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Abstract: Surface roughness is a very important measurement in machining 
process and a determining factor describing the quality of machined surface. 
This research aims to analyse the effect of cutting parameters [cutting speed 
(v), feed rate (f) and depth of cut (d)] on the surface roughness in turning 
process. For that purpose, an artificial neural network (ANN) model was built 
to predict and simulate the surface roughness. The ANN model shows a good 
correlation between the predicted and the experimental surface roughness 
values, which indicates its validity and accuracy. A set of 27 experimental data 
on steel C38 using carbide P20 tool have been conducted in this study. 
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1 Introduction 

Surface quality is one of the most important product quality characteristics in 
manufacturing, and it is one of the most frequent consumer requirements in machining 
process because of its impact on product performance (Al-Zubaidi et al., 2011; Zain 
et al., 2012). Surface quality is often expressed by the measurement of surface roughness 
(Ra), which is mostly used as an index to determine the surface finish (Ståhl et al., 2011). 
The Ra greatly affects the functional performance of mechanical parts such as wear 
resistance, fatigue strength, ability of distributing and holding a lubricant, heat generation 
and transmission, and corrosion resistance (Moghri et al., 2014). 

The formation of Ra is a complex process, affecting by many factors like tool 
variables, workpiece material and cutting parameters (Acayaba and de Escalona, 2015). 
To reduce machining costs and to obtain required surface quality of the machined parts, 
much effort has been developed in understanding the effects of cutting conditions on Ra 
through the creation of adequate models (Davim et al., 2008). The most frequently used 
models for prediction of machining performance are mathematical modelling, the 
regression technique and artificial intelligence (AI) technique (Cica et al., 2013). 
Recently, (AI)-based models, such as ANN approaches, have become the preferred trend 



as they are applied by most researchers to develop optimal machining conditions to 
predict performance measure (Hossain and Ahmad, 2014). 

The difference between the models lies mainly in the nonlinear regions (Ozen and 
Bayhan, 2013). Although the regression method may work well for modelling, this 
technique may not describe precisely the underlying nonlinear complex relationship 
between machining parameters and performance measures (Ahilan et al., 2013). 
Meanwhile, ANN models provide better prediction capabilities since they offer the ability 
to model more complex nonlinearities and interactions between input and output 
variables without the need to go deep into the mathematical formulation complexity 
(Phate and Tatwawadi, 2015). 

Among various cutting processes, turning is one of the most applied metal removal 
operations and one of the widely used machining processes in engineering industries 
(Velibor and Milos, 2011). In turning, the cutting conditions affect the process efficiency 
and performance characteristics (Acayaba and de Escalona, 2015). Due to inadequate 
knowledge of the complexity of the process and factors affecting the surface integrity in 
turning operation, an improper decision may cause high production costs and low 
machining quality (Basheer et al., 2008; Xavior and Adithan, 2012). The proper selection 
of the operator, the cutting tools machine, the process parameters and the suitable 
environment for achieving a higher cutting performance in a turning operation is a critical 
task (Vaxevanidis et al., 2014). Hence, an accurate evaluation of Ra has been the purpose 
of study for many years and it is the focus of the present study. 

The present investigation first builds an ANN prediction model of the (Ra) from the 
cutting speed (v), feed rate (f) and depth of cut (d). Then, an analysis of the variation of 
the Ra according to the variation of those cutting parameters is performed after making 
some simulations’ operations, during finish turning of steel C38 using a carbide P20 tool. 

2 Literature review 

Ra plays an important role in determining the quality of machined surface. It is often a 
good estimator of the performance of a mechanical component. Among the strategies 
used for predicting Ra from different input parameters, (AI)-based methods and ANN in 
particular, are the most accurate, since they offer better prediction capabilities. 

In turning process: Pontes et al. (2012) proposed an RBF neural network method to 
predict Ra using v, f and d as input variables of SAE 52100 hardened steel. Vaxevanidis et 
al. (2014) investigated the influence of the main cutting parameters on Ra and cutting 
forces using three materials AISI D6 tool steel, Ti6A14V ELI and CuZn39Pb3 brass. 
Davim et al. (2008) developed a model to study the influence of cutting conditions on Ra 
parameters (Ra and Rt) using free machining steel 9SMnPb28k (DIN). Asiltürk and 
Çunkas (2011) stated that ANN produces better results comparing to multiple regression 
when predicting Ra of AISI 1040 steel. Nalbant et al. (2009) showed that ANN may be 
used as a good alternative in analysing the effects of cutting tool geometry and processing 
parameters on the average Ra. 

