
HAL Id: hal-02135600
https://hal.science/hal-02135600v1

Preprint submitted on 29 May 2019 (v1), last revised 22 Mar 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A result of convergence for a mono-dimensional
two-velocities lattice Boltzmann scheme

Filipa Caetano, François Dubois, Benjamin Graille

To cite this version:
Filipa Caetano, François Dubois, Benjamin Graille. A result of convergence for a mono-dimensional
two-velocities lattice Boltzmann scheme. 2019. �hal-02135600v1�

https://hal.science/hal-02135600v1
https://hal.archives-ouvertes.fr


A RESULT OF CONVERGENCE FOR A MONO-DIMENSIONAL
TWO-VELOCITIES LATTICE BOLTZMANN SCHEME

FILIPA CAETANO1, FRANÇOIS DUBOIS1,2, AND BENJAMIN GRAILLE1,♮

ABSTRACT. We consider a mono-dimensional two-velocities scheme used to approximate the
solutions of a scalar hyperbolic conservative partial differential equation. We prove the con-
vergence of the discrete solution toward the unique entropy solution by first estimating the
supremum norm and the total variation of the discrete solution, and second by constructing a
discrete kinetic entropy-entropy flux pair being given a continuous entropy-entropy flux pair
of the hyperbolic system. We finally illustrate our results with numerical simulations of the
advection equation and the Burgers equation.

1. INTRODUCTION

The lattice Boltzmann method is a numerical method which is largely used to simulate
fluid dynamics equations, such as Navier Stokes, heat, acoustics equations, multi-phase and
multi-component fluids (see Succi [24], Lallemand and Luo [18], and e.g. [17]). Its origin is
in a discretized velocities version of the continuous Boltzmann equation (see Broadwell [5]
and Gatignol [10]), with a specific collision kernel. The algorithm of the lattice Boltzmann
method reads then as a fully discretized Boltzmann equation on a lattice.

The lattice Boltzmann method supposes that particles progress on a discrete cartesian lat-
tice with a finite set of speeds. In one time step, each velocity allows particles to jump from
one vertex of the lattice to another one. One iteration of the method can be described in two
steps: a relaxation step, which is local to each vertex and which corresponds to the collision of
the particles, followed by a transport step, which corresponds to the evolution of the particles
on the lattice.

Despite the fact that they are widely used, mathematical numerical analysis of these kind
of methods is far from being complete. In [21], a stability analysis is proposed by Rheinländer
for a two velocities lattice Boltzmann scheme for the linear advection equation. In [16], Junk
and Yang studied the convergence of approximation of smooth solutions for the incompress-
ible Navier-Stokes equations. Concerning the linear one dimensional convection-diffusion
equation, Dellacherie proves the convergence in L∞ norm of the solutions of a two velocities
lattice Boltzmann scheme [7].

In this contribution we consider a two velocities lattice Boltzmann scheme in one dimen-
sion, known in the domain as D1Q2, in order to approach a scalar conservation law. The
purpose of our paper is to prove the convergence of the scheme towards the unique entropy
solution of the hyperbolic equation, as the mesh size tends to zero, when the relaxation param-
eter of the scheme lies between 0 and 1. We point out a link with the relaxation system of Jin
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and Xin [14], for which the equilibrium is described by the scalar conservation law. In [20]
and in [23], Natalini and Serre obtained independently a rigorous proof of the convergence
of the solutions of the Jin and Xin system towards the equilibrium, provided that a stability
condition known as sub-characteristic condition is satisfied. This condition imposes that the
solutions of the relaxed equation propagate with characteristic speed smaller than the one of
the relaxation solutions. Concerning the numerical approximation of the solutions of scalar
conservation laws based on the relaxation approximation of Jin and Xin, Aregba-Driollet and
Natalini in [2] and Lattanzio and Serre in [19] proved, by considering two different discretiza-
tions of the relaxation system, the convergence of the finite volumes approximated solutions
of the Jin and Xin system towards the entropy solution of the scalar conservation laws.

In this paper wewill prove, by using finite volumes schemes techniques inspired by [6] such
as total variation and L∞ bounds, that the solutions of the D1Q2 scheme converge towards the
numerical solution of a scalar hyperbolic conservation law, under the same stability condition
explained above. We remark that in previous works, links between lattice Boltzmann and
finite difference methods were done (see Junk [15] and [13]). Concerning non linear models,
in [3], Boghosian, Love, and Yepez developed a two velocities entropic scheme for the viscous
Burgers equation and studied its properties.

The plan of the paper is as follows. In section 2 we describe the D1Q2 scheme and recall
its construction, by following the framework of d’Humières [8]. In section 3 we establish
L∞ and total variation discrete estimates. By using these estimates, in section 4 we prove the
convergence of the D1Q2 scheme towards a weak solution of the scalar conservation law, in
the case where the relaxation parameter of the scheme lies between 0 and 1. In section 5, by
following Serre [23], Bouchut [4], and [9], we introduce numerical entropies for the D1Q2
scheme. Based on a L1 estimation of the equilibrium gap independent of the mesh step es-
tablished in section 3, we prove in section 6 the convergence of the D1Q2 scheme towards
the unique entropy solution of the scalar conservation law. Finally, section 7 presents several
numerical tests that illustrate the results previously obtained.

2. DESCRIPTION OF THE D1Q2 SCHEME

We consider the following mono-dimensional scalar conservation law

(1) )tu(t, x) + )x�(u)(t, x) = 0, t > 0, x ∈ ℝ,

where the flux � is a C1 function on ℝ, with the initial condition

(2) u(0, x) = u0(x), x ∈ ℝ.

It is well known that the Cauchy problem (1-2) possesses a unique entropy solution which
belongs to L∞(]0, T [×ℝ), for all T > 0, and such that u(t, ⋅) ∈ BV(ℝ), ∀t > 0, provided that
the initial data u0 ∈ L∞(ℝ) ∩ BV(ℝ) (see e.g. [22], [12]).

In this contribution, a two-velocities lattice Boltzmann scheme is used to approximate the
solution of this Cauchy problem.

2.1. The framework of d’Humières. We use the notation proposed by d’Humières in [8] by
considering L = Δxℤ, a regular lattice in one dimension of space with typical mesh size Δx.
The time step Δt is determined after the specification of the velocity scale � by the relation:

Δt = Δx
�
.

For the scheme denoted by D1Q2, we introduce v = (−�, �) the set of the two velocities. The
aim of the D1Q2 scheme is to compute a particle distributions vector f = (f−, f+)

T on the
lattice L at discrete values of time: it is a numerical scheme that is formally a discretization
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in time, space and velocity, where only a finite number of velocities is considered (two, in
our contribution), of the Boltzmann equation (even if it cannot be used to simulate this partial
differential equation)

)tf (t, x, c) + c)xf (t, x, c) = Q(f ),
with a specific collision operator Q(f ), whose effect is to relax the particle distributions f
towards its equilibrium value f eq.

The scheme splits into two phases for each time iteration: first, the relaxation phase that
is local in space (corresponding to the consideration of the collision operator Q), and second,
the transport phase for which an exact characteristic method is used.

In the framework proposed by d’Humières [8], the relaxation phase reads as a linear re-
laxation toward the equilibrium that is diagonal into a peculiar base. The vectors of this base
are called “moments”, the terminology being taken from the kinetic theory. Moreover, the
equilibrium is a priori a nonlinear function of the conservative variables.

In the following, we denote bym = (u, v)T the moments defined for each space point x ∈ L

and for each time t by

u = f− + f+, v = �
(

−f− + f+
)

.

The matrix of the moments M such that m =Mf satisfies

M =
(

1 1
−� �

)

, M−1 =
(

1∕2 −1∕(2�)
1∕2 1∕(2�)

)

.

Let us now describe one time step of the scheme. The starting point is the particle distri-
butions vector f (x, t) in x ∈ L at time t, the moments are computed by

(3) m(x, t) =Mf (x, t).

