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Abstract

Several modeling approaches can benefit from data and dynamics transformations that allow simplification, general-

ization, and/or more conceptual treatment of the studied problem. In this work, we discuss the phasor representation,

capable of mapping sinusoidal signals into values in the complex plane, which can be associated to vectors. As such,

phasors allow visualizating and understanding amplitude and phase relationships, such as relative phase and phase

coherence. The potential of phasors for diverse applications is illustrated with respect to AC linear circuits, filters,

oscillators and the Kuramoto model.

‘...this brave o’erhanging firmament, this majestical roof

fretted with golden fire.’

William Shakespeare.

1 Introduction

To a good extent, scientific modeling as well as technolog-

ical developments often benefit from approaches capable

of simplifying, and/or generalizing and/or obtaining more

effective and approachable representations of aspects of

the studied phenomena. This is frequently the case with

transformations such as the Fourier series, in which a wide

range of signals can be expressed in standardize way, more

specifically in terms of a sum of sines and cosines with spe-

cific amplitudes, frequencies, and phases. Other examples

include the Laplace transform, the Taylor series, the use

logarithm to map products into additions, and the use of

moments to express statistical properties of signals.

In the present text, we focus on phasor representations

of signals. Basically, this approach allows a sinusoidal

signal of time – with amplitude A, frequency f (or the

associated angular velocity ω = 2πf) and phase θ – to

be mapped into a respective complex number, the phasor

Aeiθ, where i =
√
−1 (e.g. [1]). Recall that this complex

number can also be associated to a vector in the plane.

Phasor representations disregard explicit representation

of time as well as the signal angular velocity. These two

quantities can nevertheless be taken into account by as-

suming that the mapped phasors are rotating around the

complex plane origin with angular velocity ω. The con-

cept of phasor is illustrated in Figure 1.

The advantage of the phasor approach derives mostly

from its ability to represent in an intuitive and simple way

the phases of the signals, as well as their interrelationships

(e.g. relative phase, phase coherence, etc.). In addition, in

cases where all signals have fixed frequency, it is possible

to perform several operations between the involved signals

in an objective and simplified geometrical way (e.g. vector

addition).

As a consequence of these interesting properties, pha-

sors are adopted and used in a wide range of scientific

and technological areas, including but by no means being

limited to: physics (e.g. oscillations), dynamical system,

electrical and electronic engineering, control theory, com-

plex systems, vibrations, acoustics, audio, neurosciences,

among many others.

Figure 1: Plot of the signal x(t) = ωt + θ (a), and its respective

phasor representation in the complex plane (b).

We shall start by revising some important properties of

the sine and cosine functions, introducing the concept of
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phasor representation, and then illustrating its potential

with respect to some specific applications, namely AC lin-

ear circuits, linear filters, individual harmonic oscillators,

systems of harmonic oscillators, and the Kuramoto model

(e.g. [2, 3, 4]). The latter corresponds to a particularly in-

teresting approach to modeling synchronization phenom-

ena found in nature including fireflies flashing (e.eg [5]),

heart and neuronal operation, clocks synchronization, and

even aspects of economical and social dynamics.

2 The Sine and Cosine Functions

The sine and cosine trigonometric functions are particu-

larly important in science, as they model several aspects

of the real world, being also used in several technological

applications. Though intrinsically simple, these functions

exhibit some interesting, more subtle, features often aris-

ing from their periodical behavior. Some of these prop-

erties, namely those more closely related to phasors, are

discussed in this section.

Both the sine and cosine functions take an angle (mea-

sured in radians or degrees) as argument, which we will

call Φ(t), so that we have sin(Φ) and cos(Φ), respec-

tively. Their 2π-periodicity can now be expressed as

sin(Φ) = sin(Φ+2π) and sin(Φ) = sin(Φ+2π). Though

Φ can take any real value, it is often interesting to con-

sider that 0 ≤ Φ < 2π.

