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ARTICLE

Coulombic self-ordering upon charging a large-
capacity layered cathode material for rechargeable
batteries
Benoit Mortemard de Boisse1, Marine Reynaud2, Jiangtao Ma1, Jun Kikkawa3, Shin-ichi Nishimura 1,4,

Montse Casas-Cabanas2, Claude Delmas5, Masashi Okubo1,4 & Atsuo Yamada 1,4

Lithium- and sodium-rich layered transition-metal oxides have recently been attracting sig-

nificant interest because of their large capacity achieved by additional oxygen-redox reac-

tions. However, layered transition-metal oxides exhibit structural degradation such as cation

migration, layer exfoliation or cracks upon deep charge, which is a major obstacle to achieve

higher energy-density batteries. Here we demonstrate a self-repairing phenomenon of

stacking faults upon desodiation from an oxygen-redox layered oxide Na2RuO3, realizing

much better reversibility of the electrode reaction. The phase transformations upon charging

A2MO3 (A: alkali metal) can be dominated by three-dimensional Coulombic attractive

interactions driven by the existence of ordered alkali-metal vacancies, leading to counter-

intuitive self-repairing of stacking faults and progressive ordering upon charging. The coop-

eratively ordered vacancy in lithium-/sodium-rich layered transition-metal oxides is shown to

play an essential role, not only in generating the electro-active nonbonding 2p orbital of

neighbouring oxygen but also in stabilizing the phase transformation for highly reversible

oxygen-redox reactions.
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The discovery of intercalation chemistry in layered
transition-metal oxides AMO2 (A=Li, Na and M=transi-
tion metal)1,2 in the early 1980s has led to the commer-

cialization of lithium-ion batteries3. Tremendous effort has since
been devoted to understanding how alkali-metal ions reversibly
(de)intercalate in AMO2 because this is essential to exploit their
large theoretical capacities (~275 mAh g−1 for LiCoO2 and ~235
mAh g−1 for NaCoO2, respectively). It is now well understood
that, at the early stage of A+ deintercalation, AxMO2 (0.4 < x <
1.0) exhibit an increase of their interlayer distance because the
depletion of screening A+ layers enhances the effective Cou-
lombic repulsion between oxide ions of adjacent MO2 layers4–8.
At the late stage of A+ deintercalation (0.0 < x < 0.4), high-valent
M increases the covalency of M−O bonds, and thus decreases the
negative charge on oxide ions. In this situation, O−O van der
Waals attraction forces are not sufficient to maintain the layered
structure, and the large volume variations induced at the end of
charge often initiate crack formation and delamination/exfolia-
tion8–10. Furthermore, the lack of alkali ions in the interlayer
space leads to structural degradation with migration of transition-
metal ions to neighboring tetrahedral sites11–13. This established
knowledge on the intercalation chemistry of AxMO2 explains the
practical limit of their reversible capacity (approximately for 0.4
< x < 1.0, i.e., 170 mAh g−1 for A= Li and 140 mAh g−1 for A=
Na). Therefore, the control of the competing Coulombic and van
der Waals forces in layered transition-metal oxides is of great
importance to achieve a large reversible capacity.

Layered A-excess transition-metal oxides (A1+yM1−yO2 or
A1[AyM1−y]O2) are recent major targets to increase the cathode
capacity by virtue of additional oxygen-redox reactions.
Li2MnO3-LiMO2 solid solutions have been reported to deliver
large capacities over 200 mAh g−114–16, and have more recently
been followed by Li2MO3 (M= Ru17, Ir18, RuSn17, and RuMn19)
and Na2MO3 (M= Ru20,21, RuSn21, and Ir22), all delivering large
capacities exceeding that of solely M redox. Although the changes
in the electronic state during the additional oxygen-redox reac-
tions have been intensively investigated, less attention has been
paid to the essential interaction dominating the phase transfor-
mation during the charge/discharge processes, presumably
because most oxygen-redox electrodes exhibit severe structural
degradation (i.e., oxygen-gas evolution, cation migration) at the
initial charge16,17,23,24. However, the extra A+ are expected to
play a crucial role in the structural transformation during the
charge/discharge processes. For example, the depletion of
screening A+ layers upon charging can be compensated by the
A+ supplied from the [AyM1−y]O2 layers18,20,22. Moreover, A+

(or vacancy after deintercalation) in the [AyM1−y]O2 layers is
expected to modulate the balance of competing Coulombic/van
der Waals forces, and hence largely influence the intercalation
chemistry.