The relaxation phase then reads

(4) u⋆(x, t) = u(x, t), v⋆(x, t) = v(x, t) + s(veq(x, t) − v(x, t)),

where s is the relaxation parameter and veq the second moment at equilibrium, which is a
function of u. As a consequence, the first moment u is conserved during the relaxation phase.
The relaxation parameter s is usually taken in (0, 2], for stability reasons.

The particle distributions are then computed after the relaxation phase by

(5) f⋆(x, t) =M−1m⋆(x, t).

The transport phase finally reads

(6) f�(x, t + Δt) = f
⋆
� (x − �Δx, t), � ∈ {−, +}.

In order to be consistent with Eq. (1), we impose that veq = �(u) [13].

2.2. A finite volume formalism for a relaxation system. In order to study the convergence
of the scheme, we rewrite it into a finite volume formalism in this section. We first introduce
usual finite volume notations. We note (xj)j∈ℤ the sequence of the discrete points in space
that make up the lattice L and (tn)n∈ℕ the sequence of the discrete times, with

xj = jΔx, j ∈ ℤ, tn = nΔt, n ∈ ℕ.

The scheme can be described either in terms of the particle distributions variables or in terms
of the moments. It computes (f n−,j , f

n
+,j)j∈ℤ,n∈ℕ and (unj , v

n
j )j∈ℤ,n∈ℕ, which are respectively

approximations of the local averages of the particle distributions and of the moments in each
volume [xj , xj+1]×[tn, tn+1].

F. Caetano, F. Dubois, and B. Graille 3
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According to (3), the particle distributions and the moments are linked by the relations
{

unj = f
n
−,j + f

n
+,j ,

vnj = −�f
n
−,j + �f

n
+,j ,

{

f n−,j =
1
2u

n
j −

1
2�v

n
j ,

f n+,j =
1
2u

n
j +

1
2�v

n
j ,

j ∈ ℤ, n ∈ ℕ.

We denote by (f n+
1∕2

−,j , f n+
1∕2

+,j ) (resp. (un+
1∕2

j , vn+
1∕2

j )) the approximated particle distributions
functions (resp. moments) at time tn after the relaxation step. By using these notations,
according to (4) the relaxation step of the scheme reads

(7) un+
1∕2

j = unj , vn+
1∕2

j = (1 − s)vnj + s�(u
n
j ), j ∈ ℤ, n ∈ ℕ.

After the relaxation step, following (5), the particle distributions are then defined by

(8) f n+
1∕2

−,j = 1
2u

n
j −

1
2�v

n+1∕2
j , f n+

1∕2
+,j = 1

2u
n
j +

1
2�v

n+1∕2
j , j ∈ ℤ, n ∈ ℕ,

and the transport phase (6) now reads

(9) f n+1+,j = f n+
1∕2

+,j−1, f n+1−,j = f n+
1∕2

−,j+1, j ∈ ℤ, n ∈ ℕ.

We can then describe a complete step of the scheme in terms of the approximated distri-
bution functions (f n−,j , f

n
+,j) by

⎧

⎪

⎨

⎪

⎩

f n+1−,j = (1 − s
2 )f

n
−,j+1 +

s
2f

n
+,j+1 −

s
2��(f

n
−,j+1 + f

n
+,j+1),

f n+1+,j = s
2f

n
−,j−1 + (1 −

s
2 )f

n
+,j−1 +

s
2��(f

n
−,j−1 + f

n
+,j−1), j ∈ ℤ, n ∈ ℕ.

and in terms of the approximated moments (unj , v
n
j ) by

(10)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

vn+
1∕2

j = (1 − s)vnj + s�(u
n
j ),

un+1j = 1
2 (u

n
j+1 + unj−1) −

1
2� (v

n+1∕2
j+1 − vn+

1∕2
j−1 ),

vn+1j = 1
2 (v

n+1∕2
j+1 + vn+

1∕2
j−1 ) −

�
2 (u

n
j+1 − unj−1), j ∈ ℤ, n ∈ ℕ,

the discrete initial data (u0j , v
0
j )j∈ℤ being taken as an approximation of (u0, �(u0)) that will be

specified below.
For later purpose we rewrite the equation defining un+1j in (10) as

(11)
un+1j − unj

Δt
+

vnj+1 − vnj−1
2Δx

− �
unj+1 − 2u

n
j + unj−1

2Δx
= s
2�Δt

[

(

�(unj−1) − vnj−1
)

−
(

�(unj+1) − vnj+1
)

]

,

Let us now make a link between the D1Q2 scheme and a relaxation approximation of the
scalar conservation law. For given Λ and " > 0, let us consider the Jin and Xin relaxation
system [14]:

(12)
⎧

⎪

⎨

⎪

⎩

)tu + )xv = 0,

)tv + Λ2)xu =
1
"
(�(u) − v).

The D1Q2 scheme can be interpreted as a discretization of the relaxation system (12), by a
splitting between the hyperbolic part—discretized with a Lax-Friedrichs scheme—and the
relaxation part—discretized with an explicit Euler method—where firstΛ = � and second the

F. Caetano, F. Dubois, and B. Graille 4
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relaxation parameter s, the time step Δt, and the Jin and Xin parameter " are linked by the
relation " = Δt∕s.

3. TOTAL VARIATION AND L∞ ESTIMATIONS

In this section we establish L∞ and BV estimates for the numerical scheme (10). We begin
this section by recalling the definitions of the functional spaces that we will use in the sequel
and by establishing the assumptions we make in order to get these estimates.

3.1. Notations and definitions. Let us introduce the following notations that will be useful
in the sequel. If w = (wj)j∈ℤ ∈ ℝℤ, we denote by �xw ∶= ((�xw)j+1∕2)j∈ℤ the sequence of
ℝℤ defined by

(�xw)j+1∕2 = wj+1 − wj , j ∈ ℤ.

If w = (wn)n∈ℕ ∈ ℝℕ, we denote by �tw ∶= ((�tw)n+1∕2)n∈ℕ the sequence of ℝℕ defined by

(�tw)n+1∕2 = wn+1 − wn, n ∈ ℕ.

In order to investigate the convergence of the numerical solution, we recall some classical
normed sub-spaces of ℝℤ and the corresponding norms.

Definition 1 (l1(ℝℤ) space, ‖ ⋅ ‖Δx,l1 norm). Let w = (wj)j∈ℤ ∈ ℝℤ and Δx > 0 being
given. We define the sequential one norm by

‖w‖Δx,l1 = Δx
∑

j∈ℤ
|wj|,

and the associated space l1(ℝℤ) as

l1(ℝZ ) =
{

w ∈ ℝℤ ∶ ‖w‖Δx,l1 < +∞
}

.

Definition 2 (sequential total variation). Let w = (wj)j∈ℤ ∈ ℝℤ. We define the total varia-
tion in space by

TV(w) =
∑

j∈ℤ
|(�xw)j+1∕2|.

We recall below the classical Banach space of functions with bounded variation and the
compactness Helly’s theorem that we will use in the proof of our main result. To more details
and to the proofs of these results, we address e.g. to [11] and to [1].

Definition 3 (Bounded variation space). Let Ω ⊂ ℝn be an open set and g ∈ L1loc(Ω). The
total variation of g over Ω denoted by TVΩ(g) is defined by

TVΩ(g) = sup
'∈C10(Ω)
‖'‖∞≤1

∫Ω
g div'.

We denote by BV(Ω) the subspace of L1loc(Ω) of functions with bounded total variation over
Ω:

BV(Ω) =
{

g ∈ L1loc(Ω) ∶ TVΩ(g) < +∞
}

.

Proposition (Functional space). The space L1(Ω) ∩ BV(Ω) is a Banach space for the norm

‖g‖ = ‖g‖L1(Ω) + TVΩ(g).

F. Caetano, F. Dubois, and B. Graille 5
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Theorem (Helly’s sequential theorem). Let Ω ⊂ ℝn be a bounded open set with a Lipschitz
boundary and let (gn)n∈ℕ be a sequence which is bounded in L1(Ω)∩BV(Ω). Then there exists
a sub-sequence denoted by (g'(n))n∈ℕ and a function g ∈ L1(Ω) ∩ BV(Ω) such that

{

g'(n) ⟶ g in L1(Ω) and a.e. x ∈ Ω,
TVΩ(g) ≤ lim infn∈ℕ

TV(g'(n)).

