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Abstract In this paper, we describe geometrically the domain of elastic ma-
terials in terms of invariants of the integrity basis (including the positive defi-
niteness condition), prove a theoretical link between those polynomial invari-
ants and the Kelvin invariants of the elasticity tensor, to finally introduce the
concept of design transformation which leads to subsets of elastic materials
having identical Kelvin invariants. As an example of this approach, the set of
2D pentamode materials is fully characterized.
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1 Introduction

In linear elasticity, it is customary to describe an elastic material by its tensor
specified with respect to some basis. Such a way to describe elastic materials is
not satisfactory since rotating the matter produces, with respect to the same
basis, another elasticity tensor describing the same elastic material. Hence an
elastic material is not defined by an unique tensor but rather by the collection
of all elasticity tensors related by orthogonal transformations. This idea can
be condensed by describing elastic materials by a collection of quantities which
are invariant with respect to orthogonal transformations. These quantities are
often simply reffered to as the invariants of the elasticity tensor [9,42,5,32]. A
basis of invariants that are polynomial in terms of tensor components is called
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an Integrity Basis (ℐℬ). Elements of ℐℬ, also reffered to as Boehler invariants
[9] in the mechanical community, satisfy polynomial relations defining the set
of elastic materials as a domain within a higher dimensional space. Any point
of this domain is a uniquely defined elastic material, and it symmetry class
is encoded in the topology of the domain. In the case of planar elasticity the
domain of elastic materials lives in R5 (the situation is much more complicated
for 3D elasticity and will not be discussed here).

On the other hand, the Kelvin representation, originaly due to Kelvin [38]
and appearing again in the litterature of the 80’s [35,28],allows for the defini-
tion of 3 polynomial invariants (the elementary symmetric functions), called
Kelvin invariants, which are uniquely related to the 3 eigenvalues of such
tensorial representation. Such invariants are used in mechanics with different
purposes: dissymmetric elastic behaviour in tension and in compression [16],
yield and strength criteria [1,20], continuum damage mechanics [6,22,18,19,
23,27], characterization of elastic materials [35,10,11], material design [14]...
Moreover, the link between the eigenvalues of the Kelvin decomposition of 2D
elasticity tensor and the polar formalism [41,40] was described in [17].

In this paper, devoted to the 2D case, we will describe geometrically the
elastic material domain in terms of invariants of the integrity basis (including
the positive definiteness condition), prove a theoretical link between the two
non-equivalent sets of polynomial Kelvin and Boehler invariants, to finally in-
troduce the concept of design transformation which leads to elastic materials
subdomains with identical Kelvin invariants. tensor. Using design transfor-
mation, an explicit example is constructed showing that symmetry classes
identification cannot be achieved by studying the eigenvalue multiplicity of an
elasticity tensor. Finally, as a concluding example, the set of 2D pentamode
materials (bimode materials) initially introduced by [29] and well-investigated
in the field of meta-material studies is fully characterized.

Organization of the paper

The section 2 is devoted to a brief description of the space of 2D linear elastic
materials. In section 3, the decomposition of second-order symmetric tensor
space into deviatoric and spheric subspaces is introduced. In section 4, the
Clebsh-Gordan harmonic decomposition of elasticity tensors is detailed and
the integrity basis defined accordingly. In section 5 the positive definiteness
condition expressed in terms of the invariants of the integrity basis is pro-
vided, and a geometrical description of the elastic material domain is pro-
posed. In section 6, an explicit link between Boehler and Kelvin invariants,
that makes use of the spheric direction introduced in section 3 is shown. And,
finally, we introduce in section 7 the concept of design transformation which
transforms elastic materials while preserving the eigenvalues the elasticity An
explicit characterization of the geometric domains obtained by all possible
design transformations for an initially isotropic material is studied, with an
application to the specific case of pentamode materials.
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Notations

Throughout this paper, the physical space is modeled on the Euclidean space
ℰ2 with E2 its associated vector space. Once an arbitrary reference point cho-
sen, those spaces can be associated and 𝒫 = {e1, e2} will denote an orthonor-
mal basis of E2. For forthcoming needs, let also defined 𝒦 = {ê1, ê2, ê3} the
orthonormal canonical basis of R3, 𝒦 will be referred to as the Kelvin basis.

Tensor spaces:

– T denotes a tensor space;
– 𝑆2(R𝑛) is the space of symmetric second-order tensors in 𝑛-D;
– K𝑛 is the space of 𝑛-th order completely symmetric and traceless tensors

on R2, called harmonic tensors.

Tensors of order 0, 1, 2 and 4 are denoted respectively by 𝛼, v, a
∼

, A
≈

. The

simple, double and fourth-order contractions are written ·, :, :: respectively.
In components, with respect to 𝒫, these notations correspond to

u · v = 𝑢𝑖𝑣𝑖, a
∼

: b
∼

= 𝑎𝑖𝑗𝑏𝑖𝑗 ,

(A
≈

: B
≈

)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝑝𝑞𝐵𝑝𝑞𝑘𝑙, (A
≈

:: B
≈

) = 𝐴𝑝𝑞𝑟𝑠𝐵𝑝𝑞𝑟𝑠.

where the Einstein summation on repeated indices is used. When needed,
index symmetries of both spaces and their elements are expressed as follows:
(..) indicates invariance under permutations of the indices in parentheses, .. ..
indicates symmetry with respect to permutations of the underlined blocks.

Tensor products:

– ⊗ stands for the classical product, and ⊗𝑛 indicates its 𝑛-th power;
– 𝑆2 denotes its the completely symmetrized product, and 𝑆𝑛 its extension

to product of 𝑛 elements;
– ⊗ indicates the twisted tensor product defined by

(a
∼
⊗ b

∼
)𝑖𝑗𝑘𝑙 =

1

2
(𝑎𝑖𝑘𝑏𝑗𝑙 + 𝑎𝑖𝑙𝑏𝑗𝑘).

Special tensors:

– 1
∼

the second-order identity tensor;

– I
≈

= 1
∼
⊗ 1

∼
the fourth-order identity tensor of 𝑆2(R𝑛);

– K
≈

= 1
2 1
∼
⊗ 1

∼
the spheric projector;

– J
≈

= I
≈
− K

≈
the deviatoric projector.
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Matrix spaces:

– ℳ𝑛 is the space of 𝑛× 𝑛 dimensional square matrices;
– ℳ𝑆

𝑛 is the space of 𝑛× 𝑛 dimensional symmetric square matrices;
– ℳ𝑝,𝑞 is the space of 𝑝× 𝑞 rectangular matrices.

Groups:

The following matrix groups are considered in the paper:

– GL(𝑑): the group of all linear invertible transformations of R𝑑, i.e. F ∈
GL(𝑑) iff det(F) ̸= 0;

– O(𝑑): the orthogonal group, that is the group of all isometries of R𝑑 i.e.
Q ∈ O(𝑑) iff Q ∈ GL(𝑑) and Q−1 = Q𝑇 , where the superscript 𝑇 denotes
the transposition;

– SO(𝑑): the special orthogonal group, i.e. the subgroup of O(𝑑) consisting
of transformations satisfying det(Q) = 1.

Let detail the case 𝑑 = 2. As a matrix group, O(2) can be generated by:

R(𝜃) =

(︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂
, 0 ≤ 𝜃 < 2𝜋, and P(e2) =

(︂
1 0
0 −1

)︂
,

in which R(𝜃) is a rotation by an angle 𝜃 and P(n) is the reflection across the
line normal to n. SO(2) corresponds to the group of plane rotations generated
by R(𝜃). The following finite subgroups of O(2) will be used:

– Id, the identity group;
– Z𝑘, the cyclic group with 𝑘 elements generated by R(2𝜋/𝑘);
– D𝑘, the dihedral group with 2𝑘 elements generated by R(2𝜋/𝑘) and P(e2).

Miscellaneous notations:

– ℐℬ means Integrity Basis;
– ≃ denotes hereafter an isomorphism;
– ℒ(𝐸,𝐹 ) indicates the space of linear applications from 𝐸 to 𝐹 ;
– ℒ(𝐸) indicates the space of linear applications from 𝐸 to 𝐸;
– ℒ𝑠(𝐸) indicates the space of self-adjoint linear applications on 𝐸.

2 Space of linear elastic materials

2.1 The space elasticity tensors

In the field of linear elasticity, the constitutive law is a local linear relation
between the second-order symmetric Cauchy stress tensor 𝜎

∼
and the second-

order symmetric infinitesimal strain tensor 𝜀
∼

:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙. (1)



Space of 2D elastic materials: a geometric journey 5

𝜎
∼

and 𝜀
∼

belong to 𝑆2(R2), the space of bi-dimensional symmetric second-order

tensors. As a consequence elasticity tensors possess minor index symmetries

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘,

which are condensed in the notation: 𝐶(𝑖𝑗)(𝑘𝑙). Due to the potential energy
associated to the elastic behaviour another index symmetry has to be taken
into account:

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 .

This so-called major symmetry is encoded in the notation 𝐶𝑖𝑗 𝑘𝑙. Hence, com-
bined with the minor ones, we obtain the elastic index symmetries: 𝐶(𝑖𝑗) (𝑘𝑙).

