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and Sylvie Lorthois.

S1 Generation of 3D synthetic
networks

S1.1 Generation of Voronoi diagram

Each cell of length LC was divided into 16× 16× 16
pixels, and one seed was placed at a random pixel.
The 3D Voronoi diagram was extracted using the
MATLAB function voronoin, which returns the co-
ordinates of vertices and the list of vertices belonging
to each polyhedron, from which the network connec-
tivity matrix was constructed.

S1.2 Pruning the network

Very small or narrow polyhedral faces (with area
< 75 pixels or with any interior angle < 30°) were
merged with the neighboring face sharing the longest
edge of the current face ie. this edge was deleted.
Similarly, neighbouring faces lying almost in a plane
(solid angle < 15°) were merged. If any triangles
with area < 75 pixels remained, the longest edge was
removed. Final networks were not very sensitive to
the choice of face area or angle criteria.

Vertices were then removed or merged in two
stages:

1. Boundary vertices. If two boundary vertices vb,1
and vb,2 were located within some minimum dis-
tance Dmin of each other, vb,1 was arbitrarily

deleted, but only if it was connected to an inte-
rior (i.e. non-boundary) vertex vi,1 which had
more than three connections. If both boundary
vertices were connected to the same interior ver-
tex vi,1, which itself only had three connections
(vb,1 and vb,2 plus one other interior vertex vi,2),
then vb,1 and vi,1 were deleted, and vb,2 was in-
stead connected to vi,2. If neither of these cases
applied, vb,1 was moved a distance Dmin along
the boundary away from vb,2 in the direction of
the vector between the two vertices.

2. Interior vertices. To minimize the computa-
tionally heavy task of calculating the distance
between all vertices, the domain was divided
into sub-cubes of size LC × LC × LC (solid
lines in 2D in Figure S1a). These cubes were
shifted by 0.5LC in each direction yielding an
off-set grid, to avoid missing vertex pairs span-
ning neighboring cubes (dashed lines in Fig-
ure S1a). Running through cubes in random-
ized order, the distance between each pair of
vertices within the same cube was calculated. If
a pair of vertices (v1 and v2) lay < Dmin from
each other, as in Figure S1b, v1 was arbitrarily
deleted and its connections were re-attached to
v2 (Figure S1c), but only if v2 still had at least
three connections. Otherwise, v1 was moved a
distance Dmin away from v2 in the direction of
the vector between the two vertices.

Final networks were not very sensitive to the choice
of Dmin, and thus its value was fixed at 2.5 pixels
(for LC = 75µm, Dmin = 11.7µm).

Next, excess edges between internal vertices were
removed in random order according to the following
criteria. An interior vertex could not have more than
one connecting edge with a boundary vertex, except
if it only had one internal connection, in which case
it may be connected to two boundary vertices. If an
internal vertex was not connected to any boundary
vertices, it should have three connections to internal
vertices.

S1.3 Splitting multiply-connected ver-
tices

Vertices with more than 3 connections were treated
in random order. For each multiply-connected ver-
tex, the shortest connected edge was kept, as well
as the edge with smallest solid angle relative to that
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Figure S1: a) Schematic diagram illustrating the division of the domain into a grid of length LC (solid
lines) and an off-set grid shifted by 0.5LC (dashed lines), for efficient detection of vertices (black dots) less
than distance Dmin apart. b) Illustration of two vertices v1 and v2 separated by less than Dmin; c) vertex
v1 and its connections are merged into vertex v2; d) - g) Sequence of schematic diagrams illustrating the
division of a multiply-connected vertex with five connections into three bifurcations. See text for further
details.

edge (see e.g. the two edges in bold in Figure S1d).
The center of mass of the remaining vertices was
calculated (the cross in blue in Figure S1e), and a
new vertex was placed on the vector between the
initial vertex and the center of mass, at a distance
of half the shortest length of the remaining edges,
or Dmin, whichever is smaller (see the blue arrow
in Figure S1e). This process was repeated until all
interior vertices had only three connections (Fig-
ure S1f and g). This step introduced more short
vessel lengths, but since there were typically only a
small percentage of multiply-connected vertices, this
did not have an important effect on overall network
properties.

