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A B S T R A C T

Atomic Layer Deposition has been used to grow 30 to 90 nm thick amorphous Nb2O5 films onto Pt current
collectors deposited on Si wafer. While T Nb2O5 polymorph is obtained by further annealing at 750 °C, the film
thickness and the resulting electrode areal capacity are successfully controlled by tuning the number of ALD
cycles. The electrochemical analysis reveals a lithium ion intercalation redox mechanism in the T Nb2O5

electrode. An electrode areal capacity of 8 μAh cm ² could be achieved at 1 C, with only 40% capacity loss at 30 C
(2minutes discharging time). This paper aims at demonstrating the use of Atomic Layer Deposition method in
the fabrication of Nb205 based on chip micro devices for Internet of Things (IoT) applications.

1. Introduction

Li ion micro batteries [1 3] (MB) and micro supercapacitors
[4 10] (MSC) are two complementary electrochemical energy storage
(EES) miniaturized systems. While MB offers high energy and lower
power densities, MSC are particularly attractive for applications where
high power is needed but suffer from limited energy density. Charge
storage processes occurring in MB and MSC are totally different in
nature leading to complementary properties. MSC based on ion
adsorption/desorption in carbon porous electrodes [8,11,12] offer
great cyclability and high power densities; such miniaturized EES are
characterized by rectangular shape cyclic voltammograms and linear
galvanostatic charge discharge profiles. Similar features are observed
with MSC based on pseudocapacitive materials [6,7,13] where fast
redox surface reactions are responsible for the continuous change of
oxidation state of the electrode material [14,15], without any phase
change during cycling. Differently, faradic reactions taking place in the
bulk of active materials lead to redox peaks and flat plateaus are
observed during voltammetry and constant current charge discharge
experiments, respectively. Such charge storage process is often accom
panied by a phase transformation of the electrode material (LiCoO2,

LiMn2O4, LiFePO4, LiMn1.5Ni0.5O4, TiO2…) depending also of the
particle size [16 18]. In such materials, the control of the crystal
lographic structure and the ionic diffusion paths is of major importance
to achieve improved electrochemical performance.

Among the large variety of electrode materials exhibiting high
energy and high power densities, Nb2O5 has been identified as a
promising candidate for Li ion batteries. Several polymorphic forms of
Nb2O5 are described in the literature, such as TT Nb2O5 (pseudohex
agonal), T Nb2O5 (orthorhombic), M Nb2O5 (tetragonal) or H Nb2O5

(monoclinic) [19,20]. Low temperature forms (TT Nb2O5 and T
Nb2O5) have been deeply investigated[21 26] by B. Dunn et al., owing
to the fast lithium ions intercalation process occurring in the bulk
material. Particle size (nanoscale), porosity and electrode formulation
are finely tuned to produce high mass loading electrodes where the
charge storage process is not limited by ion diffusion, thus leading to
the concept of Li ion pseudo intercalation reaction [25]. Electron
transport is significantly improved in these materials by the addition
of a highly conductive agent/scaffold in the composite electrode such as
graphene, carbide derived carbon or carbon black [23 26] to tackle the
low electronic conductivity of the Nb2O5 material (3 × 10−6 S cm−1 at
300 K). However, the cost as well as the limited available Nb resource
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currently limit the development of Nb based negative electrodes for 
large size li ion battecy applications. However, this does not apply to 
micro devkes thanks to the small amount of materials used. There is 
then intere.sting opportunities for designing thin films of Nb:!O5 for 
micro devices applications. Thin film electrode for MB [27,28] or MSC 
[5,11) applications can be prepared by using magnetron sputtering 
technique or, alternatively, by Atomic Layer Deposition (ALD) which 
has also been found as a suitable deposition tool, compatible with 
CMOS facilities, to grow thin films on large scale substrate with high 
uniformity and homogeneity [29 35). 

In this paper, ALD technique has been used to grow highly adhesive 
30 to 90 nm thick Nb:z•s films onto Pt current collectors deposited on 
Si wafer, and further characterized as negative electrode for Li ion 
micro battery applications. The first part of the study focuses onto the 
synthesis process and the structural characterizations of T Nb:z•s thin 
films. Then, electrochemical characterizations of Nb:!O5 thin films have 
been achieved, showing the typical signature of Li ion intercalation 
reaction with redox activity present in the 1 2 V vs Ref potential range. 
Interestingly, although dense and conducting additive free Nb:!O5 films 
where prepared, these films could deliver up to 8 µAh cm-2 at 
l0mvs- 1

• This paper aims at demonstrating the suitable growth of 
Nb:!Os thin films by ALD acting as an attractive negative electrode for 
micro devices applications. 