In the sequel, we use the following notations for the sequences in ℝℤ

f n± =
(

f n±,j
)

j∈ℤ, un =
(

unj
)

j∈ℤ, vn =
(

vnj
)

j∈ℤ, �(un) =
(

�(unj )
)

j∈ℤ,

for n ∈ ℕ, ± ∈ {+,−}, and we use the following notations for the sequences in ℝℕ

f±,j =
(

f n±,j
)n∈ℕ, uj =

(

unj
)n∈ℕ, vj =

(

vnj
)n∈ℕ, �(uj) =

(

�(unj )
)n∈ℕ,

for j ∈ ℤ, ± ∈ {+,−}.
Let us also introduce the functions

(13) ℎ+(�) =
�� + �(�)

2�
, ℎ−(�) =

�� − �(�)
2�

, � ∈ ℝ.

The functions ℎ+ and ℎ− correspond to the equilibrium of the particle distributions functions
f+ and f−. From relations (7) and (8), the relaxation phase can be rewritten as

(14) f n+
1∕2

±,j = (1 − s)f n±,j + sℎ
±(unj ), j ∈ ℤ, n ∈ ℕ.

3.2. Assumptions. Wewill suppose throughout the paper that the initial condition u0 belongs
to L∞(ℝ) ∩ BV(ℝ). We will then define

� = ess inf u0, � = ess sup u0,

M = max
{

|�′(�)|, for � ≤ � ≤ �
}

.

and we will make the following main assumptions concerning the numerical scheme (10).

Assumption 1. The relaxation parameter s lies in (0, 1].

Often in the applications, the value of the relaxation parameter s is chosen larger than 1 and
often near 2. In the case of the linear D1Q2, the scheme remains numerically stable in a l2-
sense for s ∈ [0, 2] and the first-order numerical diffusion term is proportional to 1∕s − 1∕2:
the choice s = 2 minimises then the error and the convergence rate is equal to 2 in that case
(see [13]). For general lattice Boltzmann schemes, the “optimal” choices for the relaxation
parameters are more complicated and are motivated by a combination of stability and accuracy
reasons. However, these optimal parameters are generally larger than 1. The reason why we
impose that s lies in (0, 1] is that the scheme has monotonicity properties in this case. And
these properties are essential for dealing with weak-solutions according to our technique of
estimates.

Assumption 2. The velocity of the scheme satisfies � = Δx∕Δt ≥M .

This assumption is known as the sub-characteristic condition. It states that the solutions
of the equilibrium equation propagate with characteristic speed smaller that the one of the
numerical scheme.

Assumption 3. The initial state is given by

u0j =
1
Δx ∫

xj+1

xj
u0(x) dx, v0j = �(u

0
j ), j ∈ ℤ.

F. Caetano, F. Dubois, and B. Graille 6
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This last assumption means that the initial values of the non-conserved moment are taken
to the equilibrium. This choice is done more often than not as this second moment has to be
a perturbation of the equilibrium state [18].

3.3. Preliminary lemmas. We begin by proving two lemmas that will be used throughout
the proofs of the estimates and convergence of the numerical solutions. The first one concerns
the total variation of the numerical initial data.

Lemma 1. The total variation of the discretized initial conserved moment u0 = (u0j )j∈ℤ is
controlled by the total variation of the initial function u0:

TV(u0) =
∑

j∈ℤ
|(�xu0)j+1∕2| ≤ TV(u0).

Proof. Using the definition of u0j given in assumption 3, we have that

TV(u0) = 1
Δx

∑

j∈ℤ

|

|

|

|

|

∫

xj+1

xj

(

u0(x + Δx) − u0(x)
)

dx
|

|

|

|

|

≤ 1
Δx

∑

j∈ℤ
∫

xj+1

xj

|

|

|

u0(x + Δx) − u0(x)||
|

dx = 1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx.

We will then prove that

(15) 1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx ≤ TV(u0).

Suppose first that u0 ∈ C1(ℝ). In this case we have that

TV(u0) = ∫ℝ
|

|

|

(u0)′(x)||
|

dx

and we get

1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx = 1
Δx ∫ℝ

|

|

|∫

x+Δx

x
(u0)′(y) dy||

|

dx

≤ 1
Δx ∫ℝ ∫ℝ

|

|

|

(u0)′(y)||
|

1[x,x+Δx](y) dx dy =
1
Δx ∫ℝ

|

|

|

(u0)′(y)||
|

Δx dy = TV(u0).

We now prove (15) for general u0 ∈ BV (ℝ). To do so, we use the following result (see [1]):
for f ∈ BV(ℝ), there exists a sequence (fn)n ∈ C∞(ℝ) such that fn → f in L1loc(ℝ) and
TV(fn)→ TV(f ).

We consider then such a sequence (fn)n that converges toward u0. We have, for allM > 0,

(16) 1
Δx ∫

M

−M

|

|

|

fn(x + Δx) − fn(x)
|

|

|

dx ≤ 1
Δx ∫ℝ

|

|

|

fn(x + Δx) − fn(x)
|

|

|

dx ≤ TV(fn),

since fn ∈ C∞(ℝ). We have now, on the one hand, that

1
Δx ∫

M

−M

|

|

|

fn(x + Δx) − fn(x)
|

|

|

dx ←←←←←←←←←←←←←←←←←←←←←→
n→∞

1
Δx ∫

M

−M

|

|

|

u0(x + Δx) − u0(x)||
|

dx,

since fn → u0 in L1loc(ℝ). On the other hand, TV(fn) → TV(u0), so that, by passing (16) to
the limit as n→ ∞, we obtain

1
Δx ∫

M

−M

|

|

|

u0(x + Δx) − u0(x)||
|

dx ≤ TV(u0).

F. Caetano, F. Dubois, and B. Graille 7
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By letting nowM → ∞, we obtain

1
Δx ∫ℝ

|

|

|

u0(x + Δx) − u0(x)||
|

dx ≤ TV(u0),

that ends the proof. ■

The second lemma concerns some properties of the functions ℎ+ and ℎ− defined by (13).

Lemma 2. Under assumption 2, we have :
∙ The functions ℎ+ and ℎ− are non decreasing over [�, �] ;
∙ For all � ∈ ℝ, ℎ+(�) + ℎ−(�) = � and (ℎ+)′(�) + (ℎ−)′(�) = 1.

Proof. The functions ℎ+ and ℎ− are C1(ℝ) and their derivative is non negative over [�, �],
under assumption 2. The second result of the lemma is a trivial consequence of the definition
of the functions ℎ±. ■

3.4. Uniform bound estimates. In this section we establish a maximum principle for the
numerical solutions of the scheme (10).

Proposition 3 (maximum principle). Under assumptions 1, 2 and 3, we have

unj ∈ [�, �], f n±,j ∈ [ℎ
±(�), ℎ±(�)], j ∈ ℤ, n ∈ ℕ.

Proof. A recursive reasoning is done. Since u0 ∈ [�, �], a.e. x ∈ ℝ, we have that u0j ∈ [�, �]
for j ∈ ℤ. By lemma 2, and since v0j = �(u

0
j ), we get

f 0±,j = ℎ
±(u0j ) ∈ [ℎ

±(�), ℎ±(�)], j ∈ ℤ.

We then assume that the three inclusions are true for a certain n ∈ ℕ. As s ∈ (0, 1],
Eq. (14) implies that f n+

1∕2
−,j and f n+

1∕2
+,j are respectively convex linear combinations of f n−,j and

ℎ−(unj ), and of f
n
+,j and ℎ

+(unj ), so that f
n+1∕2
−,j ∈ [ℎ−(�), ℎ−(�)] and f n+

1∕2
+,j ∈ [ℎ+(�), ℎ+(�)], for

j ∈ ℤ. The transport phase just shift the distribution functions, so that the same inclusions
yield for f n+1−,j and f n+1+,j for j ∈ ℤ. Finally, we have

un+1j = f n+1−,j + f n+1+,j ∈ [ℎ−(�) + ℎ+(�), ℎ−(�) + ℎ+(�)] = [�, �], j ∈ ℤ,

as ℎ−(�) + ℎ+(�) = � for all � ∈ ℝ, by lemma 2. ■

3.5. Total variation estimates. We establish now estimates on the total variation in space
and in time of the numerical solutions.