One of the first interesting properties to be noticed

about the sine and cosine functions is that they are closely

interrelated, in the sense that any of them can be obtained

by displacing the other along the angle argument. For in-

stance, we have that

sin(Φ) = cos(Φ− π/2), (1)

cos(Φ) = sin(Φ + π/2).

It follows from this property that what we discuss and

learn about one of these functions can be immediate and

easily transferred for the other. In this work, we will focus

on the sine function without loss of generality.

Several of the applications of the sine function involve

expressing the angle argument as a function of time,

i.e. Φ(t). Typically, this time-dependent argument is ex-

pressed in terms of a respective frequency f and a phase

θ. The period of this function is T = 1/f . Observe that

the phase θ corresponds to the value of the sine argument

Φ(t) at the initial time, i.e. Φ(t = 0) = θ. The angular

velocity (or frequency) ω = 2πf is also often considered.

So, we can define a sinusoidal oscillating signal x(t) as the

following function of t:

x(t) = Asin (2πft+ θ) = Asin (ωt+ θ) . (2)

One example of this type of signal x(t) is illustrated in

Figure 1(a).

While the frequency f determines how fast the sig-

nal changes, the phase θ can be understood as a con-

sequence of displacements with respect to the reference

sinusoidal signal sin(2πf). The frequency f (or the an-

gular frequency ω) and the phase θ can be understood

as representing parameters of the function in Equation 2.

Unlike variables, such as the independent-value t or the

dependent-value x(t), parameters remain constant during

a given realization of the function. For instance, a lin-

ear pendulum will oscillate while keeping its parameters

f and θ constant.

We have that f is commonly measured in Hertz (Hz ),

ω in rad/s (radians per second), and θ in rad. Note that

degrees (◦) can also be used instead of radians.

An interesting situation is defined when the phase is a

function of time, i.e.

x(t) = Asin(ωt+ θ(t)). (3)

In particular, if θ(t) is an affine function of t, i.e. θ(t) =

νt+ θ0, we have

x(t) = Asin(ωt+ νt+ θ0) = Asin(ωet+ θ0), (4)

with ωe = [ω + ν]. In other words, in this situation

the phase θ(t) behaves in an analogous way to an angular

frequency. As an example, consider the situation in which

we want to obtain x2(t) = sin(2ωt) from a signal x1 =

sin(ωt + θ(t)). This can be easily achieved by making

ν = ω.

Recall that we have referred to the argument of the sine

function as Φ(t). Now, the respective time derivative of

this argument, given as

dΦ(t)

dt
= Φ̇(t) (5)

has unit rad/s and can be effectively understood

as the instantaneous (angular) frequency of the signal

Asin(Φ(t)). For instance, if θ(t) = νt + θ0 we have, as

expected, that Φ̇(t) = d(ωt+ νt+ θ0)/dt = ω + ν = we.

3 Phasors

It is often interesting and useful to visualize signals such

x(t) in Equation 18(a). We have already illustrated

the Cartesian representation of the sine function in Fig-

ure 1(a). However, this type of representation can be

highly redundant as a consequence of the 2π periodicity

of the sine. A more effective approach can be obtained by

using the Euler equation to map the sine function in the

complex plane (e.g. [6, 7, 8]), i.e.
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x(t) = Asin(Φ(t)) = A Im
(
eiΦ(t)

)
, (6)

which can be associated to the time-varying complex

variable z(t) = AeiΦ(t).

Figure 1(b) shows the phasor representation of the sig-

nal x(t) = Asin(2πft+θ) in Figure 1(a) into the complex

plane. Observe that the sine values are mapped into a

circle of radius A, while its argument 0 ≤ Φ(t) < 2π cor-

responds to the angle between each of the function points

and the Real axis. It is also possible to understand the

respective signal x(t) as being obtained by rotating the

phasors counterclockwise with constant angular velocity

ω while taking the respective projections of the phasor

onto the imaginary axis.

