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Abstract 

Survival or reliability analysis is one of the most significant 
advancements of statistics in the last quarter of the 20th century. 



This domain of statistics takes an important place in biomedical and 
industrial framework. In this paper, we propose a new baseline hazard 
function from extreme value theory. The newly suggested function         
is non-monotone and is named as a generalized extreme values 
baseline hazard function. We prove that this function satisfies hazard 
properties. A study of the characteristics of the function related to time 
is made. Conditions for applicability of the model are obtained. 

1. Introduction

Survival analysis is generally defined as a set of statistical methods for 
analyzing data where the outcome variable is the time until the occurrence of 
an event of interest. The event can be death, occurrence of disease, failure of 
equipment or complex system. The time to event can be measured in days, 
weeks, years, etc. For example, if the event of interest is heart attack, then the 
survival time can be time in years until a person develops attack. In recent 
years, the field of applied survival analysis has attracted a growing amount 
of interest due to its applications in many domains such as biomedical, 
engineering and reliability in industrial equipment safety. This increase is 
due to the performance of parametric survival model. Benefits are recognized 
and the availability of some flexible methods are now available in standard 
software like R and SAS [2, 9, 14]. From the parametric approach, we 
can obtain biomedical useful measures of absolute risk allowing greater 
understanding of individual system risk profile, particularly, when we focus 
on personalized medicine or sensitive equipments [2, 15]. 

Here, we focus on parametric proportional hazard model. We remember 
that the problem which frequently arises in failure data analyzing is that not 
all of the data have been obtained from similar sources. For example, the 
characteristics of a diabetic patient may be different from another patient. A 
number of equipments may have been used in different environments 
depending on ages with modifications [20, 13, 15]. These factors affect 
survival data quality or failure records of various equipments. Most often 
survival data are censored [5, 7, 14]. Therefore, it is desirable to isolate the 
effects of such explanatory variables. Both estimate the size of these effects 



and enable all the failure data to be analyzed on a common basis [6, 22]. The 
flexible model which can be used to separate effects of explanatory variables 
in such contexts is the proportional hazard model introduced by Cox. This 
model assumes that explanatory variables have multiplicative rather than 
additive effects on the hazard rate [3, 35]. In Cox model, when the baseline 
hazard function is specified, we have the parametric proportional hazard 
model [3, 10]. Weibull distribution is the most used baseline hazard function, 
but there is initial need to precisely describe the shape parameter [1, 3, 6]. 
Crowther and Lambert [1] proposed a parametric model through the use of 
restricted cubic splines and relative risk [3]. Many studies have shown the 
necessity to modify Weibull distribution for more flexibility [1, 5]. 

In this study, we introduce a new baseline function through the 
Generalized Extreme Value (GEV) theory. The GEV distribution is a 
continuous probability distribution which deals with extreme events such as 
catastrophe, earthquake, heart attack, aircraft [4, 7, 15]. This distribution can 
be obtained as limiting distributions of properly normalized maxima of n 
independent and identically distributed (iid) random variables. Extreme 
values analysis finds wide applications in many areas including engineering 
for health engine managing and signal determination [6, 19], biomedical risk 
management for lung cancer data and high cholesterol modelling [18, 26], 
biology and bioinformatics modelling [20, 34]. Zio [24] illustrated the 
flexibility of GEV distribution. Commonly, the distribution which is used 
widely in survival model is viewed as a parameterization of Weibull 
distribution. 

The paper is structured as follows. Section 2 exposes an overview on 
survival or reliability analysis. Section 3 presents extreme values statistics 
and its main components concerning the link between extreme values theory 
and a new baseline hazard function. In Section 4, we are interested to the 
analysis of theoretical properties and the applicability conditions. Finally, 
Section 5 concludes and discusses future challenges. 



2. Survival or Reliability Analysis

Let T be a non-negative random variable representing the waiting time 
until the occurrence of an event. We will assume here that T is a continuous 
random variable with probability density function (pdf) ( )tf  and cumulative 

distribution (cdf) ( ) { },Pr tTtF <=  giving the probability that the event has 

occurred by duration t. It will be convenient to work with the complement of 
the cdf, the survival or reliability function 

( ) { } ( ) ( )∫
∞+

=−=≥=
t

dxxftFtTtS 1Pr

which gives the probability of being alive just before duration t, or more 
generally, the probability that the event of interest has not occurred by 
duration t [13, 19, 20]. An alternative characterization of the distribution of T 
is given by the hazard function, or instantaneous rate of occurrence of the 
event, defined as follows [18, 19]: 

( ) ( ) ( )
( ) .lim

0 tS
tf

t
tTttTtPth

t
=

Δ
≥|Δ+<≤=

→Δ
(2.1)

The cumulative hazard function giving amount rates until time t, is defined as 

( ) ( ) ( )( ).ln
0∫ −==
t

tSdxxhtH (2.2)

The hazard rate goes by several aliases: 

• In engineering sciences, it is known as the failure rate.