In other machining processes: Topal (2009) proposed a backpropagation algorithm 
discovering the role of stepover besides the standard cutting conditions on Ra prediction 
in flat end milling operation of AISI1040 steel. Al Hazza and Adesta (2013) built up an 
ANN model to predict best cutting parameters for minimum values of Ra in end milling 



machining of AISI H13. Basheer et al. (2008) found the ANN model to be in a very good 
agreement with experimental dataset when modelling Ra in precision machining of metal 
matrix composites Al/SiCp. Murthy and Rajendran (2012) proposed an ANN approach in 
drilling to predict Ra and tool wear with chip thickness inputs and cutting power in 
addition to cutting parameters and confirmed the accuracy of the model in term of 
prediction of the output parameter. Shandilya et al. (2012) stated that ANN model is close 
to the experimental values than RSM approach when predicting of Ra during wire 
electrical discharge machining of SiCp/6061 Al metal matrix composite. 

From the literature survey, it is observed that ANN is a good alternative in terms of 
predicting Ra from several input parameters using different machining processes. This 
research presents an investigation of the effect of cutting condition parameters on the Ra 
during finish turning through ANN modelling. For this purpose, a set of 27 experimental 
data on steel C38 using carbide P20 tool have been conducted in this study. 

3 Experimental work 

The machining process was conducted using a copying lathe with a 7.5 KW power. This 
machine has a rotational speed range between 45 and 2,000 rev/min; f range between 0.05 
and 0.07 mm/rev. 

This study was carried out at the mechanical engineering department of Ecole 
Nationale Polytechnique d’Oran (ENPO) school. The experiments were done with values 
of v from 210 up to 310 m/min, low f from to 0.05 to 0.2 mm/rev and d between 
0.3–0.7 mm. They were performed on heat-treated steel C38 workpieces, using a carbide 
P20 tool material. The dimensions of each workpiece are 100 mm in diameter and 
150 mm in length. Machining consists of a finish straight turning operation. The 
geometric characteristics of the P20 tool used in the experiment were as follows: 

• Clearance angle: 6°.

• Rake angle: 8°.

• Nose radius: 0.5 mm.

In this work, experimental design involves variations of three factors (v, f and d) at three 
levels as shown in Table 1. 
Table 1 Cutting parameters and their levels 

Levels 
Parameters Units

1 2 3
Cutting speed (v) m/min 210 250 310
Feed rate (f) mm/rev 0.05 0.1 0.2 
Depth of cut (d) mm 0.3 0.5 0.7

Hence, 27 experiments were performed according to a 33 full factorial design in order to 
estimate the Ra and a matrix were constructed Table 2. 



Table 2 Experimental data and surface roughness values 

N Cutting speed 
v(m/min) 

Feed rate  
f(mm/rev) 

Depth of cut  
d(mm) 

Surface roughness 
Ra(μm) 

1 210 0.05 0.3 1.6
2 210 0.05 0.5 1.6
3 210 0.05 0.7 1.7
4 210 0.1 0.3 2.1
5 210 0.1 0.5 3.3
6 210 0.1 0.7 2
7 210 0.2 0.3 3.3
8 210 0.2 0.5 3.6
9 210 0.2 0.7 2.9
10 250 0.05 0.3 2.1
11 250 0.05 0.5 1.2
12 250 0.05 0.7 2
13 250 0.1 0.3 1.6
14 250 0.1 0.5 1.4
15 250 0.1 0.7 1.9
16 250 0.2 0.3 3
17 250 0.2 0.5 2.5
18 250 0.2 0.7 3
19 310 0.05 0.3 1.8
20 310 0.05 0.5 1.1
21 310 0.05 0.7 1.8
22 310 0.1 0.3 1.5
23 310 0.1 0.5 1.5
24 310 0.1 0.7 3.8
25 310 0.2 0.3 2.7
26 310 0.2 0.5 2.1
27 310 0.2 0.7 3.2

4 Neural network models 

An ANN structure principally consists of layers (input, hidden, output) and nodes also 
known as neurons Figure 1. The neurons between the layers are connected by links 
having synaptic weights (Sunder and Yadava, 2014; Xavior and Adithan, 2012). 