For the very same reason that the phasor representation

allows the elimination of the redundancy derived from

the sine periodicity, it also implies that we are no longer

able to geometrically discriminate between values of Φ(t)

(i.e. angles) that are larger than 2π or smalller than 0.

In other words, we can only visualize the function x(t)

as defined for 0 ≤ Φ(t) < 2π. The discussed Cartesian

and complex representations of x(t) can be understood

as being unwrapped and wrapped around the period 0 ≤
Φ(t) < 2π, respectively.

Now, the smallest difference between the two phases,

which provides a measurement of the similarity between

the two respective phases, can be immediately appreci-

ated in terms of the smallest angle between the two pha-

sors in the respective complex-plane representation. Note

that, in the general case, this angle cannot be always ob-

tained mathematically by making δ = θ2− θ1, as a conse-

quence of the periodicity of the phasor representation. For

instance, in case θ1 = 5◦ and θ2 = 355◦, we would have

δ = 350◦ instead of the expected smallesr angle differ-

ence of just 10◦. For such reasons, it becomes interesting

to use other ways of obtaining measurements expressing

angle differences while disregarding the possible discon-

tinuities implied by the angle periodicity. An interesting

possibility is to adopt ∆θ = |sin(θ2 − θ1)|.

4 AC Linear Circuits

A powerful application of phasors regards the time-

varying analysis of linear electric circuits, which is usually

called alternated current (AC) analysis (e.g. [1, 9]), as a

counterpoint to direct current (DC) analysis. The AC

regime involves a transient period followed by an steady-

state stage. Here we focus attention on the latter situa-

tion, characterized by the almost complete elimination of

the effects of the initial charges and fields in the capaci-

tors and inductors. The complete behavior of the circuit

can be obtained by linear superimposing the transient and

Table 1: The reactances and impedances of the passive components

R, C and L. Observe that i = ei(π/2) and −i = ei(−π/2).

component reactance impedance

R R R

C XC = − 1
ωC ZC = iXC = − i

ωC

L XL = ωL ZL = iXL = iωL

steady-state solutions.

Interestingly, the linear circuit framework is not only

very useful in electricity and electronics, but it can also

be related and applied to other concepts and areas such as

acoustics, vibrations, temperature, flow, hydrodynamics,

magnetism, among others.

AC linear circuits involve combinations of some of the

following possible components: voltage sources (v(t), in

Volts), current sources (i(t), in ampères, A), resistors

(R, in ohms, Ω), capacitors (C, in farads, F), and induc-

tors (L, in henries, H). Sources are understood as active

components, while resistors, capacitors and inductors are

said to be passive. Note that, in addition to at least one

time-varying voltage or current source, AC analysis may

involve also other time-varying or time-constant voltage

and/or current sources. Circuits incorporating more than

one source can be analyzed through linear superimposition

of the solutions found considering each of them separately.

The time-varying signals are assumed to be in the har-

monic form. For instance, we can have a voltage source

v(t) = Asin(ωt+θ), where A ∈ < is the signal amplitude.

This signal can be represented in the complex plane as

v(t) = Im
(
A. ei(ωt+θ)

)
= A Im

(
eiωt. eiθ

)
. (7)

So, the original voltage signal v(t) is transformed into

the real number A. eiωt. eiθ. Because a linear circuit with

a source operating at ω will have currents and voltages at

all passive components oscillating with that same angular

frequency, we can take into account only the amplitude

and phase of these signals, transforming v(t) into the re-

spective phasor V = Aeiθ.

In a purely resistive resistor R, the voltage and current

across it can be related by Ohm’s law v(t) = R i(t). This

law can be immediately extended to capacitor and induc-

tors by defining the respective reactances and impedances,

as given in Table 1. As with resistance, the reactances and

impedances are measure in Ohms.