The vector space of 2D elasticity tensors is defined as1:

Ela := {C
≈
∈ ⊗4R2|𝐶(𝑖𝑗) (𝑘𝑙)}, dimEla = 6,

and can also be viewed as

Ela = ℒ𝑠(𝑆2(R2)).

For being admissible, an elasticity tensor, considered as a quadratic form on
𝑆2(R2), should further be positive definite, meaning that its eigenvalues 𝜆𝑖

should verify

∃ 𝑀 ∈ R*+, 0 < 𝜆𝑖 ≤ 𝑀.

2.2 From active physical rotations to elastic materials

Consider O(2) the set of 2D isometric transformations. Its action on an element
T
≈

of Ela gives a new element T
≈

of Ela,

T
≈

= Q ⋆ T
≈
,

in which the star product ⋆ stands for the standard tensorial action. In com-
ponents, with respect to 𝒫, this action can be detailed:

𝑇 𝑖𝑗𝑘𝑙 = 𝑄𝑖𝑝𝑄𝑗𝑞𝑄𝑘𝑟𝑄𝑙𝑠𝑇𝑝𝑞𝑟𝑠 .

The nature of a material does not change when it is subjected to a rotation or
a flip (mirror isometry though a line). On the contrary the elasticity tensor
will change with respect to a given reference frame, for instance 𝒫, so that
multiple tensors can be associated to one elastic material.

1 Even if obvious, it is worth mentioning that both the stiffness tensor and its inverse,
the compliance tensor, belong to the same vector space. Hence in the following no physical
interpretation (stiffness or compliance) will be given to elements of Ela.
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From a physical point of view, the necessary and sufficient conditions for
two elasticity tensors T1

≈
,T2

≈
∈ Ela to represent the same elastic material,

denoted T1
≈

∼ T2
≈

, writes

T1
≈

∼ T2
≈

⇔ ∃Q ∈ O(2) | T1
≈

= Q ⋆ T2
≈
.

The collection of all elasticity tensors that describe the same elastic material
is a geometric object called the orbit of T1

≈
and defined by

𝒪(T1
≈

) = {T
≈
∈ Ela, ∃Q ∈ O(2) | T

≈
= Q ⋆ T1

≈
}.

For some transformation, the resulting tensor is identical to the original one.
The set of orthogonal transformations letting T1

≈
invariant constitutes its sym-

metry group

GT1
≈

:= {Q ∈ O(2), |T1
≈

= Q ⋆ T1
≈
}.

Let consider the following equivalence relation among elements of Ela,

T1
≈

≈ T2
≈

⇔ ∃Q ∈ O(2) | GT1
≈

= QGT2
≈

Q−1.

This relation indicates that two tensors are equivalent if their symmetry groups
are conjugate. The equivalence classes for this relation are called strata. More
specifically, in what follows 𝛴[𝐺] will denote the equivalence class of elasticity
tensors having their symmetry group conjugate to 𝐺. In other words, [𝐺] is
the symmetry class of the elements of the stratum 𝛴[𝐺] [4,3]. The space of 2D
elasticity tensors is divided into 4 strata [25,42,3]:

Ela = 𝛴[Z2] ∪𝛴[D2] ∪𝛴[D4] ∪𝛴[O(2)].

In mechanical terms, 𝛴[Z2] corresponds to the set of biclinic materials, 𝛴[D2]

to the set of orthotropic materials, 𝛴[D4] to the set of tetragonal materials and
𝛴[O(2)] to isotropic materials [45].

3 Decomposition of second-order symmetric tensors space

Since elasticity tensors are linear symmetric applications on 𝑆2(R2), a first
step to describe Ela is to understand the structure of 𝑆2(R2). This is the aim
of the present section.
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3.1 The harmonic basis

With respect to 𝒫 = (e1, e2), t
∼
∈ 𝑆2(R2) can be represented by

t
∼

=

(︂
𝑡11 𝑡12
𝑡12 𝑡22

)︂
𝒫
.

It is possible to turn this second-order symmetric tensor into a genuine vector
of R3 by defining the following linear application 𝜑 : 𝑆2(R2) → R3:

ê1 = 𝜑(e1 ⊗ e1),

ê2 = 𝜑(e2 ⊗ e2),

ê3 = 𝜑(

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1)).

(2)

The canonical basis 𝒦 = {ê𝑖} of R3 will be referred to as the Kelvin basis.
With respect to 𝒦, we can define the vector t̂ image of t

∼
by 𝜑

t̂ = 𝜑( t
∼

) =

⎛⎝ 𝑡11
𝑡22√
2 𝑡12

⎞⎠
𝒦

.

These two representations are isometric since t
∼

: t
∼

= t̂ · t̂. A third represen-

tation is possible. This representation is associated to the decomposition of
𝑆2(R2) into a deviatoric space (K2) and a spheric one (K0):

𝑆2(R2) ≃ K2 ⊕K0. (3)

Hence any t
∼
∈ 𝑆2(R2) can be decomposed accordingly. This decomposition,

which is unique, is given by the well-known formula:

t
∼

= d
∼

+ 𝛼1
∼
, with 𝛼 =

1

2
t
∼

: 1
∼
, d

∼
= t

∼
− 𝛼1

∼
. (4)

with d
∼
∈ K2 and 𝛼 ∈ K0. Associated to this decomposition, we define a new

basis ℋ =
{︁

f̂1, f̂2, f̂3

}︁
, with

f̂1 =

√
2

2
(ê1 − ê2), f̂2 = ê3, f̂3 =

√
2

2
(ê1 + ê2).

This new basis ℋ will be referred to as the harmonic basis. The passage matrix
P from 𝒦 to ℋ is given by

𝑃𝑖𝑗 = ê𝑖 · f̂𝑗 , P =

⎛⎜⎝
√
2
2 0

√
2
2

−
√
2
2 0

√
2
2

0 1 0

⎞⎟⎠
𝒦

.
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and can be shown to be an element of O(3)∖SO(3). With respect to ℋ, t̂ is
expressed as

t̂ =
√

2

⎛⎝ 𝑡11−𝑡22
2
𝑡12

𝑡11+𝑡22
2

⎞⎠
ℋ

.

(︀
𝑡11−𝑡22

2 , 𝑡12
)︀𝑇

and 𝑡11+𝑡22
2 corresponds respectively to the deviatoric and

spheric parts of t̂.
The relations between these different bases are summed up in the following

diagram:

Physical Space: R2, 𝒫 = {e𝑖}
⊗ // 𝒫⊗𝑛

= {e𝑖1 ⊗ . . .⊗ e𝑖𝑛}

𝜑

��
Strain-Stress Space (Kelvin basis): R3 , 𝒦 = {ê𝑖}

⊗ //

P

��

𝒦⊗𝑚

= {ê𝑖1 ⊗ . . .⊗ ê𝑖𝑚}

P

��
Strain-Stress Space (Harmonic basis): R3 , ℋ = {f̂𝑖}

⊗ // ℋ⊗𝑚

= {f̂𝑖1 ⊗ . . .⊗ f̂𝑖𝑚}

3.2 Representation of physical rotations

The interest of the different bases introduced is revealed when studying how
tensors transform with respect to active rotations, that is to elements of the
rotation group SO(2). An element of SO(2) is parametrized by

R
∼

=

(︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂
𝒫
.

Its action on t
∼

of 𝑆2(R2) gives a new element t
∼

of 𝑆2(R2), the components of

which are related to those of t
∼

in the following manner

𝑡𝑖𝑗 = 𝑅𝑖𝑝𝑅𝑗𝑞𝑡𝑝𝑞.

By defining R̂
∼

= 𝜑(R
∼

⊗ R
∼

), the former action expressed in R2, can be refor-

mulated directly in R3:

t̂ = R̂
∼

t̂.

In the same way, a rotated elasticity tensor expressed as a second-order tensor
in R3 is

T̂
∼

= R̂
∼

T̂
∼

R̂
∼

𝑇
.
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R̂
∼

has the following matrix expression in 𝒦:

R̂
∼

=
1

2

⎛⎝1 + cos 2𝜃 1 − cos 2𝜃 −
√

2 sin 2𝜃

1 − cos 2𝜃 1 + cos 2𝜃
√

2 sin 2𝜃√
2 sin 2𝜃 −

√
2 sin 2𝜃 2 cos 2𝜃

⎞⎠
𝒦

.

It can be checked that R̂
∼
∈ SO(3) and corresponds to a rotation of 2𝜃 around

the axis f̂3. Expressed in ℋ, the matrix of R̂
∼

reads

R̂
∼

=

⎛⎝cos(2𝜃) − sin(2𝜃) 0
sin(2𝜃) cos(2𝜃) 0

0 0 1

⎞⎠
ℋ

. (5)

Physical rotation matrices are well-structured in the harmonic basis. The ge-
ometric content is clear, when an element of 𝑆2(R2) is rotated by an angle 𝜃,
its spherical part is invariant, while its deviatoric part is turned by an angle
2𝜃.