Figure 1 Stmcture of a network 
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Artificial neural networks are nonlinear mapping systems that perform specific 
mathematic functions such as nonlinear function approximation between input and output 
variables (Pontes et al. , 2012). They are composed of fully interconnected multilayers 
consisting of neurons as the basic element (Murthy and Rajendran, 2012). There are 
many types of neural netv.•orks such as backpropagation neural netv.•ork (BPNN), counter 
propagation neural network, radial basis function neural network, etc. (Vaxevanidis et al. , 
2014) . The standard feedfo1ward (FF) BPNN is the most widely used by researchers and 
it was found that this technique gave the more accurate results in term of prediction of the 
Ra response variable (Shandilya et al. , 2012), but it required more time for training and 
testing (Madie and Radovanovic, 2013) . To escape the slowness of the process, 
Levenberg-Marquardt (LM) algorithm is used since it converges ve1y fast with less 
danger from entrapment in local minimum, while at the same time, it can provide high 
accuracy of prediction (Upadhyay et al. , 2013,). Therefore, this problem is treated with 
FF BPNN type using LM algorithm for the training part. 

4.1 FF BPNN model 

Training a network by backpropagation involves three stages: the FF of the input training 
pattern, the backpropagation of the associated e1rnr, and the adjustment of the weights 
(Fausett, 1994; Kialashaki and Reise!, 2014). Its learning procedure is based on gradient 
descent search to satisfy the condition of minimising the mean squared eITor (MSE) 

l P m 

MSE = 2 L L ( tk (p ) - ok (p) )2 (Ahilan et al. , 2013) over all training samples. Where 
p p =I k=I 

p is the number of the training patterns, t,l,p) is the experimental ( desired) output for the 
p th pattern, o,l,p) is the predicted value. 

For a netv.•ork with one hidden layer (Fausett, 1994; Freeman and Skapura, 1991; 
Zain et al. , 2012), the net-input values to the/'-hidden unit are given by the expression: 

N 

netj = L wji X; +ej 
i= l 

(I) 



where i is the number of the node in the input layer, w9 is the weight between the input 
nodes and the hidden nodes, X; is the input value, which represents the cutting conditions 
and 0i is the biases on the hidden nodes. 

The net-input values to the k'1'-output unit are done by the equation: 

L 

t l ""' I · 0' ne k = L... l \'k j l j + k (2) 
j =I 

where j is the number of the node in the hidden layer, wi, i is the weight betv.•een hidden 

and output nodes, ii is the value of the output from the hidden nodes and 0i, is the biases 
on the output nodes. 

From equations (1) and (2), the output values from the hidden layer and the output 
values from the output layer, can be done using equations (3) and (4) respectively: 

(3) 

ok = R (neti.) (4) 

where fj and R are the transfer functions used for the model prediction. 

5 Architecture of the proposed ANN model 

The training of ANN for 27 input-output pattems has been carried out using MATLAB 
(R2013 a) neural netv.•ork toolbox NNTOOL. 70% for the training data, 15% to validate 
the model and 15% for the test part. The simulated multi-layer ANN architecture consists 
of three neurons in the input layer (coITesponding to three process inputs: 11, /, d), one 
neuron in the output layer (coITesponding to R0 ) . One hidden layer with 10 neurons was 
used between the input and output layers Figure 2. 

Figure 2 Topology of the trained network 
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Table 3 summarises the neural network model specifications. 
Table 3 Specification of the trained neural network 

Tool MATLAB R2013a
Toolbox NNTOOL
Type Feedforward backpropagation
Learning system Supervised learning 
Algorithm Levenberg-Marquardt algorithm
Training function Trainlm 
Adoption learning function Learngdm 
Transfer function Tansing for layer1, Purelin for layer2 
Number of layers, data ratio 3 layers (input, hidden and output), 70:15:15 
Number of hidden layer neurons 10 
Performance function Mean squared error (MSE) 

The validity of any designed model is mainly given by the following parameters and plots 
generated by MATLAB NNTOOL toolbox (Al Hazza and Adesta, 2013; Beale et al., 
2010). 

MSE, regression plots that show the network output with respect to target and the 
error histogram plot which displays the difference between target and output values. 

Figure 3 Regression plot (see online version for colours) 
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6 Results and discussion 

6.1 Regression plot 

The regression plot for all pattems, trammg, validation and testing the model are 
summarised in Figure 3. The plots display the network output (coITesponding to the 
predicted values of Ra) with respect to target (coITesponding to the experimental values of 
Ra) for all pattems, training, validation and testing sets. For a perfect fit, the data should 
fall along a 45-degree line (dash line), where the netv.•ork outputs are equal to the targets. 
In our case, the fit is quite good for all datasets, with R-value higher than 0.999 and the 
outputs track the targets ve1y well. It can be observed that prediction is quite accurate, 
since (Ra) predicted points lie ve1y close to the original experimental results. 