S1.4 Domain size

To avoid any boundary effects associated with the
generation of these synthetic networks, for a desired

domain size of Lx × Ly × Lz, a larger network was
initially generated in a domain of 2(Lx + 2LC) ×
2(Ly + 2LC) × 2(Lz + 2LC) (with Li rounded up
to the nearest multiple of LC). At the end of the
process, the desired sub-network in a domain of size
Lx × Ly × Lz was extracted from the center of the
large domain.

S2 Results in lattice networks

Results for the two ordered, regular lattice net-
works introduced in Section 2.2.2 and shown in Fig-
ure 1Dare presented. These networks are referred to
respectively as the CLN (with 6-connectivity) and
the PLN (with 3-connectivity). After a study of the
scaling properties of these networks, we present the
results of metrics for chosen domain size and scaling.
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S2.1 Scaling of lattice networks

We first present an analytical investigation into the
scaling of these networks with domain size or with
mean length L. Recall that in both lattice networks,
the length of the elementary cubes, LC , is linearly
proportional to L (LC = L in the CLN and LC = 3L
in the PLN).

The Voronoi-like synthetic networks, despite ex-
hibiting greater randomness, also follow a similar
semi-ordered structure controlled by the character-
istic length LC . Thus we make the hypothesis that
these metrics scale with LC in the same way, and
use this to inform the scaling studies in Section 3.2.

S2.1.1 Morphometrical metrics

The mean vessel length was L for both lattice net-
works. The length density was 3L/L3 for the CLN
and 30L/(3L)3 for the PLN. Obviously, none of
these metrics depended on domain size, in contrast
to the loop metrics studied below.

S2.1.2 Topological metrics

The scaling of topological metrics with domain size
was derived analytically. Loop metrics computed for
lattice networks generated for the range of domain
sizes shown in Figure S2 agreed perfectly with the
analytical expressions derived in this section.

For both networks, we suppose that i, j and k
are the number of unit cells in the x, y, and z di-
rections respectively. Both lattice networks had two
modes of loops, α = 1, 2, with mα edges per loop.
We then define the mean number of edges per loop,
N edge/loop(i, j, k), as the total number of loop edges,
divided by the total number of loops, i.e.:

N edge/loop =

∑2
α=1mαN

α
loop(i, j, k)∑2

α=1N
α
loop(i, j, k)

, (S1)

where Nα
loop(i, j, k) are the number of loops corre-

sponding to mode α.
Similarly the mean loop length, Lloop, was given

by:
Lloop = L×N edge/loop,

and thus converged with domain size in the same
way as N edge/loop(i, j, k), but also scaled with L.

The mean number of loops per edge,
N loop/edge(i, j, k), is the total number of loop

edges divided by the number of interior (i.e.
non-boundary) edges, Nedge,int(i, j, k):

N loop/edge =

∑2
α=1mαN

α
loop(i, j, k)

Nedge,int(i, j, k)
. (S2)

These metrics were derived for the specific geome-
tries of the CLNs and PLNs as follows.

Cubic lattice network The CLN had two modes
of loops with 4 and 6 edges respectively (m =
{4, 6}). The number of loops with 4 edges,
N1
loop(i, j, k), followed:

N1
loop(i, j, k) = i(j − 1)(k − 1) + (i− 1)j(k − 1)

+ (i− 1)(j − 1)k,

for i, j, k > 0. Similarly, the number of loops with 6
edges, N2

loop(i, j, k), obeyed:

N2
loop(i, j, k) = R (i(j − 1)(k − 2))

+R (i(k − 1)(j − 2))

+R (j(i− 1)(k − 2))

+R (j(k − 1)(i− 2))

+R (k(i− 1)(j − 2))

+R (k(j − 1)(i− 2)) .

where R(x) is the ramp function, defined as:

R(x) =

{
x, x ≥ 0;

0, x < 0.

Using Equation S1, the mean number of edges per
loop for a cube of side length n = i = j = k and
n ≥ 2 was given by:

N edge/loop =
4× 3n(n− 1)2 + 6× 6n(n− 1)(n− 2)

3n(n− 1)2 + 6n(n− 1)(n− 2)

→ 51/3 as n→∞.