2. Experimental section 

2.1. Film preparation 

Prior to Nb:!Os deposition, 3 inch silicon wafer is coated with Al203 
(H)0 nm) and Pt (50 nm) layers to be used as a current collector, using 

a Beneq TF$ 200 ALD reactor. Al2•3 layer is used to prevent the 
interdiffusion between Pt and Si when the stacked layers are annealed 
[27]. Nb:!Os thin films are grown in a Picosun R200 ALD reactor un der 
an Ar gas pressure around 0.5 mbar. Argon is used as the carrier and 
purging gas. Niobium(V) ethoxide Nb(OEt)5 and deuterated water are 
used respectively as niobium precursor and oxygen reactant. Nb(OEt)5 

precursor was purchased from Strem Chemicals (claimed purity 98%). 
The sublimation temperature is 185 °C for the niobium source while 
the water source is kept at room temperature. The reactor temperature 
is tuned from 220 up to 330 °C. A total of 1,000 deposition cycles were 
achieved to study the evolution of the Nb:z•s growth per cycle rate 
(GPC) as a function of the deposition temperature. Nb(OEt)s and water 
are pulsed into the chamber alternatively with different pulse time 
duration separated by 6 s argon purge; the whole process accounts for 
one deposition cycle. The number of cycles is progressively increased to 
reach the targeted thickness. The as deposited Nb.iO5 thin films are 
amorphous and noted as a Nb:!O5 layer. The transformation from a 
Nb:!O5 to ccystallized, orthorhombic T Nb:!O5 polymorph was achieved 
by thermal annealing at 750 "C during 2 h under air atmosphere of the 
films. The resulting stacked layers are noted as Si / Al20:i / Pt/ Nb:!O5• 

2.2. Sample morphological and structural characterization 

Thickness of a Nb:!O5 thin films was detennined by X ray reflectiv 
ity (XRR) fits on silicon substrate. The film morphology of Al2O3/Pt/ 
Nb:!O5 stacked layers was assessed by SEM (Zeiss Ultra 55 Scanning 
Electron Microscope). Crystallographic orientation and phase identifi 
cation were detennined by specular X ray diffraction w 28 scans 
(XRD, Rigaku SMARTLAB multi purpose six axis diffractometer 
9kW rotating anode) using CuKa radiation (À= 1.5418Â). The 
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oxidation state of the niobium element was measured by X Ray 
Photoelectron Spectroscopy using a Physical Electronics type 5600 
equipment. 

2.3. Electrochemical analyses 

Electrochemical measurements were conducted in home made fiat 
cells operated in an Ar filled glove box. Cells are assembled using the 
AhOs/Pt/Nb:!Üs stacked layers as working electrode while pure li 
served as counter and reference electrode. A mixture of 1 M LiClO4 
dissolved in Ethyl Carbonate (EC)/Dimethyl Carbonate (DMC) (1:1) 
was used as electrolyte. Galvanostatic cycling and cyclic voltampero 
metry were performed with a Biologie VMP3 potentiostat/galvanostat. 

3. Results and discussion 

The preparation of T Nb:!O5 films is shown in Fig. 1. A schematic 
describing the stacked layers is depicted in Fig. lA. a Nb:!Os thin films 
were deposited from ALD onto 50 nm thick Pt current collectors. A 
layer of Al2O3 (100 nm) was used as a barrier diffusion layer at the Pt/ 
Si wafer interface. The transformation from a N~5 to crystallized 
orthorhombic T Nl>.!Os polymorph was achieved by thermal annealing 
at 750 °C during 2 h under air atmosphere. During the annealing 
process, the presence of the Al2Üs thin film avoids interdiffusion 
between Si and Pt so that PtSi alloy cannot form [27). The crystal 
structure of the T ~Os is descnbed in Fig. 1A Each Niobium atoms 
is localized at the center of edge or corner sharing distorted polyhedra 
clustering 6 or 7 oxygen ions in the ab plane giving rise to the 
formation of tilted octahedral (Nb06) or tilted pentagonal bipyramids 
(Nb07) respectively. These polyhedra are connected by corner sharing 
along the c axis. While the lithium intercalation process in T Nb:!Os is 
known since the 1980s, recent in situ/operando experimental studies 
[24,25,36) and theoretical modelling lead on the T Nl>.!O5 have been 
carried out to study the charge storage process due to the complexity of 
the orthorhombic structure. On the one hand, experimental studies 
have confirmed that lithium ion insertion in the crystal structure is 
achieved via a solid solution mechanism (with no phase transition), 
together with a contraction/expansion of the c axis lattice parameter 

