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Surface temperature in sliding contact systems has a considerable effect on friction and wear mechanisms, and thus the system performances. Hence its knowledge is crucial for the design of these systems. This is a complex challenge since real surfaces are rough and the contact area depends on several factors. Thus, the aim of this paper is to present an efficient thermal contact model allowing to study the transient rise of temperature and heat partition in sliding contact systems considering surface roughness. This model is based on the heat source theory. The produced heat is computed based on a contact mechanics model considering roughness. In addition to roughness, a thermal interface layer made of wear debris is considered within micro-contact zones which leads to a discontinuity of temperature at the scale of asperities. If the interface layer is considered, heat is generated within it. Otherwise, the generation of heat is at the top of surface asperities and the continuity of temperature is assumed. The numerical problem is solved using optimization techniques and the Fast Fourier Transform to accelerate calculations. A parametric study is presented with the aim to highlight the effects of material properties, roughness, velocity and the interface layer on the partition of heat and surface temperature.

Introduction

In sliding contact systems, the largest part of the frictional energy is transformed into heat, which in turn leads to a rise of temperature in the contact interface.

It is commonly agreed that this phenomenon is linked to plastic deformations occurring at the sub-surface zone near to contact interface [START_REF] Furey | Surface temperatures in sliding contact[END_REF][START_REF] Kennedy | Thermal and thermomechanical effects in dry sliding[END_REF]. However, others claim that heat production takes its origins from the atomic-scale interactions within the top atomic layers of the contacting surfaces [START_REF] Landman | Molecular dynamics simulations of adhesive contact formation and friction[END_REF]. Thus, the exact location of heat production is not known for sure and depends most likely on the sliding situation.

Since real contact occurs only on some randomly distributed small spots, severe temperatures resulting from frictional energy, are reached within these zones.

These temperatures are a source of wear and local damages which could affect the tribological behavior of the contact interface [START_REF] Archard | The temperature of rubbing surfaces[END_REF]. The reader may refer to the survey paper written by [START_REF] Blok | The flash temperature concept[END_REF] for further details on this phenomena, and also a recent review paper of [START_REF] Denape | Aspect thermique du frottement: mise en évidence expérimentale et éléments de modélisation[END_REF] which details modeling methods and experimental techniques for surface temperature measurement.

Most of the theoretical models of temperature rise in sliding contact are based on the heat source method which was developed in the pioneering works of [START_REF] Blok | Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Conditions[END_REF][START_REF] Carslaw | Conduction of heat in solids[END_REF].

From this method, several analytic solutions were proposed to study stationary and moving heat sources of different geometries [START_REF] Zeng | On moving heat sources[END_REF][START_REF] Hou | General solutions for stationary/moving plane heat source problems in manufacturing and tribology[END_REF].

Using this technique, single contact problems have been widely studied. In [START_REF] Tian | Maximum and average flash temperatures in sliding contacts[END_REF], analytical and approximate solutions of the maximum and average surface temperatures were obtained for several geometries. The contact problem has been solved using Blok's postulate [START_REF] Blok | Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Conditions[END_REF] which consists of equalizing the maximum surface temperature of the two solids. In [START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants[END_REF], the thermal constriction phenomenon has been studied considering solids velocities and a rectangular contact area.

Within the same framework, steady temperatures of circular and elliptic contact have been obtained by matching the surface temperature of both solids in [START_REF] Bos | Frictional heating of tribological contacts[END_REF].

In [START_REF] Komanduri | Analysis of heat partition and temperature distribution in sliding systems[END_REF], a functional analysis approach has been used to solve the problem of a sliding system modeled as an infinite long band heat source. Using Hankel transform, a pin-on-disc contact has been analyzed in [START_REF] Laraqi | Temperature and division of heat in a pin-on-disc frictional device-exact analytical solution[END_REF] and the obtained results have been compared to analytical results from [START_REF] Tian | Maximum and average flash temperatures in sliding contacts[END_REF].