Proposition 4 (Spatial total variation estimations). Under assumptions 1, 2 and 3, the particle
distributions functions satisfy the total variation decreasing estimate

TV(f n+1+ ) + TV(f n+1− ) ≤ TV(f n+ ) + TV(f n− ), n ∈ ℕ.

Moreover, we have

TV(f n+ ) + TV(f n− ) ≤ TV(u0), n ∈ ℕ,(17)

TV(un) ≤ TV(u0), n ∈ ℕ,(18)

TV(vn) ≤ �TV(u0), n ∈ ℕ.(19)
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Proof. First we remark that we have TV(un) ≤ TV(f n− ) + TV(f n+ ), as u
n
j = f n−,j + f

n
+,j . We

first evaluate the total variation of the approximated particle distributions functions after the
relaxation phase. We deduce from (14) that

(�xf
n+1∕2
± )j+1∕2 = (1 − s)(�xf

n
± )j+1∕2 + s

(

ℎ±(unj+1) − ℎ
±(unj )

)

.

And we have, by performing a first order Taylor expansion,

ℎ±(unj+1) − ℎ
±(unj ) =

�(�xun)j+1∕2 ± (�(u
n
j+1) − �(u

n
j ))

2�

=
(� ± �′(�nj+1∕2))(�xu

n)j+1∕2
2�

= (ℎ±)′(�nj+1∕2)(�xu
n)j+1∕2,

where �nj+1∕2 ∈ (�, �) is such that �(u
n
j+1)−�(u

n
j ) = �

′(�nj+1∕2)(u
n
j+1−unj ). We then have, using

that (ℎ±)′ ≥ 0 over [�, �] and that s ∈ (0, 1],
|

|

|

(�xf
n+1∕2
± )j+1∕2

|

|

|

≤ (1 − s)||
|

(�xf
n
± )j+1∕2

|

|

|

+ s(ℎ±)′(�nj+1∕2)
|

|

|

(�xun)j+1∕2
|

|

|

.

Since (ℎ+)′ + (ℎ−)′ = 1, summing the above two inequalities over j ∈ ℤ, for ± ∈ {+,−},
yields

TV(f n+
1∕2

+ ) + TV(f n+1∕2− ) ≤ (1 − s)TV(f n+ ) + (1 − s)TV(f n− ) + sTV(un),

and finally,
TV(f n+

1∕2
+ ) + TV(f n+1∕2− ) ≤ TV(f n+ ) + TV(f n− ).

Concerning the transport phase, the total variation of the particle distributions functions after
this phase is unchanged as they are defined as a translation of the particle distributions before
the phase. We have thus

TV(f n+1+ ) + TV(f n+1− ) = TV(f n+
1∕2

+ ) + TV(f n+1∕2− ) ≤ TV(f n+ ) + TV(f n− ),

which allow us to conclude that

(20) TV(f n+ ) + TV(f n− ) ≤ TV(f 0− ) + TV(f 0+ ), ∀n ∈ ℕ.

We also have for the total variation of the conserved moment un

(21) TV(un) ≤ TV(f n− ) + TV(f n+ ) ≤ TV(f 0− ) + TV(f 0+ ).

The definition of the initial numerical data in assumption 3 implies that
|

|

|

(�xf
0
± )j+1∕2

|

|

|

= |

|

|

ℎ±(u0j+1) − ℎ
±(u0j )

|

|

|

= (ℎ±)′(�0j+1∕2)
|

|

|

(�xu0)j+1∕2
|

|

|

.

By summing these two equalities over j ∈ ℤ, for ± ∈ {+,−}, we get TV(f 0− ) + TV(f 0+ ) =
TV(u0), which combined with (20) and with (21) gives (17) and (18). Since |vn| ≤ �(|f n+ | +
|f n− |), we also obtain (19). ■

In order to control the total variation of the numerical approximation in time and space
variables, we prove now uniform total time variation estimates for the approximated solutions.
To do so, we estimate the quantity

∑

j∈ℤ

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

.
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Proposition 5 (total variation in time estimates). Under assumptions 1, 2 and 3, the particle
distributions functions satisfy the estimate
(22)
∑

j∈ℤ

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ ||
|

(�tf−,j)
n+1∕2|

|

|

≤
∑

j∈ℤ

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ ||
|

(�tf−,j)
n−1∕2|

|

|

≤ 2TV(u0), n ∈ ℕ.

Moreover we have

(23)
∑

j∈ℤ

|

|

|

(�tuj)
n+1∕2|

|

|

≤ 2TV(u0),
∑

j∈ℤ

|

|

|

(�tvj)
n+1∕2|

|

|

≤ 2�TV(u0), n ∈ ℕ.

Proof. Suppose that
∑

j∈ℤ

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

< +∞.

Since u = f+ + f−, then we also have
∑

j∈ℤ

|

|

|

(�tuj)
n−1∕2|

|

|

< +∞.

From (9) and (14), we have f n+1±,j = f n+
1∕2

±,j∓1 = (1 − s)f
n
±,j∓1 + sℎ

±(unj∓1). We obtain then

(�tf±,j)
n+1∕2 = (1 − s)(�tf±,j∓1)

n−1∕2 + s
(

ℎ±(unj∓1) − ℎ
±(un−1j∓1)

)

= (1 − s)(�tf±,j∓1)
n−1∕2 + s

� ± �′(�n−
1∕2

j∓1 )

2�
(�tuj∓1)

n−1∕2,

where we used that, for j ∈ ℤ,

ℎ±(unj ) − ℎ
±(un−1j ) = (ℎ±)′(�n−

1∕2
j )(�tuj)

n−1∕2 =
� ± �′(�n−

1∕2
j )

2�
(�tuj)

n−1∕2,

with �n−
1∕2

j lying between unj and u
n−1
j .

Assumptions 1 and 2 yield

|

|

|

(�tf±,j)
n+1∕2|

|

|

≤ (1 − s) ||
|

(�tf±,j∓1)
n−1∕2|

|

|

+ s
� ± �′(�n−

1∕2
j∓1 )

2�
|

|

|

(�tuj∓1)
n−1∕2|

|

|

,

By summing the above two inequalities over j ∈ ℤ, for ± ∈ {+,−}, we get
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

)

≤ (1 − s)
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

)

+ s
∑

j∈ℤ

|

|

|

(�tuj)
n−1∕2|

|

|

.

Since we have |u| ≤ |f+| + |f−|, we get
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

)

≤
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n−1∕2|

|

|

+ |

|

|

(�tf−,j)
n−1∕2|

|

|

)

.

We conclude then, by reasoning recursively, that

(24)
∑

j∈ℤ

(

|

|

|

(�tf+,j)
n+1∕2|

|

|

+ |

|

|

(�tf−,j)
n+1∕2|

|

|

)

≤
∑

j∈ℤ

(

|

|

|

(�tf+,j)
1∕2|
|

|

+ |

|

|

(�tf−,j)
1∕2|
|

|

)

, ∀n ∈ ℕ.
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Now, we have, by using assumption 3,

(�tf+,j)
1∕2 = |f 1+,j − f

0
+,j| = |(1 − s)f 0+,j−1 + sℎ

+(u0j−1) − f
0
+,j|

= |ℎ+(u0j−1) − ℎ
+(u0j )| ≤ |u0j−1 − u0j |,

and, in the same way,
(�tf−,j)

1∕2 ≤ |u0j+1 − u0j |,

which, combined with (24), implies (22). Since |un| ≤ |f n+ |+ |f n− | and |v
n
| ≤ �(|f n+ |+ |f n− |),

we also obtain (23). ■

3.6. Estimation of the equilibrium gap. We aim to prove that, at the discrete level, the
equilibrium gap �(u) − v tends to 0, as the discretization step tends to 0. The purpose of the
next proposition is then to estimate the quantity �(unj ) − vnj .