• In initial statistics and in the life sciences, it is known as the age
specific death rate.

• In point process and extreme value theory, it is known as the rate
function or the intensity function.

The reliability (survival) function examines the chance that breakdown 
of organisms, of technical units, etc. occur beyond a given point in time. To 
monitor the life time of a unit across the support of the life time distribution, 
the hazard rate ( )th  is used. 



In survival or reliability data analysis, the hazard function could be 
monotone or non-monotone. In epidemiology studies, the intensity of 
contamination must change over time, often the same happens in degradation 
situation. At the beginning of the epidemic, the intensity is high (increasing) 
and when the health authorities take some dispositions epidemic intensity 
becomes weak. In equipment framework also, we have an improvement. In 
the following section, we focus on the relationship between extreme value 
analysis and hazard function. 

3. Extreme Values Analysis and Survival Reliability

Suppose nYY ...,,1  is a sequence of independent and identical copies of a 

random variable Y and let ( )....,,max 1 nn YYM =  If the distribution of iY  is 

specified, then the exact distribution of nM  is known. On the other hand, in 

the absence of such specifications, extreme values consider the existence of 

[( ) ] ( )yFyabMP nnnn
=≤− −

+∞→
1lim for some sequence of real numbers 

{ },0>na  and { }.R∈nb  If the cumulative distribution function ( )yF  is a

non-degenerate distribution, then it follows that 
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where R∈μ  is the location parameter, σ is a scale parameter, ξ is the shape 

parameter and ( ).0,max xx =+  The Gumbel, Fréchet and the Weibull family 

of distributions are obtained from (2.1) by considering ,0=ξ  ,0>ξ  0<ξ , 

respectively [4, 7, 19]. The importance of GEV distribution as a link function 
arises from the fact that the shape parameter ξ purely controls the tail 
behavior of the distribution [7, 24]. The Gumbel distribution is the least 
positively skewed distribution in the GEV class when ξ is non-negative. 
Moreover, Zio [24] provided a plot of the probability distributions of the 



GEV family which proves the flexibility of the GEV distribution. This 
flexibility is an important property in the modelling complex data [7, 23]. 

3.1. Hazard function modelling with generalized extremal model 

The hazard or failure rate function measures the propensity to fail or            
to die depending on the age reached and it thus plays a key role in 
characterizing the process of aging and classifying lifetime distributions. We 
will distinguish between 

• monotone hazard rates, either increasing, when the system is wearing
out with time, or decreasing, when the system is improving with time;

• non-monotone hazard rates, when the system deteriorates with time,
then it improves with time or vice versa.

The hazard function which is non-monotone is sparse in literature. We 
focus on the baseline hazard function of proportional hazard model to have a 
monotone function which is very important to modelling some datasets. Roy 
and Dey [5] proposed flexible hazard function for Tlog  in accelerated 

failure time model with GEV errors. Here, we introduce a new baseline 
hazard function and prove that the proposed function satisfies hazard rate 
properties and study the characteristics of the new function for the shape 
parameter .0=ξ  

The GEV distribution is a particular case that includes the Gumbel 
distribution widely used in parametric survival model. However, the 
commonly used version of the extreme value model can be viewed as a 
parameterization of the Weibull distribution. If T has a Weibull distribution, 
then Tlog  has the Gumbel distribution for the minimum of extremes, Barro 

et al. [9]. In this case, the hazard function is a Weibull distribution, which is 
monotone. To obtain a flexible function, we consider that Tlog  has a GEV 

distribution. From formula (3.1) and ( ),,1,0~log ξGEVT  we have the 

following probability distribution function (pdf) of T: 
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The corresponding survival function ( )tTPS ≥=ξ  is given by 
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Proposition 1. A function ( )th  is a non-monotone hazard rate if and 

only if it satisfies the properties: (1) ( ) ;0,0 ≥∀≥ tth  (2) ( )th  is increasing 

and then decreasing or vice versa with time; (3) ( )∫
∞+

+∞=
0

.dtth  

Proof. (1) Let ( )tf  be a pdf and ( )tS  be a survival function. Since f and 

S are positive functions, ( ) ( )
( ) .0≥= tS
tfth

(2) ( ) 0≥th  and ( ) ( );limlim
00

thtf
tt →→

= ( ) ( ),thtf ≥  ;0>∀t  thus, there 

is at least an interval J such that h is increasing or decreasing, or else vice 
versa. 