The mean number of edges per loop converged to
within 5% of the converged value for networks of 43

unit cubes (Figure S2a).
In this network, the number of interior (i.e. non-

boundary) edges, Nedge,int(i, j, k), was given by:

C := R ((i− 1)jk) +R (i(j − 1)k) +R (ij(k − 1)) .
(S3)
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(a) (b)

Figure S2: Scaling of lattice networks with domain size. a) Mean number of edges per loop, N edge/loop,
and b) mean number of loops per edge, N loop/edge, in the CLNs and PLNs as a function of the number
of unit cells. Analytical and numerical results agreed exactly. The converged values for each metric and
network, computed analytically, are plotted in gray lines.

This quantity C will also be used later. Then,
substituting this expression into Equation S2 with
n = i = j = k and n ≥ 2, N loop/edge becomes:

N loop/edge =
4× 3n(n− 1)2 + 6× 6n(n− 1)(n− 2)

3n2(n− 1)

→ 16 as n→∞.
Convergence was slow: this metric was only con-
verged to within 5% of this value for networks of
363 unit cubes or greater (Figure S2b).

Periodic lattice network Next, analytical ex-
pressions for the same loop metrics were derived for
the PLN, which had two modes of loops with 8 and
10 edges respectively (m = {8, 10}). The number of
loops with 8 edges, N1

loop(i, j, k), followed:

N1
loop(i, j, k) = 6ijk,

while the number of loops with 10 edges,
N2
loop(i, j, k), obeyed:

N2
loop(i, j, k) = 4C,

where C is defined in Eqn. S3. Using Equation S1,
when n = i = j = k and n ≥ 2, N edge/loop becomes:

N edge/loop =
8× 6n3 + 10× 12n2(n− 1)

6n3 + 12n2(n− 1)

→ 91/3 as n→∞.

N edge/loop quickly converged to within 5% of this
value for networks of 23 unit cubes (Figure S2a).

In this network, Nedge,int(i, j, k) here was given by:

Nedge,int(i, j, k) = 24ijk + 2C.

Then, using Equation S2, and with n = i = j = k
and n ≥ 2, N loop/edge becomes:

N loop/edge =
8× 6n3 + 10× 12n2(n− 1)

24n3 + 6n2(n− 1)

→ 5.6 as n→∞.

N loop/edge converged more quickly for the PLN than
the CLN, and was within 5% of its converged value
for networks of 113 unit cubes or more (Figure S2b).

Thus, in both lattice networks the number of loops
per edge was especially sensitive to finite-size effects.
Nonetheless, none of the loop metrics except the
mean loop length depended on the choice of L (or
equivalently LC), and thus are purely topological
metrics.

S2.1.3 Permeability

Cubic lattice network In the CLN, imposing a
pressure gradient in the x-direction yields zero flow
in vessels orientated parallel to the y- or z-axis: the
network is reduced to an array of tubes of length Lx
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where Lx is the ROI size in the x-direction. The
global flowrate Qx is:

Qx =
Nπd4

128µ
× ∆P

Lx
(S4)

where µ is the effective viscosity, d is the diame-
ter (which here is uniform), and ∆P is the pressure
drop. N is the number of boundary vessels on the
face x = 0, expressed in terms of L, the edge length:

N =
Ly
L
× Lz

L
. (S5)

From Equation (1), this yields:

Kx =
µ

∆P/Lx
× LyLz
AxL2

× πd4

128µ

∆P

Lx
. (S6)

Rearranging and using the definition for the domain
area perpendicular to the x-axis, Ax = LyLz, gives:

Kx =
πd4

128L2
. (S7)

Figure S3: Flow distribution in an elementary motif
of the PLN with a pressure gradient from left to
right. The magnitude of the flow in the green vessels
was half of that in the red vessels, and zero in the
dark blue vessels.