upon cycling. On the other hand, several computational studies clearly 
show that the (001) planes exhibit low energy barrier for Li ion 
transport inside the orthorhombic structure [37,38). The synthesis 
process ofT Nb:!Os thin films is schematically descnbed in Fig. lB. The 
growth conditions of the thin films by ALD are optimized to produce 
amorphous Nl>.!Os layer on silicon coated Al2Os/Pt substrate. Post 
annealing at 750 •c in air atmosphere is then performed after the 
deposition to form T Nb:!Üs- Nb(OEt)s precursor being liquid at room 
temperature, the temperature should be close to 190 °C to promote the 
liquid gas phase transformation. The self saturating nature of the 
surface reactions occurring during each half cycles can be considered 
as the main characteristic of an ALD process. Saturation curves were 
investigated as a function of the exposure dose of precursors. The 
growth per cycle (GPC) of Nb:!Os is shown vs the deposition tempera 
ture (Fig. l C), the time duration of the Nb precursor (Fig. ID) and H2O 
reactant (Fig. lE). A constant a Nb:!Os growth rate of 0.05 
± 0.005 nm/cycle is measured for deposition temperature between 
250 to 330 •c, which defines stabilized ALD deposition process. The 
high GPC value of 0.07 nm per cycle achieved at temperature (230 °C) 
is due to physisorption phenomena of the active species instead of the 
self saturating chemisorption of exposed surface [39). The deposition 
temperature has thus been fixed to 250 °C. 

The GPC is investigated as function of the Nb(OEt)5 duration and 
the water pulse duration respectively. A stabilization of the a N~s 
growth rate around 0.05 nm per cycle is observed as soon as the pulse 
time is higher than 1.5 and 2.5 s for the Nb(OEt)5 precursor (Fig. ID) 
and H2O reactant (Fig. lE), respectively. Such a saturation in the 
deposition rate clearly confirms the self limiting film growth of the a 
Nb:!O5• The measured GPC is in agreement with the value reported by 
other research groups [40,41). 

The as deposited Nb:!O5 layers are amorphous whatever the 
selected deposition parameters. Consequently, the films have to be 
annealed in order to crystallize in the orthorhombic structure. 

Fig. 2A shows a SEM cross section of the Al2Os/Pt/~Os staked 
layers. The electrode structure has a dense morphology before and after 
the annealing process at 750 °C during 2 h under air atmosphere. After 
annealing, the Nb:!Os layer shows the formation of large grains while a 
smooth surface is observed before the annealing for the a Nb:!Os. 



X Ray Diffraction analysis of the samples is reported as a function of 
the deposition temperature in Fig. 2B. Ail samples show the (111) 

diffraction peak of the Pt current collector observed at 28 = 40° (PDF 
card 04 0802), whatever the deposition temperature. The (181) and 

(201) Bragg peaks identified on the 4 samples are consistent with the 
T Nb:!Os orthorhombic structure (PDF card 30 0873). At 300 °C, a 

small contnbution of the (001) diffraction peak is observed at 28 = 22° 
on the XRD pattern. This analysis confirms the preferential orientation 
of the films. 

XPS core level analysis in the region of 0 700 eV were carried out 
on these 4 samples. No etching is done on these samples before the 
XPS analysis. The survey scan and a focus on the O 1s core level are 
reported in Fig. SllA while the Nb 3d level spectra is shown in Fig. 2C. 
Only the doublet of the Nb 3d core level is detected at 207.5 eV and 
210.5 eV, assigned to the Nb 3ds12 and Nb 3~/2 levels, respectively. 
These values are consistent with the presence of Nb5+ [42,43] for all 
samples. Two main contributions at 530.6 eV and 532 eV are observed 
on the O 1 s spectra (Fig. SllB) which fits with binding energies 
reported [44,45] for Nb:!Os. 