(3) ( ) ( )[ ]∫
∞+ ∞+=

0 0 ,tHth  and using formula (2.2), we have ( )[ ] =+∞
0tH

( )[ ] .ln 0 +∞=− +∞tS  

By definition, the hazard function ( )
( )
( ) .tS
tf

th
t

ξ
ξ =  Using (3.2) and (3.3), 

we obtain the following expression: 
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3.2. A new baseline hazard function 

In this subsection, we focus on the particular case when .0=ξ  From       

the previous subsection, we have ( ) ,11exp 20
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(increasing and then decreasing) hazard function. 

Proof. The proof of this result uses Proposition 1. 

(1) Monotonicity: Let ( )
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shows that the function ,0>g  and has extrema at ,0=t  63. Moreover, g is 

decreasing and then increasing. Since ( ) ( ) ,0 tgth 1= 0h  is increasing and 

then decreasing. 

(2) Hazard rate, 0f  is a pdf function and 0S  a survival function. Both

are positive, and hence ( ) ( )
( ) .0

0
0

0 ≥= tS
tfth  Thus, 
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Remark 3. Let f be a function on a set D; f has an upside down bathtub 
shape if f is increasing and then decreasing. In the rest of this work for ,0=ξ  

the hazard function ( )
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛

=
11exp

1
20

tt
th  satisfies these conditions. 

The last limit predicts an improvement of baseline risk over time, but in 
practical cases, it is another issue. We will talk about this in Section 4. This 
function is non-monotone (increasing and next decreasing); this property is 
very important in complex dataset like clinical trials and engineering system. 
In some complex data modelling, we have a turning point where the structure 
of the system takes another aspect. The increasing hazard function is a 
characteristic of the system that consistently deteriorates with time, whereas 
decreasing hazard function is a property of the system that consistently 
improves with time. 

3.3. Parametric proportional hazards models 

The assumption of the proportional hazard model is that the failure rate 
of an equipment is the product of a baseline failure rate ( ),.0h  depending       

on time and a positive function ( ).exp β′X  The classical semi-parametric 

proportional hazard model, firstly proposed by Barro et al. [9] has the 
following form where ( )th0  is an arbitrary unspecified baseline hazard 

function for continuous failure time T, ( )pxxxX ...,,, 21=  is the vector of 

covariates, ( )pβββ=β ...,,, 21  is the parameter effect. 

The most of survival data is censored. Let iY  denote the observed time 

(either censoring time or event time) for the subject i. Let iC  be the indicator 

that the time corresponds to an event, i.e., if ,1=iC  the event occurred and 

if ,0=iC  the time is a censoring time; { }ipiii XXXX ...,,, 21=  is the 

realized value of the covariates for the subject or system [5, 6]. 



Figure 1. GEV baseline hazard function. 

The proportional hazard model has the following form: 

( ) ( ) ( ) ( ) ( ).expexp, 022110 β′=β++β+β= iippiii XthXXXthXth  (3.5) 

The last expression gives hazard rate at time t for subject i with 
covariates vector (explanatory variables) iX  [6, 9]. 

Commonly the parametric form ( )th0  is specified like Weibull, 

lognormal, exponential distribution. Parametric distribution type most 
commonly used like baseline hazard function is the Weibull distribution       
[3, 9]. The disadvantage of this approach is that the assumption on 
monotonicity (increasing or decreasing) provides only the failure time 
distribution of the average system under average conditions of operations 
and does not correctly take account of extreme behaviors such as harsh 
conditions [2, 15]. Moreover, it is expected that the system under harsh 
conditions will fail at earlier times than system operating in mild 
environments [3, 9, 11]. To take into account the external covariates of such 
an environment, operating conditions must be brought into the model. This 
leads to the improvement of degradation models including explanatory 
covariates that describe the operation environment. For example, the 
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proportional hazard model is a statistical method capable of including 
information on the environment and operating harsh conditions to take into 
account extreme events [3, 10, 11]. In the following subsection, we introduce 
the new hazard proportional hazard model using the baseline hazard function 
proposed in the previous subsection. This function is extremely flexible, any 
assumption on monotonicity is taken up. 