Periodic lattice network In the PLN, imposing
a pressure gradient in the x-direction with uniform
diameters also yields a simple flow distribution (Fig-
ure S3 and legend). The global flowrate obeys the
same law in Equation S4, but N follows:

N =
2Ly
3L
× Lz

3L
. (S8)

In the minimal example shown in Figure S3, Ly =
3L and Lz = 3L giving N = 2. Substituting this
expression into Equation (1) yields:

Kx =
2

9
× πd4

128L2
. (S9)

Thus, to obtain the same permeability in both lat-
tice networks, L in the PLN would have to be
√
2/3 = 0.47 times that of the CLN.
Finally, for both lattice networks, the permeabil-

ity scaled with d4 and 1/L2 (or equivalently 1/L2
C)and

did not depend on domain size (assuming uniform
diameters).

S2.2 Lattice networks scaled to match
mouse ROIs

In the CLN, L = 67µm was chosen to match the
length density in mice. A network of 4× 4× 4 unit
cubes was generated with dimensions 268 × 268 ×
268µm3, to be as close as possible to the size of the
mouse ROIs will containing whole unit cubes. In
the PLN L = 41µm; with the unit cube side length
being LC = 3L, a network of 2 × 2 × 2 unit cubes
was generated with dimension 246× 246× 246µm3.
Results in these networks are given in Table 1.

Space-filling metrics In the box-counting anal-
ysis, the cut-off lengths for both lattice networks
were of a similar order of magnitude to the other
networks, but in contrast, both had linear regimes
at small scales. The mean EVD was very close to
the mouse data for both lattice networks, while the
maximum EVD was lowest in the CLN, and high-
est in the PLN. The mean local maxima of EVDs
were 22% and 61% higher in the PLNs and CLNs
respectively.

Morphometrical metrics The PLN had a sim-
ilar mean length to that in mice, while that in the
CLN was almost 50% higher. By construction, the
length distributions in these networks were drasti-
cally different to the mouse and synthetic networks,
with only one mode for each network, and hence
zero SD. Due to the choice of L as described above,
the mean length density in both networks was very
close to that in mice. As a result, in the PLN both
the edge density and vertex density were close to
those in mice, whereas the CLN had a much lower
edge and vertex density. Both lattice networks had
a much lower density of boundary vertices (36% and
62% respectively).

Topological metrics By construction the PLN
had no multiply connected vertices, while all junc-
tions in the CLN had 6 connections. The distri-
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bution of loops was very different for the lattice
networks, with fewer edges per loop (9 and 5.14
respectively) on average, with values restricted to
two modes per network, as described above in Sec-
tion S2.1.2. The mean loop length was also lower in
both lattice networks than in mice.

Flow metrics The mean velocity was 45% higher
in both the lattice networks. Similarly, the mean
permeability in the PLNs and especially the CLNs
was much higher than in mice (almost 30% and
120% higher respectively), and completely isotropic
due to their regular construction.

Mass transfer metrics Unsurprisingly, the dis-
tribution of capillary transit times for lattice net-
works were very different to those in the synthetic
and mouse ROIs (Figure 8E). The exchange coeffi-
cient h was 26.5% and 32.9% higher in the PLNs
and CLNs respectively compared mice.

Robustness metrics For the PLN, the histogram
of pre- to post-occlusion flow ratios was very differ-
ent to the distributions for the mice and synthetic
networks, due to its highly organized architecture
(Figure 8F), and was restricted to 3 modes. The
mean flow ratio was approximately 10% lower than
in mice. The CLN was not included because none
of its vertices were converging bifurcations.

In conclusion, while some simple morphometri-
cal metrics in the lattice networks aligned well with
those in mice, their highly organised structure meant
that the distribution of metrics was completely dif-
ferent, and topological and functional metrics also
differed greatly from the more randomized networks.
Thus, such simple networks cannot be used to make
accurate predictions of functional properties in the
cerebral capillaries.
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Supplementary Figures and Tables

(a) (b)

Figure S4: Convergence of metrics with domain size in the synthetic networks: a) mean loop length, b)
length density. Metrics were normalized by the appropriate power of LC . Insets: the convergence of each
metric as defined in Equation 2. The converged size xconv is the size from which the convergence was less
than 0.05.