Observe that reactances assume real values, while

impedances are purely imaginary. Let’s consider a com-

ponent consisting of a resistor R in series with a capacitor

C and an inductor L. The total reactance is defined as

X = XC +XL (8)
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and the total impedance is given as

Z = R+ iX = R+ i(XC +XL) = R+ ZC + ZL. (9)

This composed impedance device represents a general

case of impedance in a linear AC circuit. Interestingly,

impedances Z can be associated in a similar way to finding

the equivalent resistance of a network of resistors.

The above definitions allows the Ohm’s law to be

rewritten as:

V = ZI, (10)

in which I is oriented in opposition to V along the pas-

sive component Z.

Let’s consider a single capacitor C connected to a volt-

age source V = Aeiθ with a generic phase θ and ar-

bitrary amplitude A. For this case, we have that I =

V/Z = V/ZC = V/(−i/ωC) = iV ωC = ei(π/2)eiθAωC =

ωACei(π/2+θ), and consequently the voltage V lags (in the

sense of being delayed in time) the current I by a relative

phase π/2, irrespectively of ω, A, and C. The respective

phasors are illustrated in Figure 2(a).

Now, if instead of a capacitor, we attach an inductor

L to the source V , we have I = V/ZL = V/(iωL) =

−iV/(ωL) = Aei(−π/2)eθ/(ωL) = A/(ωL) ei(θ−π/2), and

now it is the current that lags the voltage by a relative

phase π/2. The respective phasor diagram is given in

Figure2(b).

As a more general example, consider the circuit con-

taining a resistor R = 1000Ω and a capacitor C = 0.01µF

in series with a voltage source v(t) = 2sin(2πft + π/4),

i.e. V = 2ei(π/4) Volts, as shown in Figure 2. We adopt

f = 1/(2πRC) ≈ 15915.49Hz, so that ω = 105 rad/s,

It follows that XC = −1/(10−3)Ω = −103Ω and ZC =

−i 103Ω, so that Z = 1000−i103Ω = 1000+103ei(−π/2)Ω.

Now, we can determine the current I by using the complex

Ohm’s law as:

I =
V

Z
=

2ei(π/4)

1000 + 103ei(−π/2)
=
√

2ei(π/2) = i
√

2 mA.

(11)

By considering R and C in terms of their separated

impedances ZR = R = 1000Ω and ZC = −i/(ωC) =

−i103Ω, we can now obtain the voltages across these com-

ponents as VR = RI =
√

2ei(π/2) volts and VC = ZCI =

103
√

2 10−3 =
√

2 volts. Observe that we could also have

calculated VC from V and VR by using Kirchhoff’s voltage

law, i.e. V = VC+VR ⇒ VC = V −VR = 2ei(π/4)−i
√

2 =√
2 volts.

Note that Kirchhoff’s voltage law can be suitably rep-

resented as the complex (or vector) sum in Figure2(c).

Observe also that the phasor I defined by the current i(t)

is parallel to the phasor associated to VR.

Figure 2: (a): In a capacitor, the phasor notation helps to visualize

that the voltage V lags the current I by π/2. (b): In an inductor,

the current I lags the voltage V by π/2. (c): The voltage phasors

with respect to theexample in the text, consisting of voltage source

V in series with a resistance R (voltage VC) and a capacitor C

(voltage VL). The current phasor I, not shown, is parallel to VR.

5 Linear Filters

AC circuits such as that in the RC example can be under-

stood as filters (e.g. [1, 9]), in the sense that they will at-

tenuate the input signal (voltage or current) as a function

of the signal frequencies ω. Filters are very important

in several applications ranging from electronics to neu-

rosciences. In this section we illustrate how the phasor

approach can be applied to better represent and under-

stand filter operation. Generally speaking, linear filters

involve the passive components resistors, capacitors and

inductors. A filter is often studied by considering its op-

eration, i.e. how it changes the magnitude and phase of

the input signal V in terms of the respective frequency f ,

which can be expressed as:

Vout
Vin

=
Aout
Ain

eiθout

eiθin
= αV e

i(θout−θin) = αV e
iφV , (12)

where αV is the voltage gain and φV is the relative

phase implied by the filter. Observe that both these gains

are functions of the frequency f .