3.4. Generalized extreme values proportional hazard model 

Commonly in parametric proportional hazard model, the baseline risk 
function is Weibull distribution. With object to take into account the extreme 
behaviour and operating harsh conditions, using Proposition 2, the newly 
proportional hazard model is named as GEV proportional hazard model. 

In general framework, the analysis of system often sees that on some 
interval, the system is running smoothly and on another interval the system 
runs in a degradation phase. Additionally, in the surface roughness, first         
it has a degradation trend and then does proper operation. The GEV 
proportional hazard function has the following form: 

( ) ( )β′
⎟
⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛

= ii X

tt
Xth exp

11exp

1,
2

 (3.6) 

and the corresponding cumulative hazard function has the next form 
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4. Theoretical Analysis and Conditions for Applicability of the Model

The purpose of this section is to develop theoretical properties of the
proposed model. We also focus on conditions for applicability in life and 
engineering sciences. 

4.1. Theoretical analysis of our proposed model 

In this part, we focus on our model, notably the theoretical properties and 
asymptotic behaviours for some particular values. The hazard rate is the 
product of two factors, the baseline function and the covariates risk function. 



From the second factor, we substitute the term β′iX  by the prognostic index 

(PI) which indicates the weight of the covariates in hazard rate modelling. 
Thus, the formula (3.6) takes the following form: 

( ) ( ).exp
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t

PIth
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Figure 2. Hazard function simulation depending on PI and time. 

The covariates accelerate ( )0>PI  or decelerate ( ),0<PI  the hazard 

rate which makes a unit move through time with respect to the baseline 
case. However, as our baseline function is non-monotone (increasing then 
decreasing), the proposed model recognizes the two aspects ( ,0>PI  )0<PI  

and also ( ).0=PI  To assess the predominant trend of the model, we have to 

investigate the variation of the function depending on time and PI. We begin 
our study by a simulation with some values of PI and time, as shown in the 
following graph The analysis of Figure 3 shows, firstly that hazard rate 
accelerate, when PI increases with time and the threshold of the hazard rate 
( )0>PI  is greater than the threshold ( );0<PI  secondly, we remark that 

the decreasing phase is more important than increasing phase because 
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increasing is on short interval. This shows a clear trend of the model towards 
an improvement situation (decreasing hazard rate). 

Furthermore, to support our arguments we propose another simulation 
study with the following table value degradation phase and then a large 
improvement phase. In the parametric proportional hazard model, PI is very 
important in hazard rate assessment. But the PI value is obtained from model 
parameters estimation; this will involve the selection of relevant covariates. 

Time 0.1  0.2  0.3  0.4  0.5 1 2 3 4 5 6 7 8 9 

PI 5.1 5 4.9 4.8 4 3 2 1 0 –1 –2 –3 –4 –5

Figure 3. This figure confirms the previous analysis. 

4.2. Conditions for applicability on real data 

Here, we give the main conditions to apply our proposed model. There 
are certain constraints on the baseline hazard function and prognostic index. 

• In Subsection 3.2, we have ( ) ,0lim 0 =
+∞→

th
t

this means that the 

system is “dead” or fails completely. Thus, when work is performed 
on a limited interval, such situation is excluded. For practical reasons, 
we introduce the baseline relative risk value denoted by ε such as 

.1ε  Hence, we have ( ) ( ) ε+=∗ thth 00  and ( ) .lim 0 ε=∗
+∞→

th
t

• We have introduced the prognostic index in previous subsection like
the weight of covariates in hazard rate modelling. Figure 2 shows that
when PI is increasing, hazard rate is accelerated; for the stability of
model, we suggest that .1≤PI
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Our model could be used in component roughness and clinical trials 
studies, because in these we have often increasing phase and then decreasing 
phase for the hazard function. However, it would be difficult to have 
available data in industrial and medical framework. 

5. Conclusion and Discussion

We presented a new approach to the development of the survival 
analysis in biomedical and industrial framework. The main contribution is 
the modelling and characterization of a new baseline hazard function from 
extreme value theory in proportional hazard modelling. A theoretical study is 
proposed. This function could be an alternative to Weibull function when the 
degradation or system behaviour is non-monotone. Many situations of this 
kind occur in biomedical and surface roughness in industrial equipment. The 
choice of baseline hazard function is arbitrary in many practical cases; but in 
biomedical and industrial framework, this function should be flexible, 
increasing and decreasing. Thus, the task of the parametric baseline hazard 
function modelling is a challenge for further developments. We have also 
proposed the practical conditions for the model. 

Further development should include the search of available data for 
model and the implementation of the new approach to experimental step and 
simulation study on real data. 
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