4 Invariant description of Ela

To construct a geometric description of the space of 2D elastic materials,
the use of invariant functions is required. For our needs, those functions will
mostly be considered as polynomial. To construct the polynomial invariants
of a tensor, the first step is to decompose this tensor into elementary parts.
This decomposition is the object of subsection 4.1. The construction of poly-
nomial invariants and their geometric interpretation will be the object of sub-
section 4.2 and subsection 4.3.

4.1 Decompositions of fourth-order elasticity tensors

Let’s go back to Ela, this space is shown to have the following isotypic struc-
ture [3]

Ela ≃ K4 ⊕K2 ⊕ 2K0,

in which K4 is the space of 2D fourth-order harmonic tensors, that is of com-
plete symmetric and traceless fourth-order tensors. Since more than one copy
of K0 are involved there are multiple explicit harmonic decompositions [24,3].
This leads to multiple couples of isotropic parameters. A specific choice is the
Clebsch-Gordan interpretation of the harmonic decomposition [2]

T
≈

= D
≈

+
1

2
(1
∼
⊗ d

∼
+ d

∼
⊗ 1

∼
) + 𝜅(1

∼
⊗ 1

∼
) + 𝛾J

≈
, (6)

where D
≈
∈ K4, d

∼
∈ K2 and {𝜅, 𝛾} ∈ K0.
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Using the Kelvin representation, a fourth-order elasticity tensor is repre-
sented as the following matrix in basis 𝒦

T̂
∼

=

⎛⎝ 𝑇1111 𝑇1122

√
2𝑇1112

𝑇1122 𝑇2222

√
2𝑇1222√

2𝑇1112

√
2𝑇1222 2𝑇1212

⎞⎠
𝒦

. (7)

d
∼
∈ K2 and D

≈
∈ K4 can be parametrized in the Kelvin basis by

d̂
∼

=

⎛⎝ 𝑑1
−𝑑1√
2 𝑑2

⎞⎠
𝒦

, D̂
∼

=

⎛⎝ 𝐷1 −𝐷1

√
2𝐷2

−𝐷1 𝐷1 −
√

2𝐷2√
2𝐷2 −

√
2𝐷2 −2𝐷1

⎞⎠
𝒦

. (8)

A structure is made apparent by writing the harmonic decomposition of Ela
in the basis2 ℋ:

T̂
∼

=

⎛⎝2𝐷1 + 𝛾 2𝐷2 𝑑1
2𝐷2 −2𝐷1 + 𝛾 𝑑2
𝑑1 𝑑2 2𝜅

⎞⎠
ℋ

. (9)

The previous matrix is well-structured which means,

𝜎
∼
𝑑 = T

≈
𝑑𝑑 : 𝜀

∼
𝑑 + T

≈
𝑑𝑠 : 𝜀

∼
𝑠,

𝜎
∼
𝑠 = T

≈
𝑠𝑑 : 𝜀

∼
𝑑 + T

≈
𝑠𝑠 : 𝜀

∼
𝑠,

(10)

with

T
≈
𝑑𝑑 = D

≈
+ 𝛾J

≈
, T

≈
𝑑𝑠 =

1

2
d
∼
⊗ 1

∼
, T

≈
𝑠𝑠 = 𝜅(1

∼
⊗ 1

∼
).

This particular block form for writing the elasticity tensor will be referred to as
the Clebsch-Gordan representation. This form consists in writing the elasticity
tensor as a symmetric linear application on K2 ⊕K0:

Ela ≃ ℒ𝑠(K2 ⊕K0) = ℒ𝑠(K2) ⊕ ℒ𝑠(K0) ⊕ ℒ(K0,K2).

This decomposition is induced on the linear operator and the elasticity tensor
appears to be structured by blocks:

T
≈

=

[︃
T
≈
𝑑𝑑 T

≈
𝑑𝑠

T
≈
𝑠𝑑 T

≈
𝑠𝑠

]︃
. (11)

2 The matrix normal forms of an elasticity tensor T
≈
for each symmetry classes are provided

in the basis ℋ in Appendix A.
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4.2 Integrity basis for elasticity tensors

Integrity basis is, for a given space V and for a given group action 𝐺, a set of
fundamental polynomial invariants such that any 𝐺-invariant polynomial on
V is a polynomial in the elements of the integrity basis [43]. Integrity basis
will be denoted ℐℬ(V, 𝐺).

In the present situation, that is for V = Ela and 𝐺 = O(2), the integrity
basis:

1. is finitely generated, i.e. ♯ℐℬ(Ela,O(2)) < +∞;
2. separates the orbits

ℐℬ(Ela,O(2))(T1
≈

) = ℐℬ(Ela,O(2))(T2
≈

) ⇔ T1
≈

∼ T2
≈
.

In other terms, the invariants of the integrity basis define an application from
the space of elasticity tensors to Ela/O(2), the space of elastic materials [5].
From now on, the notation will be shortened simply to ℐℬ. Integrity bases for
O(2)-action on the space of plane elasticity tensors are known since the second-
half of the 90’ [7,42] and are constructed from the harmonic decomposition of
Ela [9,31,5]. Let consider the following quantities:

𝐼1 = 𝜅, 𝐽1 = 𝛾, 𝐼2 = d
∼

: d
∼
, 𝐽2 = D

≈
:: D

≈
, 𝐼3 = d

∼
: D
≈

: d
∼
. (12)

Those elements are O(2)-invariant and, in the chosen notation, the subscript
indicates the degree of the polynomial invariants in the elasticity tensor.

We have the following result [42]:

Theorem 4.1. A minimal integrity basis for O(2)-action on Ela is

ℐℬ = (𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐼3) .

Those elements are free meaning that they are not related by any polyno-
mial relation. They satisfy, however, the following inequality

𝐼22𝐽2 − 2𝐼23 ≥ 0. (13)

This Cauchy-Schwarz type inequality comes from the fact we are dealing with
real valued tensors [2]. This inequality is fundamental and its geometric mean-
ing explicited in the next subsection.

We define the following application from Ela to Ela/O(2) which associates
to a tensor its (uniquely defined) elastic material:

ℐℬ(T
≈

) :=
(︁
𝐼1(T

≈
), 𝐽1(T

≈
), 𝐼2(T

≈
), 𝐽2(T

≈
), 𝐼3(T

≈
)
)︁
.

This set of polynomial invariants will be referred to as Boehler invariants.

Remark 4.2. The invariants 𝐼2 and 𝐽2 are, by definition, such that

𝐼2 ≥ 0, 𝐽2 ≥ 0. (14)
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Remark 4.3. Using the parametrization (8), the invariants 𝐼2, 𝐽2, 𝐼3 of the
integrity basis read

𝐼2 = 2(𝑑21 + 𝑑22), 𝐽2 = 8(𝐷2
1 + 𝐷2

2), 𝐼3 = 4𝐷1(𝑑21 − 𝑑22) + 8𝐷2𝑑1𝑑2. (15)

Remark 4.4. In the polar formalism [41,40], the elasticity tensor is parametrized
by the polar components (𝑡0, 𝑡1, 𝑟0, 𝑟1, 𝜙0, 𝜙1). Their link with the integrity ba-
sis is given by

𝐼1 = 2𝑡1, 𝐽1 = 2𝑡0, 𝐼2 = 32𝑟21, 𝐽2 = 8𝑟20, 𝐼3 = 64𝑟0𝑟
2
1 cos 4(𝜙1 − 𝜙0).

4.3 A geometric representation of elastic materials (vector space Ela)

As introduced in section 2, Ela is divided into 4 strata:

Ela = 𝛴[Z2] ∪𝛴[D2] ∪𝛴[D4] ∪𝛴[O(2)].

For the least symmetric class, that is for biclinic elastic materials, the poly-
nomial invariants of ℐℬ are algebraically independent. A biclinic material is
described by five independent quantities, that is by a point in R5. The location
of this point is not any, since constrained by the relations (13) and (14).

In Figure 1 are summed-up the different transitions from a symmetry
class to another expressed in terms of polynomial relations between invariants.
While 𝛴[D2] = 𝛴𝑜𝑟𝑑

[D2]
∪ 𝛴𝑠𝑝𝑒𝑐

[D2]
, the set 𝛴𝑜𝑟𝑑

[D2]
and 𝛴𝑠𝑝𝑒𝑐

[D2]
have been considered

in this figure. Elements of the set 𝛴𝑜𝑟𝑑
[D2]

are ordinary orthotropic elasticity
tensors. It only contains elements obtained just by imposing orthotropic in-
variance to generic anisotropic tensors. Elements of the set 𝛴𝑠𝑝𝑒𝑐

[D2]
are special

orthotropic tensors, they are not ordinary since extra restriction, i.e. other than
invariance properties, are needed to define them (those tensors correspond to
𝑅0-orthotropic tensors [39]).

𝛴[Z2]

𝐽2=0
{{

𝐼22𝐽2−2𝐼23=0, 𝐽2 ̸=0

##
𝛴𝑠𝑝𝑒𝑐

[D2]

𝐼2=0

��

𝛴𝑜𝑟𝑑
[D2]

𝐼2=0

��
𝛴[D4]

𝐽2=0
{{

𝛴[O(2)]

Fig. 1: Breaking symmetry conditions of Ela.
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In Figure 2 is represented the space of elastic materials (vector space
Ela) with respect to (𝐼2, 𝐽2, 𝐼3), without taking the positive definiteness con-
dition into account. The surface, which corresponds to the polynomial equa-
tion 𝐼22𝐽2 − 2𝐼23 = 0 contains all the at-least-orthotropic materials (stratum
𝛴[D2] = 𝛴[D2] ∪ 𝛴[D4] ∪ 𝛴[O(2)]). The condition 𝐼22𝐽2 − 2𝐼23 > 0 indicates on
which side of the orthotropic surface are the biclinic materials located (strata
𝛴[Z2]).