An example of a linear filter corresponds to the series

configuration of V , R and C addressed in section 4. By

allowing V to vary in terms of f , instead of fixating it

at f = 1/(2πRC), we have that the impedance of the

capacitor will also change with f as ZC = −i/(ωC), so

that I = V/Z = V/(R − i/(ωC)), implying VC = ZCI =

V/(1 + iωRC), so that

VC
V

=
1

1 + iωRC
. (13)
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Figure 3 shows the phasors V , VR and VC as the

frequency f increases, in steps, from f1 = 500Hz to

f9 = 50kHz along the sense indicated by the respec-

tive integer indices. Observe that, for any frequency, we

can obtain the phasor associated to the voltage source as

V = VR + VC , as illustrated by the dashed black arrows

in this figure for f9. It can be readily verified from the

obtained phasor representation that, for small values of

f , VR tends to align with V ; while as f increases, VC
will be substantially reduced while aligning with V as a

consequence of the reduction of the capacitive reactance

verified for higher frequencies.

Figure 3: The behavior of the RC filter example from Section 4 (R =

1000Ω, C = 0.01µF and V = 2eiπ/4 can be intuitively represented

in phasor notation.

As the magnitude of VC attenuates with f , it becomes

interesting to define some critical point attenuation point.

The standard reference value is the cutoff frequency, fc,

corresponding to where the signal power is halved. This

implies an attenuation by αV =
√

2/2 ≈ 0.707 of the

signal. It can be found that

fc =
1

2πRC
. (14)

For f = fc, we also have that the signal corresponding

to V undergoes an attenuation of 20Log(
√

2/2) ≈ −3dB

and the output signal lags V by −π/4 (as is the case with

the previous example, see Figure 2). The passing band

of this RC filter can the be understood as the frequency

interval 0 ≤ f ≤ fc, implying this circuit to operate as a

lowpass filter.

6 Harmonic Oscillators

Let’s now briefly consider an important physical phe-

nomenon, namely harmonic oscillations. Consider the

pendulum (e.g. [10]) in Figure 4(a). Here, a sphere (or

bob) with mass m is attached to a pivot through a weight-

less rod of length L which can rotate freely around its

pivot. For simplicity’s sake, we will assume that all the

massm is concentrated at the center of mass of the sphere.

Also, it is assumed that the pendulum is in the vacuum

and that the pivot is frictionless, so that there is no en-

ergy dissipation. The angular position β(t) of the sphere

is taken with respect to the vertical, and the initial an-

gular position is taken as β(0) = β0. The initial angular

velocity is assumed as β̇(0) = 0, i.e. the sphere is initially

at rest.

Figure 4: Modeling the angular movement of a pendulum. A sphere

with mass m is attached to a pivot through a weightless rod. The

angular position β(t) of the sphere is taken with respect to the

horizontal axis.

The mass is under the force of gravity ~f = m~g, which

can be decomposed into two orthogonal components, one

along the rod orientation, ~fn, and another tangential to

the sphere displacement, ~ft. The action of ~fn is counter-

acted by a respective reaction ~fr, as there is no possibility

of the rod to expand or contract, so that ~fn + ~fr = 0 and

then ~fr = −~fn. On the other hand, the tangential com-

ponent induces an angular displacement of the sphere.

By trigonometric decomposition of ~f , we derive the mag-

nitudes ft = f sin(β(t)) and fn = f cos(β(t)). Recall

that the angular acceleration β̈(t) is related to the linear

counterpart a(t) as a(t) = Lβ̈(t). By Applying Newton’s

second law, we derive:

ft = mg sin(β(t)) = −ma(t) ≈ −mL β̈(t)⇒ (15)

β̈(t) = − g
L
sin(β(t)).