We have recently studied the structure and electrochemistry of
O3-Na2RuO3 (or Na[Na1/3Ru2/3]O2), where [Na1/3Ru2/3]O2 layers
have a honeycomb-type ordered arrangement of Na and Ru20,25.
According to the classification of layered oxides, O3 denotes a
structure where Na+ ions occupy octahedral interlayer sites and
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Fig. 1 Stacking faults in Na2RuO3. a Observed and calculated (FAULTS refinement) synchrotron XRD patterns of O3-Na2RuO3 (pristine state). Observed
data, the calculated pattern, and the difference between observed and calculated data are shown as plus sign (red), solid line (black) and continuous line
(blue), respectively. The positions of Bragg reflections are indicated by vertical tick marks (green). The first diffraction peak has been excluded from the
refinement due to important asymmetry that FAULTS does not take into account. The insert is a zoom of the initial superstructure peaks (Warren fall).
b Representation of the stacking faults in O3-Na2RuO3, using the FAULTS unit cell described in the text. c, d Experimental and simulated SAED pattern
along the [100] (= <[110]C2/m>) direction, respectively
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the stacking of oxide ions is ABCABC (Supplementary Fig. 1)26.
Importantly, in contrast to most oxygen-redox electrodes, O3-
Na2RuO3 exhibits highly reversible (de)sodiation without struc-
tural degradation but rather exhibits progressive structural
ordering upon charging, which provides an opportunity for not
only detailed structural investigation as a model system but also
for essential strategies toward much larger reversible capacity.

In this work, synchrotron X-ray diffraction coupled with
planar-defect refinement analyses are applied to honeycomb
ordered NaxRuO3 phases (x= 2, 1, and 1/2), revealing a self-
repairing phenomenon of stacking faults upon charging, which
significantly stabilizes the reversible large capacity operation.
Driving force of the 3D self-ordering is strong long-range coop-
erative Coulombic interactions between MO3 slabs intermediated
by ordered vacancies.

Results
Stacking faults in Na2RuO3. O3-Na2RuO3 was synthesized by
decomposing Na2RuO4 at 850 °C for 12 h under Ar
atmosphere20,25. Figure 1a shows the experimental and calculated
synchrotron XRD patterns of O3-Na2RuO3, in which the most of
intense diffraction peaks can be fitted by the usual rhombohedral
lattice of O3-AMO2 layered oxides20. However, the main diffi-
culty hindering an accurate pattern fit lies in the broad nature of
some diffraction peaks and diffuse scatterings, which are

highlighted by the dashed rectangle in Fig. 1a. Such broadening is
typically observed for A2MO3 with honeycomb ordered [A1/3M2/

3]O2 layers, and arises from stacking disorder. These stacking
faults can be described by an occasional shift of the [A1/3M2/3]O2

layers perpendicularly to the stacking direction. In fact, in layered
materials, the crystal grows perpendicularly to the layer plane.
When a nucleation starts in a wrong position, a stacking fault
appears while the oxygen packing remains ideal. As a result, the
honeycomb ordering of the [A1/3M2/3]O2 layers is maintained but
the honeycomb stacking deviates from the ideal sequence
(Fig. 1b), which causes the peculiar asymmetric peak broadening
(Warren fall) observed in Fig. 1a as well as the diffuse streaks on
the selected area electron diffraction (SAED) pattern along the
[100]−<110>C2/m direction (Fig. 1c).

To refine the powder diffraction data for the structure
containing stacking faults, a FAULTS analysis, which allows the
incorporation of the occurrence probabilities of possible stack-
ings, was conducted27. As shown in Fig. 1a (Supplementary
Tables 1 and 2), the FAULTS analysis provides a satisfactory
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description of the superstructure peaks and indicates the
occurrence of ~40% stacking faults between the [Na1/3Ru2/3]O2

layers in pristine O3-Na2RuO3. This result is further supported by
the FAULTS-simulated SAED pattern that well reproduces the
diffuse streaks observed in the experimental SAED pattern
(Fig. 1d).