To clearly demonstrate the superior electrochemical behavior of T 
Nb:!O5 as compared to the amorphous a N~O5, electrochemical 
analysis is reported in Fig. 3A and B. From the cyclic voltammograms 
(CV) at 0.5 mV s- 1 shown in Fig. 3A, we observed on the one band no 
clear redox peak of the a Nb:!O5 and a huge irreversible capacity when 
cycled between 1 and 3 V vs Li/li+. Redox peaks are highlighted 
around 1.8 V vs Li/li+ on the CV of the T Nb:!O5• On the other band, 

the T Nb:!Os thin film delivers a higher areal capacity than the a N~s 
when the sweep rate is increased from 0.5 up to l0mvs- 1 (Fig. 3B). 
Such conclusions are classically observed by other research groups 
[22,46]. The electrochemical characterization of the 50nm thick 
Nb:!O5 film (1000 ALD cycles) prepared at 250 °C is shown in Fig. 3C 
and D at varions sweep rates. Cyclic voltammograms for sweep rates 
from 0.1 to 5mvs- 1 are similar to CVs of TNl>:!05 synthesized or 
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deposited by other deposition methods [20,22,24]. Broad cathodic 
peaks corresponding to Lithium intercalation are observed around 1.8 
V vs Li/li+ while the corresponding anodic peak can be seen at 1.75 V 
vs Li/Li+ [20,22,24]. No redox activity is observed beyond 2.2 V vs 
li/li+. The slight shift of the anodic peaks as well as the merging of the 
two cathodic peaks when increasing potential scan rate shows a 
dependence of the electrochemical kinetics with the scan rate. 

Fig. 3B shows the plot of the peak current versus the scan rate in 
logarithm scale. Peak current from CV experiments follows a power law 
as shown in Eq. 1: 

(1) 

where "l pea1c" represents the peak current (mA) and "v" is the scan rate 
(mvs- 1). Ab value of 1 is calculated for the cathodic peaks, which 
evidences a non diffusive charge storage mechanism, in the T N~O5 

material within the potential scan rates range studied. The average b 
value decreases to 0.83 when considering the anodic current, showing 
the emergence of a diffusion limited process or ohmic limitation. 
Although the dense structure of the film as well as the absence of any 
conducting additive limit their power performance, those results 
confirms the pseudocapacitive behavior of these T N~s thin films 
prepared from ALD technique. 

One important parameter for micro devices is the area1 (surface) 
capacity (mAh per cm2), which depends on the film thickness deposited 
onto the substrate. The growth deposition rate of Nb:!O5 film from ALD 
bas been studied by tuning the number of ALD cycles. The change of 
the film thickness (a Nb:!O5) as a function of the number of ALD cycles 
is shown in Fig. 4A The linear change of the film thickness from 30 to 
75 nm validates the deposition temperature and the pulse sequence 
previously selected (Fig. 1). After an annealing at 750 °C of the 
prepared a N~s films, the formation of T N~s is confirmed from 
the presence of the two diffraction peaks ((181) and (201)) on the XRD 
patterns of the 4 samples. The intensity of these two peaks increases 
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Fig. 3. A. Electrochemical analysis of the Nb,05 sample (1250 ALD cycles) deposited at 250 °C: cyclic voltammograms of the as-deposited Nb,O5 (a-Nb.Os) and annealed Nb,05 at 
750 °C (f-Nb,Os) samples measured at 0.5 mV s 1

• B. Evolution ci the surface capacity (in µAhcm 2) as a fonction of the sweep rate demonstrating the superior electrochemical 
behavior of the T-Nb,05 (1250 AID cycles). C. Cyclic voltammograms (CV) of the T-Nb,05 thin film deposited at 250 °C (1000 AID cycles) and tested in 1 M üCIO4 EC/ DMC (1/ 1) 
organic electrolyte as a function of the sweep rate from 0.3 to 5 mV s 1

• D. l>-value determination issued from the anodic and cathodic peak current vs sweep rate. From the CV, l>-value is 
close to 1 and 0.83. 
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Fig. 4 . A Evolution of the a--Nb.<)5 thickness as a fonction of the number of ALD cycles. B. Diffractogramms of the thin films vs the number of cycles. The (181) and (201) diffraction 
peak<; of theT-Nb2O5 are visible. C. Top view analysis of the 1400 ALD cycles based sample (SEM analysi9) demonstrating the high compactness of the T-Nb.O5 : large grains (- 250nm 
large) with no void are observed at the surface of the thin film. 