Finally, we get that, independently of the values of the isotropic invariants
𝐼1 and 𝐽1:

– biclinic materials (stratum 𝛴[Z2]) are strictly inside the volume defined by
the surface;

– point 𝑂 corresponds to isotropic materials (stratum 𝛴[O(2)]);
– open ray ]𝑂𝐴) corresponds to tetragonal materials (stratum 𝛴[D4]);
– open ray ]𝑂𝐵) corresponds to 𝑅0−orthotropic materials (stratum 𝛴𝑠𝑝𝑒𝑐

[D2]
);

– surface without {𝑂}∪ ]𝑂𝐴)∪ ]𝑂𝐵) corresponds to ordinary orthotropic
materials (stratum 𝛴𝑜𝑟𝑑

[D2]
).

Fig. 2: Algebraic variety of elastic materials with respect to (𝐼2, 𝐽2, 𝐼3)
(without taking the positive definiteness condition into account).
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5 Invariant based positive definiteness condition for elastic
materials

As previously said in section 2.1, an element T
≈

of Ela is admissible if, consid-

ered as a linear application on 𝑆2(R2), its eigenvalues 𝜆𝑖 verifies

∃ 𝑀 ∈ R*+, 0 < 𝜆𝑖 ≤ 𝑀.

so that only the restriction of Ela to the cone3 of symmetric definite elasticity
tensors can be associated to elastic materials. Our aim is now to express this
condition using the invariants of the integrity basis ℐℬ.

First, it has to be observed that the eigenvalues of T
≈

are algebraic (i.e.

the roots of a polynomial equation) invariants of O(3). We have the following
lemma [33]:

Lemma 5.1. A symmetric matrix 𝑀 in ℳ𝑛(R) is positive definite if and
only if 𝜎𝑘(𝑀) > 0, with {𝜎𝑘} the set of elementary symmetric polynomials.

It can be checked by a direct calculation that

𝜎1 = 2(𝐼1 + 𝐽1),

𝜎2 = 4𝐼1𝐽1 + 𝐽2
1 − 1

2
(𝐼2 + 𝐽2),

𝜎3 =
1

2
(𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽

2
1 − 2𝐼1𝐽2).

(16)

so that the positive definiteness condition can be expressed in terms of the
elements of the integrity basis:

T
≈

is positive definite ⇔

⎧⎪⎪⎨⎪⎪⎩
𝐼1 + 𝐽1 > 0,

4𝐼1𝐽1 + 𝐽2
1 − 1

2
(𝐼2 + 𝐽2) > 0,

𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽
2
1 − 2𝐼1𝐽2 > 0.

(17)

To obtain simpler expressions, the Clebsch-Gordan form of the elasticity
tensor can be exploited. To that aim consider the following lemma [33]:

Lemma 5.2. Consider 𝑀 ∈ ℳ𝑆
𝑝+𝑞 a real symmetric matrix having the fol-

lowing block shape

𝑀 =

(︂
𝐴 𝐵
𝐵𝑇 𝐶

)︂
with 𝐴 ∈ ℳ𝑆

𝑝 , 𝐶 ∈ ℳ𝑆
𝑞 , 𝐵 ∈ ℳ𝑝,𝑞. Let 𝑀/𝐴 be the Schur complement of 𝐴

in 𝑀 :
𝑀/𝐴 = 𝐶 −𝐵𝑇𝐴−1𝐵

and 𝑀/𝐶 be the Schur complement of 𝐶 in 𝑀 :

𝑀/𝐶 = 𝐴−𝐵𝐶−1𝐵𝑇

Then the following conditions are equivalent:

3 A subset 𝒞 of a vector space V is a cone if for each 𝑝 in 𝒞 and positive scalars 𝜆, 𝜆𝑝 ∈ 𝒞.
The cone is said convex provided 𝜆𝑝+𝜇𝑞 ∈ 𝒞, for any positive scalars 𝜆, 𝜇 and any 𝑝, 𝑞 ∈ 𝒞.
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1. 𝑀 is positive definite if and only if 𝐴 and 𝑀/𝐴 are positive definite;
2. 𝑀 is positive definite if and only if 𝐶 and 𝐶/𝐴 are positive definite.

This approach applied respectively to T
≈
𝑑𝑑 and to T

≈
𝑠𝑠 (defined in (10)) pro-

vides the following equivalent sets of definite positiveness conditions expressed
in terms of the elements of the integrity basis:

T
≈

is positive definite ⇔

⎧⎪⎨⎪⎩
𝐽1 > 0,

2𝐽2
1 − 𝐽2 > 0,

𝐼3 − 2𝐽2𝐼1 − 𝐼2𝐽1 + 4𝐽2
1 𝐼1 > 0,

,

⇔

⎧⎪⎨⎪⎩
𝐼1 > 0,

8𝐼1𝐽1 − 𝐼2 > 0,

𝐼3 − 2𝐽2𝐼1 − 𝐼2𝐽1 + 4𝐽2
1 𝐼1 > 0.

.

From a physical standpoint, this way of expressing positive definiteness
conditions is more satisfactory since we obtain explicit physical conditions:

– the isotropic invariants 𝐼1 and 𝐽1 are strictly positive quantities;
– restriction on the norm of the spheric/deviatoric coupling : 𝐼2 < 8𝐼1𝐽1;
– restriction on the norm of the anisotropic part of the deviatoric elasticity:

𝐽2 < 2𝐽2
1 .

The last condition is less straightforward to interpret.
Further, a look at the two sets of conditions suggests to introduce the

following reduced anisotropic invariants:

𝑖2 =
𝐼2

8𝐼1𝐽1
, 𝑗2 =

𝐽2
2𝐽2

1

, 𝑖3 =
𝐼3

8𝐼1𝐽2
1

. (18)

The positive definiteness conditions read

T
≈

is positive definite ⇔

{︃
0 ≤ 𝑗2 < 1,

2𝑖3 − 𝑗2 − 2𝑖2 + 1 > 0,

⇔

{︃
0 ≤ 𝑖2 < 1,

2𝑖3 − 𝑗2 − 2𝑖2 + 1 > 0.

The normalization of the inequality (13) shows that −1 < 𝑖3 < +1. Together
with condition (13), the complete set4 of conditions for positive definiteness
of a real valued fourth-order elasticity tensor read⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑖2 < 1,

0 ≤ 𝑗2 < 1,

− 1 ≤ 𝑖3 ≤ +1,

1

2
(−1 + 2𝑖2 + 𝑗2) < 𝑖3,

𝑖23 ≤ 𝑖22𝑗2.

(19)

4 The number of inequations in the presented set is not minimal.
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The geometric domain associated to (19) is presented in figure 3 (note that
the quantities on the three axes are different from figure 2). The geometric
domain of positive definite elasticity tensors is strictly located above the plane
and inside the volume defined by the surface. For 𝑗2 = 1, the plane and the
surface are coincident.

Remark 5.3. In the framework of the polar method [41,40], an equivalent set
for positive definiteness condition was introduced using the polar components
(𝑡0, 𝑡1, 𝑟0, 𝑟1, 𝜙0, 𝜙1):

𝑡0 > 𝑟0 ≥ 0 and 𝑡1(𝑡20 − 𝑟20) > 2𝑟21 (𝑡0 − 𝑟0 cos 4(𝜙0 − 𝜙1))

Remark 5.4. By doing the normalization procedure (18), the set of reduced
invariants does not design a unique elastic material anymore but rather a
family of elastic materials. It is possible to define the following equivalence
relation: two elasticity tensors T1

≈
,T2

≈
∈ Ela are equivalent if and only if

∃𝛼, 𝛽 ∈ R , (𝛼, 𝛽) ̸= (0, 0) such that T̂
∼2

= H
∼

(𝛼, 𝛽)T̂
∼1

H
∼

(𝛼, 𝛽),

with5

H
∼

(𝛼, 𝛽) =

⎛⎝𝛼 0 0
0 𝛼 0
0 0 𝛽

⎞⎠
ℋ

.

For T
≈

=

[︃
T
≈
𝑑𝑑 T

≈
𝑑𝑠

T
≈
𝑠𝑑 T

≈
𝑠𝑠

]︃
(using the CG block notation (11)), elasticity tensors of

the following form[︃
𝛼2T

≈
𝑑𝑑 𝛼𝛽T

≈
𝑑𝑠

𝛼𝛽T
≈
𝑠𝑑 𝛽2T

≈
𝑠𝑠

]︃
with 𝛼, 𝛽 ∈ R and (𝛼, 𝛽) ̸= (0, 0),

possess identical reduced invariants. More details can be found in Appendix D.