After evaluation of the stacking faults in pristine O3-Na2RuO3,
we studied the structural evolution of NaxRuO3 during the first
charge and discharge using in situ XRD. Figure 2 shows that the
phase transformation of NaxRuO3 involves three main phases:
O3-NaxRuO3, O1-Na1RuO3, and O1′-Na1/2RuO3. (De)sodiation
at 2.7 V vs. Na/Na+ (1.0<x<2.0) mainly proceeds through a two-
phase process between O3-NaxRuO3 and O1-Na1RuO3. As
reported previously, O1-Na1RuO3 has an ilmenite-type structure
(ABAB oxide-ions stacking and Na+ ions in interlayer octahedral
sites) where the honeycomb ordered [Ru2/3□1/3]O2 and [Na2/
3□1/3]O2 layers (□: Na+ vacancy) stack alternatively (Supple-
mentary Fig. 2)20. At the second charging plateau, a new phase
(O1′-Na1/2RuO3) with a shorter interlayer distance (4.91 Å vs.
5.21 Å for O1-Na1RuO3) appears at the expense of the O1 phase.
Its structure was determined from the synchrotron XRD pattern
of an electrochemically deintercalated sample, whose Rietveld
refinement is presented in Supplementary Fig. 3 and Supplemen-
tary Table 3. The diffraction peaks are successfully indexed in a
hexagonal lattice with P�31m symmetry with a= 5.1876(9) Å and
c= 4.906(1) Å. As the oxide-ion stacking sequence is ABAB and

Na+ occupies an octahedral site, we will refer to this phase as
O1′-Na1/2RuO3, where the alternate stacking of the honeycomb
ordered [Ru2/3□1/3]O2 and [Na1/3□2/3]O2 layers is maintained.
Then, the difference between the O1 and O1′ structures lies in the
Na content and on the respective stacking of the [Ru2/3□1/3]O2

layers, which are shifted from one another in O1-Na1RuO3 while
directly stacked in O1′-Na1/2RuO3 (Supplementary Figs. 2 and 3).
It is noteworthy that the superstructure peaks highlighted by the
arrows in Fig. 3a exhibit remarkable sharpening upon charging.
This suggests that stacking faults tend to disappear, assisted by
the adjustable layer gliding involved in the O3→O1′ transition.
The FAULTS refinements (Fig. 3c, d and Supplementary
Tables 4–6) indicate that the occurrence probability of stacking
faults indeed decreases from 40% in O3-Na2RuO3 to 10% (O1-
Na1RuO3) and then to 2% (O1′-Na1/2RuO3) (Fig. 3b). Therefore,
Na+ deintercalation (charging) from Na2RuO3 involves a self-
reorganization process that significantly diminishes the initial
amount of stacking faults. Importantly, the stacking faults are
reformed after discharging, making this ordering/faulting process
reversible, even after several cycles (Supplementary Figs. 4 and 5).

Self-ordering of stacking faults upon charging Na2RuO3. Based
on the complete knowledge of the structural evolution from O3-
Na2RuO3 to O1-Na1RuO3, and then to O1′-Na1/2RuO3, let us
now consider the Coulombic origin of the consolidation on the
phase transformation with the effect of gliding vectors t→ of the
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[Ru2/3Na1/3]O2 (or [Ru2/3□1/3]O2) layers (Fig. 4a–c). Note that
the vectors are given in the pseudo-hexagonal cell (O3-Na2RuO3)
or in the hexagonal cells (O1-Na1RuO3 and O1′-Na1/2RuO3;
Supplementary Table 7). In O3-Na2RuO3 (Fig. 4a), the NaO6

octahedron in Na layers shares edges with two NaO6 and four
RuO6 octahedra in the adjacent [Ru2/3Na1/3]O2 layers (Fig. 4d).
As the stacking faults only impact the stacking of the [Ru2/3Na1/3]
O2 layers, the Na+ ions in the Na layer have the same local
environment (Fig. 4e) and it can be considered that a different
stacking is equally probable in O3-Na2RuO3. However, in O1-
Na1RuO3 consisting of honeycomb ordered [Ru2/3□1/3]O2 and
[Na2/3□1/3]O2 layers with the ABAB oxygen packing (Fig. 4b), all
the octahedral positions in the slab share faces with the octahedral
positions of the interslab space (Supplementary Fig. 6). As a
result, the gliding vectors t→ that shift each layer of O3-Na2RuO3

to the ones of O1-Na1RuO3 are ideally adjusted to set each NaO6

octahedron in the [Na2/3□1/3] layers to share faces with a □O6

octahedron and a RuO6 octahedron in the adjacent [Ru2/3□1/3]
O2 layers (Fig. 4f and Supplementary Fig. 7). The stronger
attraction of the oxygen atoms surrounding a vacancy on the Na+

ion (later referred to as Na+−□ Coulombic attraction for sim-
plicity) and the Na+−Ru5+ Coulombic repulsion cooperatively
displace the Na+ ion toward □20. When assuming the hypo-
thetical stacking faults (Fig. 4g, h), one of two NaO6 octahedra is
trapped between two RuO6 octahedra, where strong Ru5+−Na+