Though this differential equation completely specifies

the angular displacement β(t), it is difficult to solve as
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a consequence of its nonlinearity. For small angular dis-

placements β(t) � 1 rad, we can adopt the approxima-

tion sin(β) ≈ β, implying the simplified linear differential

model

β̈(t) = − g
L
β(t). (16)

We observe that the name harmonic motion tradition-

ally refers to the fact that the restoring force is directly

proportional to the opposite displacement, as in the pre-

vious equation.

The solution of Equation 16 yields β(t) =

β0cos
(√

g/L t
)

= β0 sin
(√

g/L t+ π/2
)

. Thus,

we find that the considered pendulum undergoes a sinu-

soidal oscillation around the vertical axis with angular

amplitude of the oscillation equal to β0. By considering

that
√
g/L = ω(t), we have f = 1/(2π)

√
g/L. By

making θ = π/2 , the solution can now be expressed as

β(t) = β0 sin(ωt+ θ) = β0sin(Φ(t)), (17)

which is in the same form as Equation 2.

Therefore, we obtain that a linear pendulum produces

a signal that can be described by a phasor. We also have

that Φ(t) corresponds to the angular displacement of the

phasor associated to the oscillator, i.e. eiΦ(t).

7 Independent Harmonic Oscilla-

tors

Let’s now consider not one, but N oscillators that are

completely disconnected, and therefore, independent one

another. Each of these oscillators j will have respective

angular frequency ωj and phase θj . Because the phase

is 2π-periodical, it is convenient to visualize the phase in

the complex plane. Considering the Euler equation, we

have:

sin (ωjt+ θj) = Im
(
ei(ωjt+θj)

)
= Im

(
ei(ωjt). eiθj

)
.

(18)

In case all the angular frequencies are equal, meaning

that ωj = ω for any oscillator j, the phase difference be-

tween any pair of oscillating signals xi(t) is time-invariant,

so we can conveniently visualize the oscillations only in

terms of the respective quantities eiθj (i.e. a phasor) de-

fined by the respective phases θj .

Figure 5 shows, in the complex plane, the distribution

of N = 100 phases following a uniform distribution in the

interval [−π, π). In order not to clutter the visualization

of the phasors, each of them is represented only in terms

of small circles of different collors.

Figure 5: Phasor representation of the phases of N = 100 oscillators

of the type xj(t) = sin(ωt + θj), where the phases θi were drawn

with uniformly random probability in the interval [−π, π). The

black dot near the center of the complex plane corresponds to the

parameter Π in Equation 19. Note that Π→ 0 as N →∞.

This type of phase distribution presents an intrinsic ‘or-

der’ that can be evaluated in terms of the parameter:

Π = reiψ =
1

N

N∑
j=1

eiθj , (19)

where r gives the phase coherence and ψ is the average

phase. Observe also that Π corresponds to the phasors

center of mass. For uniformly random distributions such

as that in Figure 5, it can be shown that r → 0 as N →∞.

8 The Kuramoto Model

The Kuramoto model was developed by Yoshiki Ku-

ramoto along the 70’s as a simplified version of Winfree’s

approach [2] to the synchronization of several coupled os-

cillators. Kuramoto was then able to solve this non-linear

dynamical problem in analytical fashion.

In the Kuramoto model (e.g.[3, 4]), the dynamics per-

formed by each oscillators is assumed to be governed by

the following equation

Φ̇i(t) = ωi+

N∑
i=1

Ki,jsin (Φj(t)− Φi(t)) = ωi+θ̇i(t). (20)

Here, K is a coupling matrix and Φi(t) is the angular

displacement of oscillator i, with i = 1, . . . , N . Each os-

cillator has its own natural angular velocity ωi. Observe

that when K = 0, i.e. the oscillators are uncoupled, we
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have Φ̇i = ωi, and each oscillator i will acquire an in-

dependent angular velocity ωi. Also important to keep

in mind that the individual oscillators in the Kuramoto

model are non-harmonic and non-linear.

