that

the PDFs of the first virtual normal vector angles ξ and ζ seen

by incident particles are conditioned by the particle incident an-

gle α−
p , in agreement with the shadow effect characterized by

Sommerfeld and Huber (1999) in the frame of the 2D rough wall

modelling approach. Also, it is shown that the PDF of the rebound

angle α+ 
p agrees very well with the that predicted by the stochas-

tic model of Konan et al. (2009) , which accounts for the shadow

effect and multiple particle-wall collisions. Therefore, to allow the

link with this model, a unit vector n γ in the particle incident plane

is introduced. This vector is given by assuming that its scalar pro-

jection onto the particle incident velocity U 

−
p is equal to that of

the wall normal unit vector n . To account for the transverse devi-

ation bouncing effect, the angle γ ∗ obeying a given Gaussian PDF

is introduced. It is shown that the angle γ ∗ is not affected by the

shadow effect and multiple particle-wall collisions. The stochastic

procedure coupling γ and γ ∗, accounting for the transverse bounc-

ing effect, is then derived. 

Owing to the 3D roughness effect, the particle bouncing veloci-

ties show a transverse random component with standard deviation

proportional to the sine of the incident angle amplitude | α−
p | and

to the standard deviations of the virtual wall normal vector angles

�ξ = �ζ . 

In further studies, using Euler–Lagrangian simulations of

particle-laden flows, comparisons between different stochastic pro-
edures for particle-wall interactions and experimental results

hould be made in different flow configurations. The application

f the new stochastic procedure is expected to give more accurate

esults in particle-laden flows where the influence of wall rough-

ess is important, especially in flows with emphasized 3D parti-

le movement and with large particle incident angles α−
p ( | α−

p | 

ξ and �ζ ). Also, since anisotropic surfaces are often encoun-

ered in engineering practice, the interaction between particles and

nisotropic rough walls will be investigated further. 
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