−Ru5+ Coulombic repulsions make the faulted structural option
unfavorable. Consequently, during the O3 to O1 transformation,
slab gliding tends to occur in a way which minimizes the Cou-
lombic energy and as a consequence removes the stacking faults,
as described in Fig. 4 and Supplementary Fig. 7. Owing to the
three-directional gliding possibilities, most of the stacking faults
disappear during the transformation. However, the NaO6 octa-
hedron can occasionally be stabilized by the local □−Na+−□
Coulombic attraction (Fig. 4h), and some stacking faults may
remain in O1-Na1RuO3.

On the other hand, in O1′-Na1/2RuO3 (Fig. 4c and Supple-
mentary Fig. 3b), which consists of honeycomb ordered
alternating [Ru2/3□1/3]O2 and [Na1/3□2/3] layers, the NaO6

octahedron shares faces with two □O6 octahedra in the adjacent
[Ru2/3□1/3]O2 layers (Fig. 4c, i). Again with hypothetical stacking
faults resulting from t→ different from the ideal ones shown in
Supplementary Fig. 8, the NaO6 octahedron in the [Na1/3□2/3]
layer shares faces with □O6 and RuO6 octahedra, and the local
Na+-Ru5+ Coulombic repulsion prohibits the formation of the
faulted structure (Fig. 4j). Therefore, the amount of the stacking
faults in NaxRuO3 (1/2 ≤ x≤ 2) continuously diminishes as
desodiation proceeds, because the ordered stacking sequences
become electrostatically more favorable. As discussed above, no
peculiar local environment is stabilized in O3-Na2RuO3, which
allows for stacking faults reformation upon sodiation (Supple-
mentary Figs. 4 and 5).

Discussion
The aforementioned importance of the attractive A+−□ and
repulsive A+−M5+ Coulombic interactions can lead to more
general discussions on the phase stability of A2MO3 and AMO2

upon charging. Figure 5a shows the experimental evolution of the
interlayer distance upon charging various NaxMO2 (M= 3d)8,28

and Na2MO3 (M= 4d, 5d)22 compounds as a function of the
sodium content. Figure 5b shows the similar plots for the lithium
analogs, LiMO2 and Li2MO3

4,6,7,17,18. It is noteworthy that all
AMO2 (A= Li, Na and M= 3d) and all A2MO3 (A= Li, Na and
M= 4d, 5d) respectively follow the same tendencies.

As mentioned in the introduction, the phase transformation of
AxMO2 is dominated by the competing O−O Coulombic repul-
sion (0.4 < x < 1.0) and van der Waals attraction (0 < x < 0.4)
between adjacent MO2 layers4–8, which initiates the increase of
the interlayer distance (0.4 < x < 1.0) followed by its abrupt
decrease upon deeper charging (0 < x < 0.4). Structural evolution
in the “Coulombic domain” with large A+ content (0.4 < x < 1.0)
are highly reversible and is the basis of commercial positive
electrode materials such as LiCoO2 and Li[Ni1-y-zMnyCoz]O2,
while the “van der Waals domain” with smaller A+ content (0 < x
< 0.4) marks the limit of reversibility of many practical layered
oxides as a result of cation migration, spinel transformation, crack
formation, and delamination/exfoliation8–13.

On the contrary, the highly ordered nature of the [Ru2/3□1/3]
O2 layers of AxMO3 (M= Ru or Ir) triggers a progressive gain in
A+−□ Coulombic energy upon A+ extraction as the remaining
A+ ions cooperatively act as robust pillars between adjacent [Ru2/
3□1/3]O2 layers to prevent structural collapse. The slight decrease
of the interlayer distance is driven by Coulombic A+−□
attractive forces which are strong enough to induce the slab
glidings, O3 →O1 →O1′, forming a more-ordered structure upon
charging. It is this situation that realizes reversible
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charge–discharge reactions in ordered A2MO3 over a wide
compositional domain of the guest ion A+.