6 An explicit link between Boehler and Kelvin invariants

The invariants considered in this paper are polynomial functions of the tensor
considered as a geometric object in the physical space R2, the group of in-
variance being O(2). As previosuly discussed (subsection 4.2) these quantities
are referred to as the Boehler invariants [9,5]. The eigenvalues of symmetric
tensors constitute another system of invariant functions. Since eigenvalues are
algebraic invariants, we will rather consider the coefficients of the character-
istic polynomial which are given by the elementary symmetric polynomials.
Those quantities will be referred to as (polynomial) Kelvin invariants. The
two sets (with Boehler and Kelvin invariants) coincide only for second-order

5 The matrices H
∼
(𝛼, 𝛽) and R̂

∼
(𝜃) commute.
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Fig. 3: Positive definiteness elasticity domain in terms of reduced anisotropic
invariants (front and back views).
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tensors. For the space of fourth-order elasticity tensors Ela, the Boelher set
comprises 5 O(2)-invariants (𝐼1, 𝐽1, 𝐼2, 𝐽2, 𝐼3), while Kelvin set comprises 3
O(3)-invariants (𝜎1, 𝜎2, 𝜎3). To build a bridge between these sets, let consider
the following classical result [34,37,8,44]:

Lemma 6.1. Let (a
∼
,u) ∈ V = 𝑆2(R3) × R3 and set

𝑖1,0 := tr a
∼
, 𝑖2,0 := tr a

∼
2, 𝑖3,0 := tr a

∼
3,

𝑖0,2 := u · u, 𝑖1,2 := u · (a
∼
· u), 𝑖2,2 := u · (a

∼
2 · u).

(20)

A minimal integrity basis ℐℬ for V with respect to the standard O(3)-action
is given by the collection

ℐℬ(V) = {𝑖1,0, 𝑖2,0, 𝑖3,0, 𝑖0,2, 𝑖1,2, 𝑖2,2}.

In the notation 𝑖𝑝,𝑞, 𝑝 is the degree in a
∼
and 𝑞 the degree in u.

Remark 6.2. For a
∼
∈ 𝑆2(R3), the Newton sums tr a

∼
, tr a

∼
2 and tr a

∼
3 are related

to the elementary symmetric functions 𝜎1, 𝜎2, 𝜎3 by the uniquely invertible
following relations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tr a

∼
= 𝜎1

tr a
∼
2 = 𝜎2

1 − 2𝜎2

tr a
∼
3 = 𝜎3

1 − 3𝜎1𝜎2 + 3𝜎3

⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜎1 = tr a

∼

𝜎2 =
1

2

(︁
(tr a

∼
)2 − tr a

∼
2
)︁

𝜎3 =
1

6

(︁
(tr a

∼
)3 − 3 tr a

∼
tr a

∼
2 + 2 tr a

∼
3
)︁

This allows to exchange the first 3 invariants 𝑖1,0, 𝑖2,0, 𝑖3,0 in lemma 6.1 with
the elementary symmetric functions.

Proposition 6.3. Consider T
≈

∈ Ela and T̂
∼

its representation as a second-

order tensor in R3. Consider also the tensor6

s
∼

=

√
2

2
(e1 ⊗ e1 + e2 ⊗ e2) ,

and ŝ = 𝜑(s
∼

) its image in R3. The set of Boehler invariants of T
≈
for the O(2)-

action is equal to the set of invariants of the pair (T̂
∼
, ŝ) for the O(3)-action.

Proof. The vector ŝ is unitary, hence 𝑖0,2 = 1 and no specific information
is given by this quantity. The following relations can be verified by a direct

6 It is the vector f̂3 of the harmonic basis ℋ introduced subsection 3.1.
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calculation:

𝜎1 = 2(𝐼1 + 𝐽1),

𝜎2 = 4𝐼1𝐽1 + 𝐽2
1 − 1

2
(𝐼2 + 𝐽2),

𝜎3 =
1

2
(𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽

2
1 − 2𝐼1𝐽2),

𝑖1,2 = 2𝐼1,

𝑖2,2 =
1

2
𝐼2 + 4𝐼21 .

This non-linear system is easily uniquely inverted by substitution in the fol-
lowing:

𝐼1 =
1

2
𝑖1,2,

𝐽1 =
1

2
(𝜎1 − 𝑖1,2),

𝐼2 = 2(𝑖2,2 − 𝑖21,2),

𝐽2 =
1

2
(𝜎1 + 𝑖1,2)2 − 2(𝜎2 + 𝑖2,2),

𝐼3 = 2𝜎3 − 2𝜎2𝑖1,2 + 𝑖21,2(𝜎1 + 𝑖1,2) + 𝑖2,2(𝜎1 − 3𝑖1,2).

Again, this system is uniquely invertible (by substitution). This ends the proof.

This result shows that Kelvin invariants is the subset of Boehler invariants
obtained when the spheric direction ŝ is forgot. As a consequence the eigen-
values of the elasticity tensor do not define uniquely an elastic material, but
rather a family of elastic materials.

Using the spheric direction ŝ, it is possible to define Boehler invariants
directly in terms of T̂

∼
= 𝜑(T

≈
) . To that aim, consider ŝ the vector direction of

the spheric space in R3 and construct the projectors

P
∼
𝑠 = ŝ ⊗ ŝ, P

∼
𝑑 = 1

∼
− P

∼
𝑠.

The Clebsch-Gordan elements of the harmonic decomposition are defined
as follows

T̂
∼

𝑠𝑠
:= P

∼
𝑠T̂
∼

P
∼
𝑠, T̂

∼

𝑠𝑑
:= P

∼
𝑠T̂
∼

P
∼
𝑑 + P

∼
𝑑T̂
∼

P
∼
𝑠, T̂

∼

𝑑𝑑
:= P

∼
𝑑T̂
∼

P
∼
𝑑.

The Boehler invariants of the integrity basis are

𝐼1 =
1

2
tr T̂

∼

𝑠𝑠
, 𝐼2 = T̂

∼

𝑠𝑑
: T̂
∼

𝑠𝑑
, 𝐼3 = 2 tr(T̂

∼

𝑠𝑑
T̂
∼

𝑑𝑑⋆
T̂
∼

𝑠𝑑
),

𝐽1 =
1

2
tr T̂

∼

𝑑𝑑
, 𝐽2 = T̂

∼

𝑑𝑑⋆
: T̂
∼

𝑑𝑑⋆
,
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in which the notation ⋆ is defined by

T
∼
⋆ := T

∼
− 1

2
(tr T

∼
)P
∼
𝑑.

7 Design transformations

Having two different actions acting on the space of elasticity tensors motivates
the introduction of a new concept that we called design transformation.

First, the design transformation is defined in section 7.1. Then, we will
prove in section 7.2 that any elastic material can be design-transformed into
a tetragonal elastic material. Finally, we will study in details in section 7.3
the design transformations of initially isotropic elastic materials. As a re-
sult, we will characterize the set of elastic materials for which the associated
elasticity tensors possess 2 identical eigenvalues. Since the obtained elastic
materials are not necessarilly isotropic, this example shows that symmetry
classes identification cannot be achieved by studying the eigenvalue multiplic-
ity of an elasticity tensor. As a concluding example, the set of 2D pentamode
materials (bimode materials) intially introduced by [29] and well-investigated
in the field of metamaterial studies is fully characterized. Mechanical interest
in pentamode materials lies in the possibility of realizing acoustic and elastic
cloacking device as investigated in the following references [30,26,12,13,21].

7.1 Definition and fundamental properties of a design transformation

Definition 7.1. Applications between elastic materials preserving eigenvalues
will be called design transformations.

The design transformations have the following fundamental properties:

1. the set of design transformations of Ela is SO(3);
2. any initially positive definite tensor remains positive definite after any

design-transformation;
3. trivial design transformations are the physical rotations R

∼
(𝜃, ŝ) ∈ SO(3)

(c.f. Equation 5).

7.2 Tetragonal equivalent elastic material

First of all, the following remarkable property can be observed:

Proposition 7.2. Except for isotropic elasticity tensors having 3 identical
eigenvalues, any elasticity tensor T

≈
∈ Ela is equivalent, up to a design trans-

formation, to at least one tetragonal elasticity tensor.
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Proof. Consider an elasticity tensor T
≈

∈ Ela and T̂
∼

its second-order tensor

representation in 𝑆2(R3). Consider [T̂
∼

]ℋ, the matrix representation of T̂
∼

in

the harmonic basis ℋ. Diagonalization of [T̂
∼

]ℋ allows for defining a 3D rota-

tion which ends up with a diagonal matrix in basis ℋ. Let denote {𝜆𝑖}1≤𝑖≤3

the set of eigenvalues. Suppose first that the {𝜆𝑖}1≤𝑖≤3 are all distinct (this
is the standard situation for a initial tensor that belongs to 𝛴[D4], 𝛴[D2] or
𝛴[Z2]). In this case there are 6 seemingly different permutations of this set. It
can be observed that a 𝜋

2 physical rotation will permute the first two eigen-
values. Hence we end up with 3 distinct 𝛴[D4] materials. Suppose now that
among {𝜆𝑖}1≤𝑖≤3 two eigenvalues are equal. Let say that we have {𝜆1, 𝜆1, 𝜆2}
(this is the standard situation for a initial tensor that belongs to 𝛴[O(2)] and
an exceptional situation for tensor in 𝛴[D4] or 𝛴[D2]). In this case there are
3 seemingly different permutations of this set. It can be observed that a 𝜋

2
physical rotation will permute the first two eigenvalues. Hence we end up with
2 distinct situations: {𝜆1, 𝜆1, 𝜆2} and {𝜆1, 𝜆2, 𝜆1}. The first one correspond to
a tensor in 𝛴[O(2)] tensor, while the other to a tensor in 𝛴[D4].