6. 2 Error histogram 

The en-or histogram Figure 4 can give us an additional verification of the netv.•ork 
perfo1mance. In this case, while most en-ors fall between -0.047 and 0.047, there is only 
one training point with an eITor of -0.13, and it cannot even be considered as an outlier 
point. Hence, the outputs fit the target points accurately. That can be confumed too with 
the graph on Figure 5 showing the shape of the predicted and experimental Ra curves. As 
it can be seen, both of the curves are very close to each other and that the predicted 
values follow the same trend of the experimental ones. 

Figure 4 E1l'Or histogram (see online version for colours) 
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Figure 5 Comparison between the experimentally measured and ANN predicted values  
(see online version for colours) 

Finally, MSE obtained have values of 0.096% for all patterns, but specifically, 0.114% 
for training data, 0.043% for validation data and 0.067% for test data. 

Hence, the obtained results are very reasonable and quite accurate in this experiment. 
Therefore, the average Ra value (Ra) could be accurately predicted by the developed ANN 
model, using the three input parameters (v, d, f). 

6.3 Weights and biases 

The weights and biases of the final model are shown on Tables 4 and 5. 
Table 4 Weights of input layer to hidden layer 

Hidden layer Cutting speed Feed rate Depth of cut Bias 

1 1.4615 –2.4515 0.7979 –4.3189
2 3.9434 0.3584 –0.6710 –2.5551
3 –3.0736 0.6691 1.3308 2.4384
4 1.4752 –0.9420 1.7394 –2.7400
5 0.3722 3.8340 –0.0029 –1.0852
6 –1.5586 –3.6355 0.6554 –2.4624
7 –2.8812 1.8520 3.7498 –0.8693
8 0.7589 3.6328 –1.0381 2.9322
9 3.5199 2.0897 3.6084 1.0718
10 3.4669 0.1046 –3.7812 1.5407
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Table 5 Weights of hidden layer to output layer 

Layer Ra 
1 –1.1094
2 –0.2769
3 –0.5356
4 1.6783
5 0.6260
6 0.8108
7 0.1445
8 1.0430
9 –0.3677
10 –0.1753
Bias 0.3944

7 Simulations 

7.1 Effects of cutting parameters on Ra 

To study the effect of the cutting parameters on Ra, simulations have been performed. 
Three groups of measurements were implemented according to three different depths of 
cut: d = 0.3 mm, d = 0.5 mm and d = 0.7 mm. For each d value, three different feed rates 
have been considered: f = 0.05 mm/rev, f = 0.1 mm/rev and f = 0.2 mm/rev. The 
curves are plotted according to the v parameter and the results have been concluded in 
Figures 6 to 8. 

Figure 6 The effect of v and f on the Ra with d = 0.3 mm (see online version for colours) 
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Figure 7 The effect of v and f on the Ra with d = 0.5 mm (see online version for colours) 
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Figure 8 The effect of v and f on the Ra with d = 0.7 mm (see online version for colours) 
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On Figure 6, it can be observed that best Ra values are obtained using v higher than 
320 m/min with a feed rate f = 0.05 mm/rev, where the minimum value of Ra is 
Ra = 0.25 μm corresponds to a cutting speed v = 360 m/min. f = 0.2 mm/rev gives high 
values of Ra all above 2.2 μm. Intermediate values of Ra are obtained with 
f = 0.1 mm/rev. 

Figure 7 is showing the same shape for all curves. Higher values of Ra are obtained 
with f = 0.2 mm/rev. The curve represented by f = 0.05 mm/rev holds the lowest Ra 
values. The minimum value of Ra is Ra = 0.66 μm corresponds to v = 280 m/min and can 
be depicted on f = 0.1 mm/rev curve which contains the intermediate Ra values. 



With d = 0.07 mm on Figure 8, best Ra values are obtained with f = 0.05 mm/rev, 
where Ra = 1.09 μm represents a minimum corresponding to v = 350 m/min. Intermediate 
values of Ra are obtained with a value of f = 0.1 mm/rev. Always a feed rate value of 
f = 0.2 mm/rev leads to high values of Ra. 

From the statements above it can be said that: 

• In general, f = 0.2 mm/rev gives the highest Ra values. Intermediate Ra values can
be obtained with f = 0.1 mm/rev and the lowest Ra values with a feed rate
f = 0.05 mm/rev.

• The increase in v does not always lead to an improved Ra, that depends on both the d
and f.

• Good Ra values are obtained with d = 0.5 mm but the best ones with the association
of f = 0.1 mm/rev and the v interval of [250 m/min, 300 m/min].

• For the same value of d, an increase in f leads to a considerable increase in Ra for
high values of v. However, for a given value of f, an increase in d does not lead to
such big variation of Ra when the v gets big values. So, there is a major dependence
of Ra on f than on d.