Proposition 6 (estimation of the discrete equilibrium gap). Under assumptions 1, 2 and 3,
the equilibrium gap is bounded, that is

‖�(un) − vn‖Δx,l1 ≤
2�Δx
s

TV(u0), n ∈ ℕ.

Proof. We have to estimate

‖�(un) − vn‖Δx,l1 = Δx
∑

j∈ℤ
|�(unj ) − vnj |.

For n = 0, we have ‖�(u0) − v0‖Δx,l1 = 0. Then, we use the relations �(un+1j ) − �(unj ) =
�′(�n+

1∕2
j )(un+1j − unj ) with �

n+1∕2
j ∈ (�, �) and vn+

1∕2
j = (1 − s)vnj + s�(u

n
j ). We have

�(un+1j ) − vn+1j = �(un+1j ) − �(unj ) + �(u
n
j ) − vn+

1∕2
j + vn+

1∕2
j − vn+1j

= (1 − s)
(

�(unj ) − vnj
)

+ �′(�n+
1∕2

j )(un+1j − unj ) − (v
n+1
j − vn+

1∕2
j )

= (1 − s)
(

�(unj ) − vnj
)

+ �′(�n+
1∕2

j )
(

f n+
1∕2

+,j−1 + f
n+1∕2
−,j+1 − f

n+1∕2
+,j − f n+

1∕2
−,j

)

− �
(

f n+
1∕2

+,j−1 − f
n+1∕2
−,j+1 − f

n+1∕2
+,j + f n+

1∕2
−,j

)

= (1 − s)
(

�(unj ) − vnj
)

+
(

�′(�n+
1∕2

j ) − �
)(

f n+
1∕2

+,j−1 − f
n+1∕2
+,j

)

+
(

�′(�n+
1∕2

j ) + �
)(

f n+
1∕2

−,j+1 − f
n+1∕2
−,j

)

.

By assumptions 1 and 2, we obtain

|�(un+1j ) − vn+1j | ≤ |1 − s| |�(unj ) − vnj | + 2�
(

|f n+
1∕2

+,j−1 − f
n+1∕2
+,j | + |f n+

1∕2
−,j+1 − f

n+1∕2
−,j |

)

.

As a consequence of proposition 4, summing the above inequalities over j ∈ ℤ yields

‖�(un+1) − vn+1‖Δx,l1 ≤ |1 − s|‖�(un) − vn‖Δx,l1 + 2�ΔxTV(u0)

as TV(f n+
1∕2

+ ) + TV(f n+1∕2− ) ≤ TV(u0). A recursive reasoning then implies that

‖�(un) − vn‖Δx,l1 ≤ 2�ΔxTV(u0)
n
∑

k=0
|1 − s|k ≤ 2�Δx

s
TV(u0), n ∈ ℕ,

as s ∈ (0, 1] by assumption 1. ■
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4. CONVERGENCE OF THE NUMERICAL SCHEME

This section is devoted to proving the convergence of the numerical solution towards aweak
solution of the nonlinear Cauchy problem (1-2). This result is obtained as a consequence of
the spatial and temporal estimates proved in section 3. The compactness of the numerical
sequences is used in the space of the functions with bounded variation and is obtained as a
consequence of Helly’s theorem.

As usual in the context of finite volume schemes, we seek an approximated solution of the
form

uΔt,Δx(t, x) =
∑

j∈ℤ

∑

n∈ℕ
unj 1[tn,tn+1) 1[xj ,xj+1),

vΔt,Δx(t, x) =
∑

j∈ℤ

∑

n∈ℕ
vnj 1[tn,tn+1) 1[xj ,xj+1).

We begin by proving the convergence of the sequence (uΔt,Δx, vΔt,Δx), as the space-meshing
Δx and the time-step Δt tend to 0, towards a function (ū, v̄), where ū is a weak solution of the
Cauchy problem (1-2) and v̄ = �(ū).

Theorem 7 (convergence towards a weak solution). Under assumptions 1, 2 and 3, there exist
sub-sequences of uΔt,Δx, vΔt,Δx (still denoted by uΔt,Δx, vΔt,Δx) and functions ū, v̄ with

ū, v̄ ∈ L∞(ℝ+×ℝ) ∩ BV([0, T ]×ℝ),

for all T > 0, such that

(uΔt,Δx, vΔt,Δx) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→Δt,Δx→0
(ū, v̄) L1loc([0,+∞[×ℝ) × L1loc([0,+∞[×ℝ).

We have in addition that ū is a weak solution of (1-2) in [0,+∞[×ℝ, and that v̄ = �(ū).

Proof. We have to prove that the families of functions uΔt,Δx and vΔt,Δx are bounded in
L∞(Ω) ∩ BV(Ω) for all bounded open subset Ω of ℝ+×ℝ.

Proposition (3) implies that uΔt,Δx and vΔt,Δx are uniformly bounded in L∞(ℝ+×ℝ).
LetΩ be a bounded open subset ofℝ+×ℝ, such thatΩ ⊆ [0, T ]×[−M,M], for some T > 0

andM > 0, and let N, J ∈ ℕ such that (N−1)Δt ≤ T < NΔt, (J−1)Δx ≤ M < JΔx. We
have then that

TVΩ(uΔt,Δx) ≤ Δt
N
∑

n=0

J
∑

j=−J

|

|

|

unj+1 − unj
|

|

|

+ Δx
N
∑

n=0

J
∑

j=−J

|

|

|

un+1j − unj
|

|

|

.

From Proposition 4 we obtain that

Δt
N
∑

n=0

J
∑

j=−J

|

|

|

unj+1 − unj
|

|

|

≤ Δt
N
∑

n=0
TV(u0) ≤ NΔtTV(u0) ≤ (T + Δt)TV(u0),

which is bounded as Δt → 0.
On the other hand, as a consequence of Proposition 5, we have

Δx
N
∑

n=0

J
∑

j=−J

|

|

|

un+1j − unj
|

|

|

≤ Δx
N
∑

n=0
2TV(u0)

= Δx
Δt
(N + 1)Δt2TV(u0) ≤ 2�(T + Δt)TV(u0),

which is also bounded as Δt→ 0.
We obtain for vΔt,Δx a similar result. These estimations imply in particular that the set

{(uΔt,Δx, vΔt,Δx)}Δt,Δx remains bounded in L∞(Ω) ∩BV(Ω), and this is valid for any bounded
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set Ω ⊆ ℝ+ ×ℝ. The compactness of BV(Ω) ∩L∞(Ω) in L1(Ω) (Helly’s theorem) implies that
there exists a sub-sequence of (uΔt,Δx, vΔt,Δx) and functions (ū, v̄) satisfying the conditions of
the Theorem.

Proposition 6 now implies that

‖

‖

‖

�(uΔt,Δx) − vΔt,Δx
‖

‖

‖L∞([0,T ];L1loc(ℝ))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Δt,Δx→0

0.

Since (uΔt,Δx, vΔt,Δx)⟶ (ū, v̄), we get �(ū) = v̄, a.e. x ∈ ℝ, for all t > 0.
In order to prove that ū is a weak solution of (1-2), let us consider ' ∈ C∞0 (ℝ

+ × ℝ) and
put

'nj = '(t
n, xj), 'Δt,Δx(t, x) =

∑

n∈ℕ

∑

j∈ℤ
'nj 1[tn,tn+1)(t)1[xj ,xj+1)(x).