7.3 Study of design-transformed initially isotropic material

Let consider an isotropic elastic material

T̂
∼

=

⎛⎝𝛾0 0 0
0 𝛾0 0
0 0 2𝜅0

⎞⎠
ℋ

. (21)

Using a unit quaternion, any rotation in SO(3) can be encoded as (see
appendix B)

R
∼

=

⎛⎝𝜔2 + 𝑣2𝑥 − 𝑣2𝑦 − 𝑣2𝑧 2(𝑣𝑥𝑣𝑦 − 𝜔𝑣𝑧) 2(𝜔𝑣𝑦 + 𝑣𝑥𝑣𝑧)
2(𝑣𝑥𝑣𝑦 + 𝜔𝑣𝑧) 𝜔2 − 𝑣2𝑥 + 𝑣2𝑦 − 𝑣2𝑧 2(𝑣𝑦𝑣𝑧 − 𝜔𝑣𝑥)
2(𝑣𝑥𝑣𝑧 − 𝜔𝑣𝑦) 2(𝜔𝑣𝑥 + 𝑣𝑦𝑣𝑧) (𝜔2 − 𝑣2𝑥 − 𝑣2𝑦 + 𝑣2𝑧)

⎞⎠ ,

with

𝜔2 + 𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧 = 1.

Let introduce the parameter 𝛼 ∈ [0, 1] defined by

𝛼 := 𝑣2𝑥 + 𝑣2𝑦. (22)

Using equation (15) and the identity 𝛼 = 1 − 𝑣2𝑧 − 𝜔2, the family of elas-
tic materials obtained by carrying out design transformations on the initially
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isotropic elastic material (21) is obtained as a parametric set of the following
form, with 𝛼 ∈ [0, 1]:

ℐℬ(𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐼1(𝛼) = 𝜅0 − 2𝛼(1 − 𝛼)(2𝜅0 − 𝛾0),

𝐽1(𝛼) = 𝛾0 + 2𝛼(1 − 𝛼)(2𝜅0 − 𝛾0),

𝐼2(𝛼) = 8𝛼(1 − 𝛼)(1 − 2𝛼)2(2𝜅0 − 𝛾0)2,

𝐽2(𝛼) = 8𝛼2(1 − 𝛼)2(2𝜅0 − 𝛾0)2,

𝐼3(𝛼) = 16𝛼2(1 − 𝛼)2(1 − 2𝛼)2(2𝜅0 − 𝛾0)3.

(23)

It can be noticed that:

– ℐℬ(𝛼) = ℐℬ(1 − 𝛼) ∀𝛼 ∈ [0, 1] so that the variation of the parameter 𝛼
can be reduced to the interval [0, 1

2 ];
– for 𝛼 = 0 the initial isotropic material is retrieved;
– for 𝛼 = 1

2 a tetragonal material is obtained;
– 𝐼1(𝛼) + 𝐽1(𝛼) = 𝜅0 + 𝛾0, ∀𝛼 ∈ [0, 1

2 ] so that the curve in the (𝐼1, 𝐽1) plane
is a line segment;

– 2𝐼3(𝛼)3 − 𝐼2(𝛼)2𝐽2(𝛼) = 0, ∀𝛼 ∈ [0, 1
2 ] so that the curve is drawn on the

surface of orthotropic elastic materials (in other terms, no biclinic mate-
rial can be reached by the design transformation of an initially isotropic
material).

The parametric set of equations (23) describes a curve in the space of elastic
materials. This curve is represented in figure 4 for specific values of 𝜅0 and 𝛾0
(as the material remains positive definite, the positive definiteness condition
is not plotted on the graph).

Remark 7.3. The characterization in terms of axes and angles of rotation for
each value of 𝛼 is given in appendix B. Note that the entire curve can be
obtained by considering a rotation of any axe orthogonal to ŝ and of angle
varying in [0, 𝜋].

The variable 𝛼 can be eliminated from (23) leading to the following equiv-
alent system of equations, where 𝐼1 ∈ [𝛾0

2 , 𝜅0]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐽1 = 𝛾0 + 𝜅0 − 𝐼1,

𝐼2 = 4(2𝐼1 − 𝛾0)(𝜅0 − 𝐼1),

𝐽2 = 2(𝜅0 − 𝐼1)2,

𝐼3 = 4(2𝐼1 − 𝛾0)(𝜅0 − 𝐼1)2.

Moreover, the variables (𝛾0, 𝜅0) can be eliminated from the previous system,
leading to the following implicit algebraic system of equations, where 𝐼1 > 0
and 𝐽1 > 0:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐼22 − 32𝐼21𝐽2 − 4𝐼2𝐽2 + 32𝐼1𝐽1𝐽2 − 8𝐽2
1𝐽2 + 4𝐽2

2 = 0,

𝐼22 − 8𝐼1𝐼3 + 4𝐼3𝐽1 − 2𝐼2𝐽2 = 0,

−𝐼2𝐼3 + 4𝐼1𝐼2𝐽2 + 2𝐼3𝐽2 − 2𝐼2𝐽1𝐽2 = 0,

2𝐼23 − 𝐼22𝐽2 = 0.

(24)
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Fig. 4: An iso-eigenvalues curve in the space of elastic materials. The initial
material is isotropic (point O , 𝛼 = 0), with the design transformation it
becomes orthotropic (curved line, 0 < 𝛼 < 1

2 ) and becomes tetragonal for
𝛼 = 1

2 (point A). Figure plotted with 𝛾0 = 1 and 𝜅0 = 3
2 .

The algebraic system of equations (24) characterizes the set of at-least-orthotropic
elastic materials that can be design-transformed into an isotropic material.
Moreover, we have the following property (proof given in Appendix C):

Proposition 7.4. The algebraic system (24) corresponds exactly to the subset
of at-least-orthotropic materials having two identical eigenvalues.

This result shows that symmetry classes identification cannot be achieved
by studying the eigenvalue multiplicity of an elasticity tensor.

7.4 Particular case of pentamode materials

Let consider an isotropic elastic material:

T̂
∼

=

⎛⎝0 0 0
0 0 0
0 0 2𝜅0

⎞⎠
ℋ

.
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The integrity basis reads then, with 𝛼 ∈ [0, 1
2 ]:

ℐℬ(𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐼1(𝛼) = (1 − 2𝛼)2𝜅0,

𝐽1(𝛼) = 4𝛼(1 − 𝛼)𝜅0,

𝐼2(𝛼) = 32𝛼(1 − 𝛼)(1 − 2𝛼)2𝜅2
0,

𝐽2(𝛼) = 32𝛼2(1 − 𝛼)2𝜅2
0,

𝐼3(𝛼) = 128𝛼2(1 − 𝛼)2(1 − 2𝛼)2𝜅3
0.

(25)

When the variable 𝛼 is eliminated, this leads to the following equivalent system
of equations, where 𝐼1 ∈ [0, 𝜅0]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐽1 = 𝜅0 − 𝐼1,

𝐼2 = 8𝐼1(𝜅0 − 𝐼1),

𝐽2 = 2(𝜅0 − 𝐼1)2,

𝐼3 = 8𝐼1(𝜅0 − 𝐼1)2.

The parameter 𝜅0 can be eliminated from the previous system of equations,
with 𝐼1 ≥ 0 and 𝐽1 ≥ 0: ⎧⎪⎨⎪⎩

𝐼2 = 8𝐼1𝐽1,

𝐽2 = 2𝐽2
1 ,

𝐼3 = 8𝐼1𝐽
2
1 .

(26)

(26) is an algebraic system of equations that defines the entire set of at-least-
orthotropic elastic materials that can be design-transformed into an isotropic
material with two eigenvalues equal to zero. Moreover, we have the following
property (proof given in Appendix C):

Proposition 7.5. The algebraic system (26) corresponds to the set of at-
least-orthotropic materials having 2 eigenvalues equal to zero.

8 Conclusion

We proposed in this paper a geometric interpretation of what is a 2D elastic
material. The polynomial invariants of the integrity basis are used, and this
leads to a straightforward proof of positive definiteness condition, which uses
the harmonic decomposition and the associated harmonic basis for the matrix
representation of the elasticity tensor. The explicit link between the three ele-
mentary symmetric polynomials (that are uniquely related to the three eigen-
values of the elasticity tensor) and the polynomial invariants of the integrity
basis is provided with the help of a particular eigenvector of the elasticity
tensor, the so-called spherical direction. This theoretical link explicited, the
concept of design transformation (that leads to distincts elastic materials with
identical eigenvalues) is introduced and thoroughly studied in the particular
case of a double eigenvalue. By using design transformation, the existence of
non standard orthotropic and tetragonal elastic materials possessing a double
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eigenvalue (instead of three different ones) have been evidenced. This explicit
construction shows that symmetry classes identification cannot be achieved
by studying the eigenvalue multiplicity of an elasticity tensor. Finally, as a
concluding example, the set of 2D pentamode materials (bimode materials)
intially introduced by [29] and well-investigated in the field of metamaterial
studies is fully characterized.