For each oscillator, we can write

Φ̇i(t) = ωi + θ̇i(t)⇒ Φi(t) = ωit+ θ(t) + θ0, (21)

for i = 1, . . . , N , and where θ0 corresponds to a refer-

ence phase. This formulation allows us to associate each

oscillator to a respective phasor ei(wit+ ˙θi(t)), while dis-

regarding the reference phase θ0. In this way, we can

summarize the dynamics performed by each oscillator to

the function sin(Φi(t)).

Let’s take into account the situation arising when each

oscillator has a slightly different frequency ωi. More

specifically, it is assumed that these values are drawn from

a normal distribution with average µ and relatively small

standard deviation σ. For simplicity’s sake, but without

loss of generality, we make µ = 0. Let’s also assume that

all coupling weights are given as Ki,j = K/N , and that

K is relatively small, e.g. K = 1. As all oscillators in

the Kuramoto model have the same unitary amplitude,

all phasors will lie along the circle of radius 1 centered at

the origin of the complex plane.

Figure 6 illustrates the unfolding of the angular dis-

placements Φi(t) (calculated numerically) represented in

terms of the respective phasors. Here, K = 1, µ = 0 and

σ = 0.1 rad.

Recall that the angular velocities ωi of each oscillator

are slightly different one another, remaining fixed along

time. So, how can these oscillators synchronize in fre-

quency even so? This takes place because the phase vari-

ations θ̇i(t) implied by the governing Equation 20 effec-

tively act so as to achieve similar effective angular veloc-

ities ωi + θ̇i(t).

An important aspect of the Kuramoto dynamics re-

gards its specific stability. Depending on r andK, the syn-

chronization can be stable or unstable, defining respective

bifurcation diagrams (e.g. [3, 4]). The Kuramoto model

has motivated several extensions and variations, including

the consideration of complex interconnections (e.g. [11])

on the respective dynamics (e.g. [4]).

9 Concluding Remarks

Despite their relative simplicity, phasors allows us to vi-

sualize and identify relationships between phases in sev-

eral types of problems, including circuits, oscillators and

complex systems. In this text, we presented the phasor

notation at an introductory level and illustrated its po-

tential for applications with respect to an RC circuit, the

harmonic oscillations of a linear pendulum, a system of

independent oscillators, and the Kuramoto model. Sev-

eral other applications exist, and others will continue to

be devised.
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Costa’s Didactic Texts – CDTs

This is a Costa’s Didactic Text (CDT). CDTs

intend to be a halfway point between a formal sci-

entific article and a dissemination text in the sense

that they: (i) explain and illustrate concepts in a

more informal, graphical and accessible way than

the typical scientific article; and, at the same time,

(ii) provide more in-depth mathematical develop-

ments than a more traditional dissemination work.

It is hoped that CDTs can also provide integration

and new insights and analogies concerning the

reported concepts and methods. We hope these

characteristics will contribute to making CDTs

interesting both to beginners as well as to more

senior researchers.

Though CDTs are intended primarily for those

who have some preliminary experience in the

covered concepts, they can also be useful as

summary of main topics and concepts to be learnt

by other readers interested in the respective CDT

theme.

Each CDT focuses on a few interrelated concepts.

Though attempting to be relatively self-contained,

CDTs also aim at being relatively short. Links

to related material are provided in order to

complement the covered subjects.

The complete set of CDTs can be found

at: https://www.researchgate.net/project/

Costas-Didactic-Texts-CDTs.
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Figure 6: Time unfolding of phasors obtained from the phases of N oscillators in the Kuramoto model assuming K = 1, µ = 0 and σ = 0.1

rad. The angular velocities were drawn from a normal distribution with null mean and unit variance, and are remain fixed along time. The

plot titles indicate the respective time interaction, while the red X identifies the phasors center of mass, leaving the trajectory in black.
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