The above cited works consider a perfect contact geometry which is not convenient for studying heat generation in real tribological systems. Several works have used the concept of multiple asperities throughout heat flows into solids. In most of these works, these zones are uniformly distributed within the interface and are of rectangular shape. The temperature rise in each asperity is calculated using the heat source method considering its shape. For well separated contact spots, this technique has been used by [START_REF] Chao | Temperature distribution at tool-chip and tool-work interface in metal cutting[END_REF] to study the tool chip interface during metal cutting. In [START_REF] Barber | The conduction of heat from sliding solids[END_REF], general solutions of conduction between sliding solids have been addressed considering many configurations such as large scale cooling effects and sub-surface heat generation. In [START_REF] Vick | A basic theoretical study of the temperature rise in sliding contact with multiple contacts[END_REF], the thermal contact was studied considering two rectangular zones. More recently, the same concept has been used in [START_REF] Coulibaly | Thermomechanical coupling of rough contact asperities sliding at very high velocity[END_REF] by considering a uniformly distributed contact zones. In the two last works, a Green function has been computed using analytical solutions taking into account the thermal interactions between surface asperities. Numerical methods have also been used to solve the contact problem. For instance, the finite volume method and a relaxation iterative scheme were employed to study the contact considering solid velocities and uniformly distributed rectangular contact cells representing roughness [START_REF] Salti | 3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance[END_REF]. In [START_REF] Sadowski | A model of thermal contact conductance at high real contact area fractions[END_REF], the Finite Element Method has been used to evaluate the contact thermal resistance for a static contact and realistic surface topographies.

The real challenge in studying the thermal contact of sliding systems is to be able to compute the real transient temperature distribution within an acceptable computational time and considering realistic rough contact surfaces. The main issues that have to be studied are the maximal surface temperature and heat partition between the two solids. These issues are naturally affected by the contacting solids surfaces, their velocities and thermal properties. However, while the effect of the thermal properties and velocity is qualitatively predictable, the effect of surface roughness is not. Indeed, the scale of roughness, the contact area and the distribution of pressure can affect the thermal balance and their role is still unknown. Thus, in this work, a particular attention is paid to the study of these features.

Moreover, the interface conditions are also studied. Indeed, the eventual presence of wear debris within the contact interface could lead to the formation of an intermediate layer within which heat can be produced. In fact, even at the scale of the real contact area, the conduction of heat can be disturbed by wear particles, oxides, etc. As a result, a gap of temperature can emerge between the two solids asperities. This aspect can be handled using a thermal resistance as done in [START_REF] Schaaf | On the superposition of a heat source and contact resistance[END_REF][START_REF]Bardon emphBases physiques des conditions de contact termique imparfait entre milieux en glissement relatif[END_REF].

Furthermore, the exact location of heat generation is not known as it depends on the contact situation. In this work, two kinds of heat generation profiles are considered. In the first one, a surface heat generation is considered and the perfect continuity between both solids surface temperature is assumed, neglecting thus the presence of the interface layer and focusing only on the real contact area. In the second one, heat is generated within the interface layer volume which is modeled as a system of many thermal resistances and capacitances. Volume heat generation has already been considered in the subsurface zone and for a simple contact geometry [START_REF] Chantrenne | A microscopic thermal model for dry sliding contact[END_REF][START_REF]Nosko Partition of friction heat between sliding semispaces due to adhesion-deformational heat generation[END_REF]. Subsurface heat generation corresponds to volume plastic deformation. This mechanism is different from surface heat generation which is linked to adhesion. In the present study, heat generation is considered at the surfaces and within the interface layer considering both adhesion and the interface layer shearing process. On the other side, the properties of thermal resistances and capacitances and the profile of heat are not known experimentally, so they will be considered as computational parameters.

In order to address the above-cited issues, the thermal contact study is conducted, based on the heat source method. Indeed, using the Fast Fourier transform (FFT) and the discrete convolution technique, the transient contact problem is solved by matching surface temperatures point by point and using optimization techniques. The process of matching temperatures depends on the profile of heat generation (volume or surface heat profile). The studied surfaces are realistic fractal samples and are generated numerically using a power-law spectral density.

The contact area is obtained using an asperity-based contact mechanics model developed in [START_REF] Waddad | A multiscale method for frictionless contact mechanics of rough surfaces[END_REF]. The amount of heat is obtained from the work of frictional forces which is determined from the friction coefficient, the velocity and the contact pressure.

The originality of the model presented in this paper lies in its ability to give information on local surface temperature and heat distribution considering realistic thermal contact conditions. Comparing to the existing approaches, the present model makes use of the classical heat source method and extends it to cover the rough contact case. Moreover, the FFT technique makes the problem resolution very fast comparing to numerical methods such as the Finite Element Method, which is valuable for numerically larger problems. Furthermore, many interesting features have been considered such as the presence of an interface made of wear debris and the volumetric heat generation within it. The obtained results are of high interest as they can be used in wear modeling and thermomechanical simulations (braking simulations for example). Indeed, this model provides the macro-scale heat partition coefficient which is crucial for thermal simulations. Also, the calculated contact temperature is important for the study of the tribological behavior of the sliding components (changes in friction and wear behaviors for example).

Analytic solutions for thermal loading of moving and static homogeneous solids

Surface heating of a fixed semi-infinite region

Let us consider a semi-infinite (z ≥ 0) solid initially at zero temperature.