Other examples of metamaterials could be treated in further contributions,
as for example linear micropolar materials or pantographic structures [15,36]
that are usually modeled using strain gradient elasticity. More precisely, the
methodology presented in this paper in the particular case of the elasticity
tensor could possibly be used with 4th order tensors with other indicial sym-
metries and/or with 5th and 6th order elasticity tensors involved in strain
gradient elasticity. The two steps of such study woul be: first, to obtain the
integrity basis of such tensors, and second, to perform the analysis with such
integrity basis that may contain much more polynomial invariants than the
elasticity case.

A Normal forms

In this appendix, normal forms for tensors of different symmetry classes are provided with
respect to the harmonic basis7 ℋ. Normal forms are provided for generic tensors within each
symmetry class. In the following, ∙ corresponds to independent coefficients while × indicates
equal coefficients.

– 𝛴[Z2] ⎛⎝∙ 0 ∙
∙ ∙
∙

⎞⎠
ℋ

⎛⎝∙ ∙ 0
∙ ∙
∙

⎞⎠
ℋ

⎛⎝∙ ∙ ∙
∙ 0
∙

⎞⎠
ℋ

Remark: A physical rotation of 𝜋
2

switches normal form 2 to normal form 3.

– 𝛴[D2] ⎛⎝∙ 0 0
∙ ∙
∙

⎞⎠
ℋ

⎛⎝∙ 0 ∙
∙ 0
∙

⎞⎠
ℋ

Remark: A physical rotation of 𝜋
2

switches the normal form one to another.

– 𝛴[D4] ⎛⎝∙ 0 0
∙ 0
∙

⎞⎠
ℋ

(27)

– 𝛴[O(2)] ⎛⎝× 0 0
× 0

∙

⎞⎠
ℋ

(28)

7 It is worth emphasizing that usually normal forms are provided with respect to the Voigt
or the Kelvin representation.
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B Quaternionic parametrization of rotations

Let denote 𝒮𝑑 :=
{︀
𝑥 ∈ R𝑑+1 : ‖𝑥‖ = 𝑟

}︀
the unit sphere in dimension 𝑑. Consider 𝑞 a pure

quaternion:
𝑞 ∈ Im(H) ⇔ 𝑞 = 𝑞𝑥i+ 𝑞𝑦j+ 𝑞𝑧k,

with the Hamilton relations
i2 = j2 = k2 = ijk = −1.

As 𝑞 ∈ Im(H), 𝑞 will be denoted by q from now on. SO(3) action on Im(H) is

q⋆ = ℎqℎ−1,

with ℎ ∈ 𝒮3 the space of unit quaternions:

ℎ ∈ 𝒮3 ⇔ ℎ = 𝜔 + 𝑣𝑥i+ 𝑣𝑦j+ 𝑣𝑧k with 𝜔2 + 𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑧 = 1.

The expression of h can be shortened to

ℎ = 𝜔 + v,

in which 𝜔 is the scalar/real part of ℎ and v is the vector/imaginary part of ℎ. Unit quater-
nions can also be expressed under the so called polar form

ℎ = cos

(︂
𝜃

2

)︂
+ n sin

(︂
𝜃

2

)︂
, with n ∈ 𝒮2. (29)

By identification

𝜔 = cos

(︂
𝜃

2

)︂
, 𝑣𝑥 = sin

(︂
𝜃

2

)︂
𝑛𝑥, 𝑣𝑦 = sin

(︂
𝜃

2

)︂
𝑛𝑦 , 𝑣𝑧 = sin

(︂
𝜃

2

)︂
𝑛𝑧 . (30)

Using the following spherical coordinate for n

(𝜑, 𝜓) ∈]0, 𝜋]× [0, 2𝜋], n =

⎛⎜⎝𝑛𝑥 = sin(𝜑) cos(𝜓)

𝑛𝑦 = sin(𝜑) sin(𝜓)

𝑛𝑧 = cos(𝜑)

⎞⎟⎠ ,

we define the following hypersherical coordinates⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥𝑡 = 𝑅 cos

(︂
𝜃

2

)︂
𝑥𝑧 = 𝑅 sin

(︂
𝜃

2

)︂
cos(𝜑)

𝑥𝑥 = 𝑅 sin

(︂
𝜃

2

)︂
sin(𝜑) cos(𝜓)

𝑥𝑦 = 𝑅 sin

(︂
𝜃

2

)︂
sin(𝜑) sin(𝜓)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with 𝑅 the hyper radius. We define the radius of the projected sphere

𝑟 = 𝑅 sin

(︂
𝜃

2

)︂
,

and the radius of the projected circle

𝜌 = 𝑟 sin(𝜑) = 𝑅 sin

(︂
𝜃

2

)︂
sin(𝜑),
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in such a way that ⎛⎜⎜⎜⎜⎜⎝
𝑥𝑡 = 𝑅 cos

(︂
𝜃

2

)︂
𝑥𝑧 = 𝑟 cos(𝜑)

𝑥𝑥 = 𝜌 cos(𝜓)

𝑥𝑦 = 𝜌 sin(𝜓)

⎞⎟⎟⎟⎟⎟⎠ .

For points on the unit hypersphere:⎧⎪⎪⎨⎪⎪⎩
𝑅 = 1

𝑟 = sin
(︁

𝜃
2

)︁
𝜌 = 𝑟 sin(𝜑) = sin

(︁
𝜃
2

)︁
sin(𝜑)

Let’s go back to the rotation formula

q⋆ = ℎqℎ−1 = (𝜔 + v)q(𝜔 − v) = 𝜔2q + 𝜔(vq− qv)− vqv.

The multiplication of two pure quaternions gives

vq = −v · q + v ∧ q,

so that

q⋆ = ℎqℎ−1 = (𝜔2 + v · v)q + 2𝜔(v ∧ q) + 2v ∧ (v ∧ q) = q + 2𝜔(v ∧ q) + 2v ∧ (v ∧ q).

In the R3 canonical basis

𝑄𝑖𝑗 = q⋆
𝑗
· e𝑖 = 𝛿𝑖𝑗 + 2𝜔(v ∧ e𝑗) · e𝑖 + 2v ∧ (v ∧ e𝑗) · e𝑖,

so that it finally can be established that (using vectorial identities)

Q
∼

= (𝜔2 − ‖v‖2) I
∼
− 2𝜔 𝜖

≃
· v + 2v ⊗ v. (31)

In matrix form:

Q
∼

=

⎛⎝𝜔2 + 𝑣2𝑥 − 𝑣2𝑦 − 𝑣2𝑧 2(𝑣𝑥𝑣𝑦 − 𝜔𝑣𝑧) 2(𝜔𝑣𝑦 + 𝑣𝑥𝑣𝑧)
2(𝑣𝑥𝑣𝑦 + 𝜔𝑣𝑧) 𝜔2 − 𝑣2𝑥 + 𝑣2𝑦 − 𝑣2𝑧 2(𝑣𝑦𝑣𝑧 − 𝜔𝑣𝑥)
2(𝑣𝑥𝑣𝑧 − 𝜔𝑣𝑦) 2(𝜔𝑣𝑥 + 𝑣𝑦𝑣𝑧) (𝜔2 − 𝑣2𝑥 − 𝑣2𝑦 + 𝑣2𝑧)

⎞⎠ . (32)

If we use the polar parametrization of quaternion (29) in (31), we obtain

Q
∼

= cos(𝜃) I
∼
− sin(𝜃) 𝜖

≃
· n + (1− cos(𝜃))n⊗ n,

which is the well-known Rodrigues formula for rotations.
Using the parametrization (29), equation (22) reads, with 𝑛2

𝑥+𝑛
2
𝑦 = sin2(𝜑) and 𝜌2 = 𝛼,

𝜌2 = sin2
(︂
𝜃

2

)︂
sin2(𝜑). (33)

Moreover, as n ∈ 𝒮2, we get
𝑛2
𝑧 = cos2(𝜑). (34)

Consider first the case 𝜌 ∈]0, 1[ and suppose that 𝜑 ̸= 0. In this case the system (33)-(34)
can be rewritten as {︃

𝜃 = ±2 arcsin
(︁

𝜌
sin(𝜑)

)︁
,

𝑛𝑧 = ± cos(𝜑),
(35)
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and the set of rotations associated to the parameter 𝜌2 is

𝛷−1(𝜌2) =

⎧⎨⎩n± =

⎛⎝sin(𝜑) cos(𝜓)
sin(𝜑) sin(𝜓)
± cos(𝜑)

⎞⎠ , 𝜃 = ±2 arcsin

(︂
𝜌

sin(𝜑)

)︂
, ∀(𝜑, 𝜓) ∈]0, 𝜋]× [0, 2𝜋]

⎫⎬⎭ .