with the number of AID cycles. Severa! others Bragg peaks were 
detected: the peak at 20 = 40 ° is attributed to the Pt current collector 
((111) diffraction plane). In the chosen configuration, multiple diffrac 
tion phenomenon are possible enabling the appearance of the basis 
forbidden (200) reflection of the (100) oriented silicon substrate in the 
range 20 = 31 35°. This phenomenon is clearly explained in ref [47] 
and has been marked by a star in the diffractogramms of the 1000 and 
1400 AID cycles based samples. Regarding the XRD analysis, the T 
Nl½Os films exhibit a preferential orientation whatever the thickness, 
from 30 to 75 nm. The film morphology is studied by Scanning Electron 
Microscope imaging. Top view analysis performed in the 1400 ALD 
cycles sample is shown in Fig. 4 C. The T Nl½Os thin film stays 
continuous after the annealing process, exhibits a compact morphology 
and is composed of large grains (grain size - 250 nm) with no voids 
between the grains thus validating the dense and compact behavior of 
the T Nl>iOs prepared by ALD and post deposition annealing pro 
cesses. Such surface analysis clearly confirms the dense behavior of the 
T Nl>iOs observed in the cross sections imaging reported in Fig. 2A. 

Atomic Layer Deposition technique is a suitable deposition method 
able to deposit pinhole free layer for advanced 3D dielectric capacitor 
[48,49) and 3D li ion micro batteries. For 3D Metal/InsulatorfMetal 
devices, the insulator should be free of defects while the thickness is 

limited to several tens of nanometers. Such technique has already been 
demonstrated recently as an efficient tool for the deposition of solid 
electrolyte for 3D Li ion micro battery [50 52). As an example, 10 nm 
thick li3P()4 is shown to actas a pinhole free layer. Consequently, thin 
films deposited by ALD are very dense owing to the growth mechanism 
of thin films by such deposition method. 

Fig. SA shows the CVs of the T Nl>iOs samples prepared with 
various thicknesses, at the same potential scan rate (10 mVs"1

) . The 
current increase with increasing film thickness evidences the improve 
ment of the areal capacity of the sample. Fig. SB shows the change of 
the areaI capacity (mAh.cm·2) with the T Nl½Os film thickness. At 10 
mV s·1 , the linear change of the areal capacity with the film thickness 
indicates that there is no major limitation in the electrochemical 
activity along the depth of the film, although dense and conducting 
additive free T Nl>iOs films were prepared. Films capacity up to 5 µAh 
cm"2 could be achieved, which positively compares with other works. 
Nl>iOs were successfully used in a pseudocapacitor [22] and a Li ion 
micro battery [53). In ref [53], amorphous Nl>iOs thin film is used as a 
negative electrode in Li ion micro battery in planar design. 630 nm 
thick electrode delivers an areal capacitycloseto 45 µAh cm·2, resulting 
in 71.4 µAh cm·2.µm·1• In this paper, 50 nm thick ALD layer delivers 5 
µAhcm" 2/100µAhcm· 2.µm~1 at 10mVs"1: this capacity is slightly 
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higher than the one published by Baba et al. [53]. B. Dunn et al. have 
published in 2012 a study [22] dealing with pseudocapacitive behavior 
of mesoporous Nb:!Os, depending on the type of polymorph. A 70 m2 .g-
1 T Nb:!Os sample could achieve 500 F g-1 at low s-weep rate, within 1.8 
V. The areal capacity of such mesoporous T NbiO5 is then close to 0.35 
µAhcm-2• We have no information about the film thickness which 
make not possible to calculate the normalized capacity. Such value is 
lower than the area1 capacity reached by the T Nb:!O5 synthesized by 
AID. Moreover, despite interesting properties for large scale super 
capacitors, the mesoporous T Nb:!O5 developed by Dunn et al. is not 
synthesized by ALD while this deposition technique is an attractive 
solution for micro supercapacitors applications and more largely for 
miniaturized energy storage devices due to the high adhesion proper 
ties of the AID layers and the outstanding conformai shape of the 
deposited thin films. 

When increasing the potential scan rate, the mean slope decreases 
which is assumed to be linked with ohmic and diffusion limitations. 

Fig. SC shows the volumetric capacitance (areal capacitance divided 
by the film thickness). At 10 mV s-1, the volumetric capacitance reaches 
a maximum value then slightly decreases for longer deposition times 
(or higher thickness). This shows that a film thickness around 50nm 
allows for efficient electrochemical performance; also, there is only 
small performance decrease for film thicknesses up to 80 nm. Same 
trend is observed for higher scan rates; however, the smaller capacity 
measured at 25 and lOOmvs-1 supports the existence of kinetic 
limitations (ohmic and/or diffusion). These results show that ALD 
process is efficient to prepare Nb:!Os electrodes exhibiting decent areal 
and volumetric electrode capacity. 