In summary, we identified a spontaneous reorganization of the
stacking faults in NaxRuO3, a model material to understand
oxygen-redox reactions in layered oxides for large-capacity bat-
tery electrodes. In particular, the progressive ordering upon
charging process is a general phenomenon to A2MO3 (A= Li, Na
and M= 4d, 5d) materials and is induced by the cooperative
effect of maximizing the A+−□ Coulombic attraction and
minimizing the A+−M5+ Coulombic repulsion, which sig-
nificantly enlarges the reversible operation range of layered oxi-
des. Complementarily to our previous work, in addition to
generate redox-active “orphaned” nonbonding oxygen 2p orbitals
to “activate” additional oxygen-redox reactions, honeycomb
ordering of M and □ contribute to “stabilizing” reversible phase
transformation. In this regard, the importance of the overall
material design that includes ordered vacancies with its neutral
charge to attract alkali cations was highlighted. By establishing
proper ways to control the stacking faults29–31 or vacancies32, the
concept of progressive ordering upon charging may be extended
to stabilize other related compounds33.

Methods
Synthesis of Na2RuO3. Na2RuO3 was prepared according to the literature25. First,
Na2RuO4 is prepared by mixing stoichiometric amounts of Na2O2 (Sigma-Aldrich)
and RuO2 (Kanto chemicals). Pellets are then made and introduced in a tubular
furnace to be annealed at 650 °C for 12 h under O2 atmosphere. After the synthesis,
Na2RuO4 is grinded and shaped into pellets again to be thermally decomposed into
Na2RuO3 at 850 °C for 12 h under Ar atmosphere. After cooling down to room
temperature, the sample is introduced in an Ar filled glovebox.

Characterization. The synchrotron XRD patterns were recorded at Aichi Syn-
chrotron Radiation Center (Aichi-SR, O3-Na2RuO3), and Photon Factory at High
Energy Accelerator Research organization (KEK-PF, BL-8B) or SPring-8 (O1-
Na1RuO3 and O1′-Na1/2RuO3, beamline 02B2). All samples were protected from
air exposure during the measurement. Rietveld refinement was performed using
Jana200634. Analyses of the stacking faults in the materials were carried out using
the FAULTS software27. The crystal structures were drawn using VESTA35.
Selected Area Electron Diffraction (SAED) patterns were recorded using an elec-
tron microscope (HF-3000S; Hitachi Ltd. and Titan Cubed; FEI Co.) operated at
300 kV. The camera length for SAED was calibrated with a Si crystal.

Electrochemistry. Electrochemical measurements were carried out in Na2RuO3/
electrolyte/Na half-cells assembled in CR2032 type coin cells. The electrolyte was 1
mol/L NaPF6 in EC:DEC (1:1) purchased from Chameleon Reagent. Positive
electrodes were prepared by coating a slurry made of active material (80 wt%)
mixed with acetylene black (10 wt%) and polyvinylidene (10 wt%) in NMP onto Al
foil. Sixteen-mm-diameter electrodes were cut after drying for one night under
vacuum at 120 °C. The positive and negative electrodes were separated by a layer of
Whatman glass fiber separator soaked with electrolyte. The galvanostatic curve was
recorded and controlled using a TOSCAT-3100 battery tester. The charge/dis-
charge rate was C/10 which corresponds to the (de)intercalation of 1 Na+ per
NaxRuO3 in 10 hours. The O1-Na1RuO3 and O1′-Na1/2RuO3 samples were pre-
pared by cycling sintered pellets (diameter 10 mm, weight ≈10–15 mg) of O3-
Na2RuO3 at C/50 (one Na+ exchanged in 50 h) until a given voltage (3.07 V and
4.0 V vs. Na/Na+ for O1-Na1RuO3 and O1′-Na1/2RuO3, respectively). The recov-
ered materials were then washed 3 to 5 times with dimethyl carbonate in the
glovebox before sending to the synchrotron facility.

In situ X-ray diffraction. In situ XRD was carried out in operando using an
in situ cell purchased from Bruker on a Bruker-AXS D8 ADVANCE (Co Kα
radiation) in 0.02o steps over the 2θ range of 17–25o at a C/10 rate. The cell
configuration is similar to the one described above except for the positive electrode
that consisted in a mixture of Na2RuO3 (85 wt%), acetylene black (10 wt%), and
polytetrafluoroethylene (5 wt%). Two layers of glass fiber separators were used to
prevent dendrite formation.

Data availability
The whole datasets are available from the corresponding author on request.
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