(a) (b)

(c) (d)

Figure S5: Scaling of metrics with the characteristic length LC in the synthetic networks: a) mean loop
length, b) edge density, c) mean number of edges per loop, d) mean number of loops per edge. Errorbars
show mean ± S.D. for the synthetic networks. Shaded bands in blue and red show mean ± S.D. of mouse
and human values respectively.
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(a) (b)

Figure S6: Space-filling results for human and synthetic with LC = 90µm networks. a) Box counting
results for local maxima of EVDs. For a regular grid of cubic elements of side r, N is the number of
square elements containing at least one local maxima. Dotted vertical lines show the value of xcut for each
species, above which the slope is -3. b) Histogram of EVDs, collected over all ROIs, on a log-log scale.

Metric Human S90

N 4 10
Mean EVD (µm) 21.4 ± 0.6 24.1 ± 1.0
Mean local max EVD (µm) 33.3 ± 1.0 40.2 ± 3.1
Max EVD (µm) 52.9 ± 0.7 63.2 ± 2.7
Convexity index 0.8 ± 0.1 0.7 ± 0.2
Mean length (µm) 60.2 ± 3.1 41.9 ± 1.8
SD length (µm) 41.7 ± 0.8 21.4 ± 2.0
Edge density (103 mm−3) 8.4 ± 0.4 11.9 ± 0.9
Length density (mm−2) 461 ± 19 442 ± 28
Vertex density (103 mm−3) 3.9 ± 0.2 6.3 ± 0.5
Boundary vertex density (mm−2) 207 ± 8 186 ± 16
% multiply-connected vertices 2.9 ± 1.7 2.6 ± 1.6
Mean no. edge/loop 11.2 ± 0.6 10.2 ± 0.6
Mean loop length (µm) 635 ± 73 429 ± 34
Mean no. loop/edge 3.1 ± 0.6 4.4 ± 0.5
Mean velocity (µm/s) 148 ± 34 202 ± 26
SD velocity (µm/s) 223 ± 34 228 ± 18
Permeability (10−3µm2) 0.62 ± 0.21 0.86 ± 0.13
Median transit time (s) 0.19 ± 0.06 0.14 ± 0.02
Exchange coefficient h 27.7 ± 3.71 15.7 ± 1.12
Post-occlusion flow ratio (converging) 0.77 ± 0.03 0.76 ± 0.01
Post-occlusion flow ratio (diverging; branch A) 0.28 ± 0.05 0.28 ± 0.04

Table S1: The geometrical, topological and functional metrics calculated here, for human and synthetic
with LC = 90µm (‘S90’) networks. Results are presented as mean ± S.D. over the N ROIs studied for
each network type. Permeabilities, velocities and transit times were calculated with uniform diameters of
5µm.
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(a) (b)

(c) (d)

(e)

Converging {
Diverging{Diverging

Converging

(f)

Figure S7: Results for human ROIs and synthetic networks (‘S90’) with LC = 90µm and domain size
264× 264× 207µm3. a) Histogram of lengths on a log-scale. Frequencies collected over all ROIs for each
network type. b) Histogram of number of edges per loop. c) Mean loop length, µm, vs. mean number
of edges per loop, for each ROI. d) Histogram of number of loops per edge. e) Histogram of capillary
transit times, on a log-scale. f) Histograms of post- to pre-occlusion absolute flow ratios in vessels one
branch downstream from the occlusion, where the vertex downstream of the occlusion has 3-connectivity,
and divided into converging and diverging bifurcations. In the diverging case, flow ratios are plotted for
the outflow branch without change in flow direction post-occlusion.
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Metric Unit n α β R2

Length density mm−2 -2 3.70×106 0.61 0.996
Mean EVD µm 1 0.26 0.33 0.991
Permeability µm2 -2 9.43 -2.05×10−4 0.995
Mean loop length µm 1 4.45 23.23 0.971
Mean length µm 1 0.41 4.27 0.991
Edge density mm−3 -3 8.20×109 1.21×103 0.998

Table S2: In the synthetic networks, results of a standard linear regression on a range of metrics as a
function of LC to the appropriate power, i.e. following the expression: αLnC + β, where n is the power
appropriate for each metric. The coefficient of determination, R2, was very good for all fits.
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