We multiply both sides of (11) by ΔtΔx'nj , we sum over n ∈ ℕ and j ∈ ℤ, do a discrete
integration by parts, and pass to the limit as Δt,Δx → 0. The first term on the left-hand side
reads

ΔtΔx
∑

n≥1

∑

j∈ℤ
unj
'n−1j − 'nj

Δt
− ΔtΔx

∑

j∈ℤ

u0j'
0
j

Δt

= ∫

+∞

Δt ∫ℝ
uΔt,Δx(t, x)

'Δt,Δx(t−Δt, x) − 'Δt,Δx(t, x)
Δt

dx dt

− ∫ℝ
uΔt,Δx(0, x)'Δt,Δx(0, x) dx

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Δt,Δx→0

−∫

+∞

0 ∫ℝ
ū(t, x))t'(t, x) dx dt − ∫ℝ

u0(x)'(0, x) dx.

By a similar reasoning we get for the second term on the left-hand side

ΔtΔx
∑

n≥0

∑

j∈ℤ
vnj
'nj−1 − '

n
j+1

2Δx

= ∫

+∞

0 ∫ℝ
vΔt,Δx(t, x)

'Δt,Δx(t, x−Δx) − 'Δt,Δx(t, x+Δx)
2Δx

dx dt

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Δt,Δx→0

−∫

+∞

0 ∫ℝ
v̄(t, x))x'(t, x) dx dt = −∫

+∞

0 ∫ℝ
�(ū(t, x)))x'(t, x) dx dt.

Concerning the third term, it can be written as

∫

+∞

0 ∫ℝ
uΔt,Δx(t, x)

('Δt,Δx(t, x−Δx) − 'Δt,Δx(t, x)
2Δx

−
'Δt,Δx(t, x) − 'Δt,Δx(t, x+Δx)

2Δx

)

dx dt,

which vanishes as Δt,Δx→ 0. Let us now treat the right-hand side of (11). After integration
by parts, we get

sΔtΔx
∑

n∈ℕ

∑

j∈ℤ

(

�(unj ) − vnj
)

'nj+1 − '
n
j−1

2Δx

= s∫

+∞

0 ∫ℝ

(

�(uΔt,Δx) − vΔt,Δx
)'Δt,Δx(t, x+Δx) − 'Δt,Δx(t, x−Δx)

2Δx
dx dt.
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Let T > 0,M > 0, such that supp(') ⊆ [0, T ] × [−M,M]. Since

|

|

|

|

|

∫

+∞

0 ∫ℝ

(

�(uΔt,Δx) − vΔt,Δx
)'Δt,Δx(t, x+Δx) − 'Δt,Δx(t, x−Δx)

2Δx
dx dt

|

|

|

|

|

≤ ∬supp(')
|

|

�(uΔt,Δx) − vΔt,Δx|| ‖)x'‖∞ dx dt

≤ ‖)x'‖∞‖�(uΔt,Δx) − vΔt,Δx‖L∞([0,T ];L1loc(ℝ)
,

we conclude, as a consequence of Proposition 6, that this last term tends towards 0 when Δt
and Δx go to 0. We conclude then that ū is a weak solution of (1). ■

5. ENTROPIES AND NUMERICAL ENTROPY ESTIMATES

In this section we aim to establish discrete entropy estimates for the numerical scheme (10).
To do so, wewill use the relaxation entropies introduced in [23] in order to construct numerical
entropies for the scheme. We will also make a link between these relaxation entropies and a
kinetic decomposition of the dual entropy for the nonlinear conservation law, introduced in
[4, 9].

5.1. Entropy. Let us consider an entropy-entropy flux pair (�, q), with � strictly convex, for
the hyperbolic scalar conservation law (1),

�′(u)�′(u) = q′(u), �′′ > 0.

For given �, we introduce the homogeneous Jin and Xin relaxation system ([14]):

(25)

{

)tu + )xv = 0,

)tv + �2)xu = 0,

which we can write in an equivalent way in the characteristic variables (f+, f−):

(26)

{

)tf+ + �)xf+ = 0,
)tf− − �)xf− = 0.

Following Serre ([23]), we define an entropy couple (E,Q) for system (25) as follows. Let us
first define the couple (e+, e−) by

e±(f ) =
�� ± q
2�

((ℎ±)−1(f )), f ∈ [ℎ±(�), ℎ±(�)],

and the couple (�̃, q̃) by

(�̃, q̃)(f−, f+) =
(

e+(f+) + e−(f−), �e
+(f+) − �e

−(f−)
)

, f± ∈ [ℎ
±(�), ℎ±(�)].

We remark then that the couple (�̃, q̃) is an entropy-flux pair for the system (26) in the set
[ℎ+(�), ℎ+(�)] × [ℎ−(�), ℎ−(�)].

Let us now define the couple (E,Q) by

E(u, v) = e+
(�u + v

2�

)

+ e−
(�u − v

2�

)

,

Q(u, v) = �e+
(�u + v

2�

)

− �e−
(�u − v

2�

)

,

for (u, v) such that (�u+ v)∕(2�) ∈ [ℎ+(�), ℎ+(�)], (�u− v)∕(2�) ∈ [ℎ−(�), ℎ−(�)]. Then, the
couple (E,Q) is an entropy-flux pair for the system (25), which satisfies

(E,Q)(u, �(u)) = (�, q)(u), ∀u ∈ [�, �].
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Let us now state some properties of the entropies that will be useful to establish entropy
estimates for the numerical solutions.

Due to the assumption (2), we can easily check the following lemma.

Lemma 8. Under assumption (2), the functions e+ and e− satisfy

e±′(f ) = �′((ℎ±)−1(f )), e±′′(f ) > 0, f ∈ [ℎ±(�), ℎ±(�)].

Furthermore we have
e+′(ℎ+(u)) = e−′(ℎ−(u)) = �′(u).

Proof. The result of the lemma follows immediately from the definition of e± and from the
relation �′�′ = q′. Since ℎ±′(�) = �±�′(�)

2� , for � ∈ ℝ, we have

e±′(f ) =
(

�′
� ± �′

2�

)

((ℎ±)−1(f )) 1
(ℎ±)′((ℎ±)−1(f ))

= �′((ℎ±)−1(f )).

■

5.2. Dual entropy. In this paragraph we make a link between the relaxation entropies e+, e−
defined previously with the kinetic decomposition of the dual entropy introduced by Bouchut
in [4] and by one of the authors in [9] for the nonlinear conservation law (1).

Let us introduce the entropy variable # for the scalar conservation law:

# = �′(u).

We define the dual entropy #⟼ �⋆(#) according to

�⋆(#) = sup
w

(

#w − �(w)
)

.

We then have

�⋆(#) = #(�′)−1(#) − �
(

(�′)−1(#)
)

= #u − �(u),
d�⋆

d#
(#) = (�′)−1(#) = u.

The dual entropy flux #⟼ q⋆(#) is then defined according to

q⋆(#) = #�
(

(�′)−1(#)
)

− q
(

(�′)−1(#)
)

= #�(u) − q(u).

We have the following differential
dq⋆

d#
(#) = �

(

(�′)−1(#)
)

= �(u).

Following [9], let us introduce two convex functions # ⟼  ⋆± (#) that satisfy the kinetic
decomposition of the dual entropy

(27)  ⋆+ (#) +  
⋆
− (#) = �

⋆(#), � ⋆+ (#) − � 
⋆
− (#) = q

⋆(#),

and the equilibrium functions u⟼ f eq
± (u) according to the relation

f eq
± (u) =

d ⋆±
d#

(

�′(u)
)

=
d ⋆±
d#

(#).

We can then define a kinetic hyperbolic system

(28)
⎧

⎪

⎨

⎪

⎩

)tf+ + �)xf+ =
1
�
(

f eq
+ (f+ + f−) − f+

)

,

)tf− − �)xf− =
1
�
(

f eq
− (f+ + f−) − f−

)

.
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We introduce the duals f ⟼  ±(f ) of the functions  
⋆
± defined in (27):

 ±(f ) = sup
#

(

f# −  ⋆± (#)
)

.

Then

 ′±(f ) =

(

d ⋆±
d#

)−1

(f ).

We know that such a framework is able to put in evidence a “H-theorem” [9]. Just multiply
each equation of (28) by  ′±(f±); then

)t
(

 +(f+) +  −(f−)
)

+ )x
(

� +(f+) − � −(f−)
)

≤ 0.