• The lowest Ra values are obtained with the lowest d and f values (d = 0.3 mm and
f = 0.05 m/min) associated to high values of v.

7.2 Combined effects of cutting conditions on Ra 

In order to give a general view of the combined effects of turning parameters on Ra, the 
three-dimensional surface plots were built considering two parameters at a time. These 
combined effects are shown in Figures 9 to 11. 

Figure 9 Effects of the couple (f, v) on Ra (see online version for colours) 

Figure 10 Effects of the couple (d, v) on Ra (see online version for colours) 



Figure 11 Effects of the couple (f, d) on Ra (see online version for colours) 
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considerably the Ra. This situation is due to the rise of temperature caused by the v
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performance giving better surface finish, as was also stated by Davim
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• With small d values (d < 0.4 mm) (Figure 10), Ra decreases with the increase of
cutting speed (v > 280 m/min). However, for a given superior d value, Ra has a
tendency to decrease to a minimum value around v = 280 m/min then starts
increasing with the increase of v. That can be explained by the fact that the increase
in depth increases the chip volume per unit time. Thus, the resulting increased
cutting forces lead to an increase in vibrations giving high Ra values, as was also
reported by Eki̇ci ̇ et al. (2014).

• Figure 11 is showing that Ra increases with the increase in f for the majority of d
values. At the beginning, for low values of depth of cut (d < 0.4 mm) and feed rate
(f < 0.1 mm/rev), Ra gets low values. However, for a given superior d value, Ra keeps
increasing with the increase in f.

• Generally, for any v or d value from Figures 9 or 11 respectively, it can be observed
that Ra sharply increases with the increase in f. Particularly, in Figure 11, we have
high Ra values with an interaction of high values of feed rate (f > 0.1 mm/rev) and
depth of cut (d > 0.4 mm). When f is (0.1 mm/rev < f < 0.15 mm/rev) (Figure 9), low
cutting speed (v < 250 m/min) leads to big Ra values, however, an increase in v to
around (v = 280 m/min) reduces to a great extent the Ra due to the rise of temperature
that leads to better surface finish as mentioned above. The increase in Ra values with
cutting speed (v = 280 m/min) is due to the possible tool wear caused by higher
cutting speeds as mentioned by Eki̇ci ̇ et al. (2014). Finally, greater f values gives big
Ra values, since increased f leads to increased thrust force involving more vibrations
and hence, altering surface finish as was reported also by Davim et al. (2008) and
Cica et al. (2013).

• Among the interaction effects, it can be seen that the couple (v, f) (Figure 9) has
more influence on Ra than the couple (v, d) (Figure 10). Figure 9 shows a more
pronounced increase of Ra than in Figure 10 and the highest values of it. Hence, it
can be confirmed that f has more influence on Ra than d.

8 Conclusions 

This study has been involved with the ANN technique to develop a model to predict the 
values of Ra from input cutting parameters (v, f and d). A three layers’ neural network 
was used (ten neurons in the hidden one) using MATLAB (R2013a) NNTOOL toolbox. 
The results show that the model is valid and can be used for prediction of Ra values Ra. 

In the field of Ra, ANN deals with any degree of linearity that exists between a 
process response and input parameters and shows good generalisation. The advantages of 
the ANN compared to classical methods are speed, simplicity and capacity to learn from 
examples without the need of additional experimental study. 

The model analysis was performed by generating 2D and 3D plots after simulation of 
the model and hence, we can say that: 

The relationship between Ra and the cutting parameters is considerably nonlinear. In 
particular, Ra is very sensitive to f and v and less sensitive to d. Ra has a tendency to get 
small values with the increase in v and decrease in f. A minimal Ra can be obtained with 
low f and high v. 



Since we are dealing with a finish turning process, a depth of cut value d = 0.7 mm is 
showing Ra values not corresponding to this context. Even though best Ra values are 
obtained with a depth of cut d = 0.3 mm, but a depth of cut d = 0.5 mm is recommended 
since productivity improvement also matters in industrial context. For the same reason, 
the feed rate value f = 0.1 mm/rev is rather chosen than f = 0.05 mm/rev. Taking these 
two values d = 0.5 mm and f = 0.1 mm/rev in account, minimum Ra values can be easily 
depicted from Figure 6 and tell they correspond to the v interval of [250 m/min, 
300 m/min]. Particularly, minimum Ra = 0.66 μm can be obtained with a combination of 
f = 0.1 mm/rev, d = 0.5 mm and v = 280 m/min. 
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