Consider now the case 𝜌 = 1. In such a case, system (33)-(34) implies

sin2
(︂
𝜃

2

)︂
= 1 , sin(𝜑)2 = 1,

hence

𝛷−1(1) =

⎧⎨⎩n± =

⎛⎝cos(𝜓)
sin(𝜓)

0

⎞⎠ , 𝜃 = (2𝑘 + 1)𝜋, ∀𝑘 ∈ Z, 𝜓 ∈ [0, 2𝜋]

⎫⎬⎭ .

Consider now the case 𝜌 = 0. The system (33)-(34) reads

sin2
(︂
𝜃

2

)︂
sin(𝜑)2 = 0,

which implies that either sin(𝜑)2 = 0 or sin2
(︁

𝜃
2

)︁
= 0. The case sin(𝜑)2 = 0 corresponds to

a physical rotation

𝛷−1(0) =

⎧⎨⎩n± =

⎛⎝ 0
0
±1

⎞⎠ , 𝜃 ∈ [0, 2𝜋]

⎫⎬⎭ ,

while the case sin2
(︁

𝜃
2

)︁
= 0 corresponds to a trivial rotation around any direction:

𝛷−1(0) =
{︀
n± ∈ 𝑆2, 𝜃 = 2𝑘𝜋,∀𝑘 ∈ Z

}︀
.

C Proofs of propositions 7.4 and 7.5

First, recall that:

– the tensors considered are real valued, so that the Boehler invariants ∈ R;
– 𝐼2 ≥ 0 and 𝐽2 ≥ 0 by definition;
– the elementary symmetric functions can be expressed in terms of Boehler invariants,

see (16).

Proof. Proposition 7.4
The condition for an elastic material to have at least 2 equal eigenvalues reads in terms of
elementary symmetric functions:

− 𝜎2
1𝜎

2
2 + 4𝜎3

2 + 4𝜎3
1𝜎3 − 18𝜎1𝜎2𝜎3 + 27𝜎2

3 = 0. (36)

Using (16), the subset of at-least-orthotropic materials with two identical eigenvalues is
defined by the algebraic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝐼23 − 𝐼22𝐽2 = 0,

− (𝐼1 + 𝐽1)
2(𝐼2 − 2𝐽1(4𝐼1 + 𝐽1) + 𝐽2)

2 −
1

2
(𝐼2 − 2𝐽1(4𝐼1 + 𝐽1) + 𝐽2)

3 + ...

+ 16(𝐼1 + 𝐽1)
3(𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽

2
1 − 2𝐼1𝐽2)− ...

− 9(𝐼1 + 𝐽1)(−𝐼2 + 2𝐽1(4𝐼1 + 𝐽1)− 𝐽2)(𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽
2
1 − 2𝐼1𝐽2) + ...

+
27

4
(𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽

2
1 − 2𝐼1𝐽2)

2 = 0.

(37)
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1. For 𝐼2 = 0, (24) and (37) reduce to the same polynomial conditions{︃
𝐼3 = 0,

𝐽2(−8𝐼21 + 8𝐼1𝐽1 − 2𝐽2
1 + 𝐽2)

2 = 0.

2. The case 𝐼2 ̸= 0 and 𝐽2 = 0 cannot occur as in this case the material is 𝑅0−orthotropic
and have three distinct eigenvalues:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜆1 = 𝐽1,

𝜆2 =
1

2

(︂
2𝐼1 + 𝐽1 −

√︁
2𝐼2 + (2𝐼1 − 𝐽1)2

)︂
,

𝜆3 =
1

2

(︂
2𝐼1 + 𝐽1 +

√︁
2𝐼2 + (2𝐼1 − 𝐽1)2

)︂
.

3. With 𝐼2 ̸= 0 and 𝐽2 ̸= 0, 𝐼3 = ± 1√
2
𝐼2
√
𝐽2 (recall that by definition 𝐽2 ≥ 0).

(a) Let consider the case 𝐼3 = + 1√
2
𝐼2
√
𝐽2. Solutions 𝐽

𝑎,𝑏,𝑐
1 of (37) are

𝐽𝑎
1 = 2𝐼1 −

𝐼2 − 2𝐽2

2
√
2
√
𝐽2
, 𝐽𝑏,𝑐

1 = 2𝐼1 −
√
𝐽2√
2

± 2𝑖

√
𝐼2√
2
,

so that 𝐽𝑎
1 is the only real valued solution. On the other hand, the Groebner basis

of (24) reads in this case

− 𝐼2

√
𝐽2√
2

+ 4𝐼1𝐽2 − 2𝐽1𝐽2 +
√
2𝐽

3
2
2 = 0, (38)

for which the unique solution with respect to 𝐽1 is 𝐽𝑎
1 again.

(b) The case 𝐼3 = − 1√
2
𝐼2
√
𝐽2 is similar to the previous case up to some sign changes.

We have thus proved that the real valued solution of (37) are identical to the (real valued)
solution of (24). This ends the proof.

Proof. Proposition 7.5
The necessary and sufficient conditions for an elastic material to have at least 2 eigenvalues
equal to zero reads in terms of elementary symmetric functions:

𝜎2 = 0 and 𝜎3 = 0. (39)

Using (16), the subset of at-least-orthotropic material with two zero eigenvalues is defined
by the algebraic system: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

2𝐼3 − 𝐼22𝐽2 = 0,

4𝐼1𝐽1 + 𝐽2
1 −

1

2
(𝐼2 + 𝐽2) = 0,

𝐼3 − 𝐼2𝐽1 + 4𝐼1𝐽
2
1 − 2𝐼1𝐽2 = 0.

(40)

The Groebner basis of the previous algebraic system reads (with lexicographic order (𝐼3, 𝐽2, 𝐼2, 𝐽1, 𝐼1)):⎧⎪⎪⎨⎪⎪⎩
(8𝐼21 + 𝐼2)(𝐼2 − 8𝐼1𝐽1)

2 = 0,

𝐼2 − 8𝐼1𝐽1 − 2𝐽2
1 + 𝐽2 = 0,

2𝐼1𝐼2 + 𝐼3 − 16𝐼21𝐽1 − 𝐼2𝐽1 = 0.

The case 𝐼1 = 0 implies that 𝐼2 = 0, so that 𝐽2 = 2𝐽2
1 and 𝐼3 = 0.

The case 𝐼1 ̸= 0 implies that 8𝐼21 + 𝐼2 ̸= 0 because 𝐼2 ≥ 0, so that 𝐼2 = 8𝐼1𝐽1, and finally
𝐽2 = 2𝐽2

1 and 𝐼3 = 8𝐼1𝐽2
1 . We have thus proved that (40) implies (26).

It is trivial to check that (26) implies (40). This ends the proof.
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D On reduced anisotropic invariants

Let consider the harmonic basis ℋ =
{︁
f̂1, f̂2, f̂3

}︁
introduced subsection 3.1, and define the

following second-order tensors:

d
∼

:= f̂1 ⊗ f̂1 + f̂2 ⊗ f̂2, s
∼

:= f̂3 ⊗ f̂3.

We can specify the following group of transformations

Dil := {H
∼

∈ GL(3), |H
∼

= 𝛼d
∼
+ 𝛽 s

∼
},

which elements have the following matrix form with respect to ℋ

H
∼
(𝛼, 𝛽) =

⎛⎝𝛼 0 0
0 𝛼 0
0 0 𝛽

⎞⎠
ℋ

.

Consider the following relation among elasticity tensors

T1
≈

∼ T2
≈

⇔ ∃H
∼

∈ Dil | T2
≈

= H
∼
⋆ T1

≈
.

This relation can be shown to be: reflexive, symmetric and transitive. In other words, this
is an equivalence relation. The equivalence class of an element T

≈
∈ Ela is defined as

[T1
≈

] = {T
≈

∈ Ela, ∃H
∼

∈ Dil | T
≈

= H
∼
⋆ T1

≈
}.

The equivalence class can also be defined as the (non-compact) orbit of T1
≈

with respect to

Dil. As well-known the space Ela can be partitioned into disjoint sets of equivalence classes.
It can be observed that the reduced anisotropic invariants

𝑖2 =
𝐼2

8𝐼1𝐽1
, 𝑗2 =

𝐽2

2𝐽2
1

, 𝑖3 =
𝐼3

8𝐼1𝐽2
1

, (41)

introduced in section 5 are constant for the equivalence classes introduced above. For exam-
ple, let consider a tensor T1

≈
having (𝑖2, 𝑗2, 𝑖3) as reduced invariants and that the associated

elastic material is defined by (𝐼1, 𝐽2, 𝐼2, 𝐽2, 𝐼3). A tensor T2
≈

in the same equivalence class is

associated to the elastic material (𝛽2𝐼1, 𝛼2𝐽1, 𝛼2𝛽2𝐼2, 𝛼4𝐽2, 𝛼4𝛽2𝐼3), a direct computation
shows that the associated reduced invariants will remain unchanged. The converse is not
true, since different tensors (and not elastic materials) can have the same set of reduced
invariants without being related by the equivalence relation. For example, consider T1

≈
and

T2
≈

two tensors which are conjugated module SO(2). Those tensors possess the same set of

reduced invariants but are not related by any element of Dil.
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