The natural question is to make a link between this framework and the tools introduced in
this contribution, id est to make a link between ℎ± and f eq

± and between e± and  ±. We have
the following proposition.

Proposition 9 (Duality and entropy decomposition). We have

f eq
± (�) = ℎ

±(�), � ∈ ℝ,
 ±(f ) = e±(f ), f ∈ [ℎ±(�), ℎ±(�)].

Proof. We first have

 ⋆± (#) =
��⋆(#) ± q⋆(#)

2�
,

d ⋆±
d#

(#) =
�u ± �(u)

2�
= ℎ±(u) with # = �′(u).

Then, we can identify f eq
± = ℎ±.

At the optimum value # that define  ±(f ), we have f =
(

 ⋆±
)′(#) = ℎ±(u) with �′(u) = #.

Then

 ±(f ) = f# −
1
2

(

�⋆(#) ± 1
�
q⋆(#)

)

= f# − 1
2

(

#u − �(u) ± 1
�
(

#�(u) − q(u)
)

)

= #
(

f − 1
2

(

u ± 1
�
�(u)

))

+ 1
2

(

�(u) ± 1
�
q(u)

)

= #(f − ℎ±(u)) + 1
2

(

� ± 1
�
q
)(

(ℎ±)−1(f )
)

= e±(f ),

and the proof is established. ■

5.3. Numerical entropies estimates. In this section we construct numerical entropies and
corresponding numerical entropy-fluxes for the numerical scheme and we prove the dissipa-
tion of the numerical entropy.

Inspired by [19], let us define the numerical entropies for the numerical scheme by

En+
1∕2

j = e+(f n+
1∕2

+,j ) + e−(f n+
1∕2

−,j ), j ∈ ℤ, n ∈ ℕ,(29)

Qn+
1∕2

j+1∕2 = �e
+(f n+

1∕2
+,j ) − �e−(f n+

1∕2
−,j+1), j ∈ ℤ, n ∈ ℕ.

Note that the numerical entropies are defined for each time step after the relaxation phase and
before the transport phase. This is essential in order to obtained the estimates. Let us now
define the numerical entropy production

(30) Enj =
En+

1∕2
j − En−

1∕2
j

Δt
+
Qn−

1∕2
j+1∕2 −Q

n−1∕2
j−1∕2

Δx
, j ∈ ℤ, n ∈ ℕ∗.

We begin by proving that the entropy production has a sign.
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Proposition 10. Under assumptions 1 and 2, we have

Enj ≤ 0, j ∈ ℤ, n ∈ ℕ∗.

Proof. We develop Enj . Since we have � = Δx∕Δt, we obtain

Enj =
e+(f n+

1∕2
+,j ) − e+(f n−

1∕2
+,j−1)

Δt
+

e−(f n+
1∕2

−,j ) − e−(f n−
1∕2

−,j+1)

Δt
.

By using one time step of the scheme, we have

f n+
1∕2

±,j = f n−
1∕2

±,j∓1 ±
s
2�

(

�(un−
1∕2

j ) − vn−
1∕2

j
)

= f n−
1∕2

±,j∓1 ±
s

2�(1 − s)
(

�(un+
1∕2

j ) − vn+
1∕2

j
)

,

the convexity of e± implies that

e±(f n+
1∕2

±,j ) ∓ s
2�(1 − s)

(

�(un+
1∕2

j ) − vn+
1∕2

j
)

e±′(f n+
1∕2

±,j ) ≤ e±(f n−
1∕2

±,j∓1).

We have thus that
e±(f n+

1∕2
±,j ) − e±(f n−

1∕2
±,j∓1)

Δt
≤ ± s

2�(1 − s)
(

�(un+
1∕2

j ) − vn+
1∕2

j
)

e±′(f n+
1∕2

±,j ).

Hence we get

(31) Enj ≤ s
2�(1 − s)

(

�(un+
1∕2

j ) − vn+
1∕2

j
)(

e+′(f n+
1∕2

+,j ) − e−′(f n+
1∕2

−,j )
)

.

Now from
f n+

1∕2
±,j = ℎ±(un+

1∕2
j ) ± 1

2�
(

vn+
1∕2

j − �(un+
1∕2

j )
)

it follows that

e±′(f n+
1∕2

±,j ) = e±′(ℎ±(un+
1∕2

j )) ± 1
2�

(

vn+
1∕2

j − �(un+
1∕2

j )
)

e±′′(�±,n+
1∕2

j ),

where �±,n+
1∕2

j lie between f n+
1∕2

±,j and ℎ±(un+
1∕2

j ). Combining with (31) and using Lemma 8,
we conclude that

Enj ≤ − s
4�2(1 − s)

(

�(un+
1∕2

j ) − vn+
1∕2

j
)2(e+′′(�+,n+

1∕2
j ) + e−′′(�−,n+

1∕2
j )

)

≤ 0,

and the proof is established. ■

6. CONVERGENCE TOWARDS THE ENTROPIC SOLUTION

In this section we establish the final convergence result, by using the discrete entropy esti-
mates obtained at the previous section. We will prove that the weak solution of the nonlinear
Cauchy problem (1-2) given by Theorem 7, obtained as the limit ū of the numerical scheme,
is indeed the unique entropic solution of the Cauchy problem (1-2).

Theorem 11 (convergence result). Let u be a weak solution of the Cauchy problem (1-2) given
by Theorem 7. Then we have that u is the unique entropic solution of (1-2).

Proof. Let (�, q) be an entropy-entropy-flux pair for (1), with � strictly convex and let Enj be
defined by (30). Let us also consider  ∈ D(]0,+∞[×ℝ),  ≥ 0 and put

 nj =  (t
n, xj),  Δt,Δx(t, x) =

∑

n∈ℕ

∑

j∈ℤ
1[tn,tn+1)(t)1[xj ,xj+1)(x) 

n
j , j ∈ ℤ, n ∈ ℕ.

The result of Proposition 10 implies that

ΔtΔxEnj  
n
j ≤ 0, j ∈ ℤ, n ∈ ℕ∗,

F. Caetano, F. Dubois, and B. Graille 17



A RESULT OF CONVERGENCE FOR A D1Q2 LATTICE BOLTZMANN SCHEME

and by summing over n ∈ ℕ∗ and over j ∈ ℤ, we get

ΔtΔx
∑

j∈ℤ

∑

n∈ℕ∗
 nj

⎛

⎜

⎜

⎝

En+
1∕2

j − En−
1∕2

j

Δt
+
Qn−

1∕2
j+1∕2 −Q

n−1∕2
j−1∕2

Δx

⎞

⎟

⎟

⎠

≤ 0.

We now do a discrete integration by parts. We obtain

ΔtΔx

(

∑

j∈ℤ

∑

n∈ℕ
En+

1∕2
j

 nj −  
n+1
j

Δt
+
∑

j∈ℤ

∑

n∈ℕ∗
Qn−

1∕2
j+1∕2

 nj −  
n
j+1

Δx

)

≤ 0.

By using the definition (29) of the numerical entropies En+
1∕2

j andQn−
1∕2

j+1∕2 , the above inequality
writes as

∑

j∈ℤ

∑

n∈ℕ
∫

xj+1

xj
∫

tn+1

tn

(

e+(f n+
1∕2

+,j ) + e−(f n+
1∕2

−,j )
)  (tn, xj) −  (tn+1, xj)

Δt
dt dx

+
∑

j∈ℤ

∑

n∈ℕ∗
∫

xj+1

xj
∫

tn+1

tn

(

�e+(f n+
1∕2

+,j ) − �e−(f n+
1∕2

−,j+1)
)  (tn, xj) −  (tn, xj+1)

Δx
dt dx ≤ 0.