Galvanostatic charge/ discharge experiments of the 50 nm thick T 
Nb:!Os sample at various current densities is shown in Fig. 6A As 
expected, the voltage profile is characteristic of Li ion intercalation 
process, with a means discharge potential of 1.5 V vs Li/Li+. The high 
coulombic efficiency (> 99% for the 50 nm thick sample) even at low 
current density (Fig. 6A) highlights the absence of leakage current due 
to parasitic redox reaction coming from impurities, which is also a key 
advantage of the ALD technique. The change of the area1 electrode 
capacity versus the C rate have been calculated from the galvanostatic 
charge/discharge plots for ail the samples, and are plotted in Fig. 6B. 
The 600 AID cycles sample (30 nm thick film) exhibits a constant 
surface capacity of about 1.5 µAh cm-2 within the whole C rate range, 
that is from 1 C (1 h charging time) to 30 C (2 min charging time). The 
small thickness of this sample prevents the charge storage process to be 
diffusion limited within the dense T Nb:!Os layer. For thicker samples 
(1000 ALD cycles = 50 nm thick and 1800 ALD cycles = 90 nm thick), 
the surface capacity is increased from 5 µAh cm-2 (50 nm thick) up to 8 
µAh cm-2 (90 nm thick sample) at 1 C rate. 40% of capacity loss is 
measured from 1 C to 30 C for the 50 nm thick T NbiO5 sample, and 
43% capacity for 90 nm thick T NbiO5 sample. The capacity decrease 
for thicker films is assumed to originate from ohmic and u• diffusion 
limitations in the bulk of the T NbiO5 films, in agreement with the 

preparation of dense, conducting additive free Nbiûs films. However, a 
40% capacity loss at 30 C rate still makes these thin films interesting 
for micro devices applications. To confirm the dense behavior of the T 
Nb:!Os, a comparison is done between the theoretical gravimetric 
capacity of NbiO5 with the experimental one. The theoretical gravi 
metric capacity Qg-th is 205 mAh g- 1 taking into account two lithium 
ions intercalated in the NbiO5 framework. We measure at the lower 
s-weep rate (0.4 mvs-1

) a surface capacity 0..urf-exp close to 5 µAhcm- 2 

with 50nm thick T NbiO5 leading to Q0 orm~ = lOOµAhcm- 2 µm-1 

and a volumetric capacity Qvo1~ - lOOOmAhcm-3. The theoretical 
bulk density of the NbiO5 is 4.6 g.cm-3. Consequently, if dense layer is 
taking into account, the experimental bulk density approximates the 
theoretical density: Qg-eq, = 1000/4.6 = 217 mAh g-1

. This value is close 
to the theoretical value. Lower bulk density (i.e. use of porous thin film) 
will lead to eccentric gravimetric capacity (> 217mAhg-1) taking into 
account the measured surface capacity and the film thickness. Such 
calculation clearly confirms the dense behavior of the Nb:!Os layers. 
Fig. 6C shows the change of the capacity with the cycle number for the 
three samples with 30 nm, 50 nm and 90 nm thick T NbiO5 films. 
Samples exhibit a good cycling behavior up to 20 C and 30 C during the 
first 35 cycles, thus validating the attractive performance of T NbiO5 

thin films prepared from ALD technique for electrochemical energy 
storage micro device applications. 

ALD being a powerful tool to achieve conformai deposition of thin 
films from several nanometers to 100 nm on complex micro or 
nanoarchitectured substrate exhibiting high specific area, future works 
will be devoted to the deposition of T Nb:!Os on complex nanoarchi 
tectured scaffold to improve the areal footprint electrode capacity. 

4. Conclusion 

This paper reports about the synthesis and electrochemical analysis 
of T Nb:!Os electrode deposited by AID on Ahûs/Pt coated silicon 
wafer. Tens of nanometer thick dense a Nb:!Os thin films were grown 
by ALD, transformed into T NbiO5 polymorph by further annealing at 
750 °C. T NbiO5 film thickness and the resulting electrode areal 
capacity could be successfully controlled by playing with the number 
of AID cycles. The electrochemical analysis reveals a lithium ion 
intercalation redox mechanism in the T NbiO5 electrode. An electrode 
area1 capacity of 8 µAh cm-2 could be achieved at 1 C rate, with only 
40% capacity loss at 30 C (2 minutes discharging time). These results 
shows that Atomic Layer Deposition technique can be used for the 
fabrication of Nbi05 based on chip micro devices for Internet of 
Things (IoT) and wireless sensor network applications. 
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