We now use that f n+1+,j = f n+
1∕2

+,j−1, f
n+1
−,j = f n+

1∕2
−,j+1, for all j ∈ ℤ and n ∈ ℕ.We obtain

∑

j∈ℤ

∑

n∈ℕ
∫

xj+1

xj
∫

tn+1

tn

(

e+(f n+1+,j+1) + e
−(f n+1−,j−1)

)  (tn, xj) −  (tn+1, xj)
Δt

dt dx

+
∑

j∈ℤ

∑

n∈ℕ∗
∫

xj+1

xj
∫

tn+1

tn

(

�e+(f n+1+,j+1) − �e
−(f n+1−,j )

)  (tn, xj) −  (tn, xj+1)
Δx

dt dx

= ∫

+∞

0 ∫ℝ

(

e+(f+Δt,Δx(t + Δt, x + Δx)) + e
−(f−Δt,Δx(t + Δt, x − Δx))

)

×

(

 Δt,Δx(t, x) −  Δt,Δx(t + Δt, x)
Δt

)

dt dx

+ ∫

+∞

Δt ∫ℝ

(

�e+(f+Δt,Δx(t + Δt, x + Δx)) − �e
−(f−Δt,Δx(t + Δt, x))

)

×

(

 Δt,Δx(t, x) −  Δt,Δx(t, x + Δx)
Δx

)

dt dx ≤ 0.

Following the definition of (e+, e−) and since (f+Δt,Δx, f
−
Δt,Δx) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Δt,Δx→0
(ℎ+(u), ℎ−(u)), by

passing to the limit as Δt, Δx→ 0, we obtain

∫

+∞

0 ∫ℝ

(

�(u)
) 
)t
+ q(u)

) 
)x

)

dx dt ≥ 0,

and the result of the theorem follows. ■

7. NUMERICAL ILLUSTRATIONS

In this section, numerical simulations are given in order to illustrate the theoretical results
of the previous sections. Two models are investigated: the advection equation with a con-
stant velocity and the Burger’s equation, both considering regular then discontinuous initial
conditions. In particular, the numerical rate of convergence and the entropy production are
computed in these cases.
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Fig. 1. Error in norm l1 of the numerical solution of the advection equation
(32) according to the space steps Δx for several relaxation parameter values s ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. p is the convergence rate.

Two initial conditions are systematically chosen: first a regular function

(IA) u0(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if x ≤ xL−�,
1
2 +

(x−xL)(3�2−(x−xL)2)
4�3 if xL−� ≤ x ≤ xL+�,

1 if xL+� ≤ x ≤ xR+�,
1
2 −

(x−xR)(3�2−(x−xR)2)
4�3 if xR−� ≤ x ≤ xR+�,

0 if xR+� ≤ x,
and second a discontinuous function

(IB) u0(x) =

⎧

⎪

⎨

⎪

⎩

0 if x ≤ xL,
1 if xL ≤ x ≤ xR,
0 if xR ≤ x.

Numerically, we took xL = 1∕4, xR = 3∕4, � = 1∕10. Note that the second case (IB) can be
obtained from the first case (IA) in the limit � goes to 0.

7.1. Constant velocity advection equation. The first studied model corresponds to the ad-
vection equation at velocity a

(32)

{

)tu(t, x) + a)xu(t, x) = 0, x ∈ ℝ, t > 0,

u(0, x) = u0(x), x ∈ ℝ,

where the velocity a is taken equal to 0.75. The exact solution is well known for both initial
conditions (IA) and (IB) and reads u(t, x) = u0(x − at).

The convergence rates of the numerical solution can be read in Figure 1: the error on
the first moment u and on the second moment v converges toward 0 with a convergence rate
equal to 1 for regular solutions (Figure 1a and 1b) and equal to 0.5 for discontinuous solutions
(Figure 1c and 1d). As expected, the error is even larger when the relaxation parameter s is
small, this numerical results staying true for s lying in [1, 2] as observed in [13] for the first
moment in other test cases.

We now present the results on the numerical entropy production. As the system (32) is
linear, the exact entropy production is zero. In Figure 2, the local in space numerical entropy
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Fig. 1. Error in norm l1 of the numerical solution of the advection equation
(32) according to the space steps Δx for several relaxation parameter values s ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. p is the convergence rate.
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Fig. 2. Local in space numerical entropy production of the advection equation with
initial condition (IA)for varying space steps Δx at left and for varying relation pa-
rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.
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Fig. 3. Local in space numerical entropy production of the advection equation with
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rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.
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Fig. 4. Error in norm l1 of the numerical solution of the Burgers equation (33)
according to the space steps Δx for several relaxation parameter values s ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. p is the convergence rate.

production Enj , j ∈ ℤ, is shown for the regular initial condition (IA). This production is nega-
tive as proved in Proposition 10, located where the solution is not constant, and is smaller for
small space step Δx and for large relaxation parameter s. In Figure 3, the entropy production
is shown for the discontinuous initial condition (IB). This production is also negative and
located on the discontinuities. The l1-norm is decreasing when the space step Δx is lower or
when the relaxation parameter s is larger.

7.2. Burger’s equation. The second studied model corresponds to the Burger’s equation

(33)

{

)tu(t, x) + )x(
1
2u
2(t, x)) = 0, x ∈ ℝ, t > 0,

u(0, x) = u0(x), x ∈ ℝ.

The exact solution for both initial conditions can be computed: for the regular function (IA)
with the theory of the characteristics until the shock appears and for the discontinuous function
(IB) with the combination of a shock and a rarefaction wave.

The convergence rates of the numerical solution can be read in Figure 4: the error on the
first moment u and on the secondmoment v converges toward 0. For regular solutions, the con-
vergence rate is equal to 1 (Figure 4a and 4b) and, for discontinuous solutions, it is about 0.8
(Figure 4c and 4d). As expected, the error is even larger when the relaxation parameter s is
small, this numerical results staying true for s lying in [1, 2] as observed in [13] for the first
moment in other test cases. Note that we cannot explain the better convergence rate of this
nonlinear equation for discontinuous solutions as previously shown in [13].

We now present the results on the numerical entropy production. For the system (33),
the exact entropy production is zero but on the decreasing discontinuities where it is a Dirac
measure multiplied by a negative value. In Figure 5, the local in space numerical entropy
production Enj , j ∈ ℤ, is shown for the regular initial condition (IA). This production is neg-
ative as proved in Proposition 10, located where the solution is not constant, and is smaller
for small space step Δx and for large relaxation parameter s. In Figure 6, the entropy pro-
duction is shown for the discontinuous initial condition (IB). This production is also negative
and essentially located on the discontinuity (a smaller contribution is located on the rarefac-
tion wave, this contribution being decreasing when the space step Δx is smaller or when the
relaxation parameter s is larger).
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Fig. 4. Error in norm l1 of the numerical solution of the Burgers equation (33)
according to the space steps Δx for several relaxation parameter values s ∈
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. p is the convergence rate.
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Fig. 5. Local in space numerical entropy production of the Burgers equation with
initial condition (IA)for varying space steps Δx at left and for varying relation pa-
rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.
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Fig. 6. Local in space numerical entropy production of the Burgers equation with
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rameters s at right. The numerical and exact solutions at t = 0.1 are shown bellow
and the corresponding entropy productions above.

F. Caetano, F. Dubois, and B. Graille 22



A RESULT OF CONVERGENCE FOR A D1Q2 LATTICE BOLTZMANN SCHEME

7.3. Concluding remarks. These numerical illustrations confirm the theoretical results of
the convergence of the numerical solution for the l1-norm for both moments u and v. More-
over, the discrete entropy production is non-positive and seems to converge towards the exact
entropy production.

8. CONCLUSION

In this paper, we prove, by using techniques based on finite volume methods—in particu-
lar on relaxation methods—, a convergence result for a nonlinear hyperbolic one dimensional
scalar conservation law. More precisely, we prove the convergence of the numerical solutions
of the D1Q2 scheme towards the unique entropy solution of the scalar conservation law. We
prove in addition a numerical entropy estimation. Our results are based on convexity proper-
ties of the scheme.

Future works could be dedicated to extend the present results to a wide range of relaxation
parameters. Moreover, other popular lattice Boltzmann schemes, like a scheme with three ve-
locities in one space dimension, should also be studied. Of course, general results concerning
the convergence of more complex lattice Boltzmann schemes remains an open question.
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