A source of heat flows across the plane (z = 0) at a steady rate q distributed over a finite rectangular area [-a, a] × [-b, b]. The resulting temperature field T satisfying heat equation is given by [START_REF] Carslaw | Conduction of heat in solids[END_REF] T (x, y, z, t) = qχ 4κ (πχ)

3/2 t 0 dt (t -t ) 3/2 a -a b -b exp - (x -ξ) 2 + (y -η) 2 + z 2 4χ (t -t ) dξdη ( 1 
)
where χ is the thermal diffusivity and κ is the thermal conductivity.

By making a substitution, we find

T (x, y, z, t) q 4κπ 1/2 =I x + a, y + b, z, 1 2 √ χt , ∞ + I x -a, y -b, z, 1 2 √ χt , ∞ -I x -a, y + b, z, 1 2 √ χt , ∞ -I x + a, y -b, z, 1 2 √ χt , ∞
where

I (α, β, γ, l, L) = L l exp -γ 2 v 2 erf (αv) erf (βv) dv v 2
Using integration by parts, the integral I reads for the case of steady state temperature

I (α, β, γ, 0, ∞) = α √ π ln β + α 2 + β 2 + γ 2 1/2 -β + (α 2 + β 2 + γ 2 ) 1/2 + β √ π ln α + α 2 + β 2 + γ 2 1/2 -α + (α 2 + β 2 + γ 2 ) 1/2 -2 γ √ π tan -1 αβ γ (α 2 + β 2 + γ 2 ) 1/2
From this solution, the integral I can be calculated for the transient case by subtraction

I α, β, γ, 1 2 √ χt , ∞ = I (α, β, γ, 0, ∞) -I α, β, γ, 0, 1 2 √ χt (2) 
and the transient term is estimated numerically. 115

Surface heating of a rotating semi-infinite region

Now let us consider that heat is produced at a fixed point by which a uniformly moving medium flows (see Fig. 1). Suppose that a rate q of heat was emitted steadily between 0 and t at the fixed point of space (x c , y c , 0). We calculate the temperature at the fixed point (x, y, z) at time t.

Considering the solid rotation, the position of any point of the solid at time t is given by

X(t) = R cos(s (t) + φ) and Y (t) = R sin(s (t) + φ)
where R is the distance from the center of rotation, s (t) is the angular position which is velocity and time dependent and φ is an arbitrary fixed angle.

Assume that the point (x, y, z) was at time t at (x , y , z), we have x = x cos (s(t) -s(t )) + y sin (s(t) -s(t ))

y = y cos (s(t) -s(t )) -x sin (s(t) -s(t ))
Using integration and substitution techniques, the temperature at time t at the point (x, y, z) with the heat rate q emitted steadily between 0 and t is [START_REF] Carslaw | Conduction of heat in solids[END_REF] T (x, y, z, t) = q κπ 3/2

√ 4χt 0 dv v 2 exp - (x -x c ) 2 + (y -y c ) 2 + z 2 v 2 where x = x cos s t - v 2 4χ -s (t) -y sin s t - v 2 4χ -s (t) y = y cos s t - v 2 4χ -s (t) + x sin s t - v 2 4χ -s (t) If heat is distributed over a rectangular area [x c -a, x c + a] × [y c -b, y c + b],
the temperature field is then

T (x, y, z, t) = q 4κπ 1/2 √ 4χt 0 dv exp - z 2 v 2 . erf x -x c + a v -erf x -x c -a v . erf y -y c + b v -erf y -y c -b v (3) 
From this formula, the temperature field is calculated using numerical integration techniques (for e.g. Gaussian quadrature).

The general case of surface heating

Assume now that the semi-infinite solid (fixed or moving) is heated at a fixed arbitrary shaped region. The surface temperature θ is expressed as a function of surface heating φ during the interval of time [0, t Nt ]. To solve this problem, the heated zone is discretized into N xy = N x × N y small squares of the same size. The studied interval of time is also discretized into N t equal intervals. The The total heat flux applied on the surface at time t reads

Φ (t) = Nxy i=1 Nt k=1 1 k (t) φ ik (4) 
Using the discretized form of heat, the solid temperature can be expressed as a linear combination of all the temperature variations due to all the fluxes acting on the surface

θ (x, y, z, t) = Nxy i=1 Nt k=1 1 k (t) T (x -x i , y -y i , z, t -t k ) φ ik (5) 
where T (x -x i , y -y i , z, t -t k ) is the temperature elevation at the solid point (x, y, z) which is due to the unit flux applied over the i th element from time t k to t. Relative expressions of T have been presented in section 2.1 for fixed solids and in section 2.2 for moving solids.

Thus, the surface temperature (z = 0) can be expressed as a linearized function of surface heating using the function F defined by

θ = F (φ) (6) 
where

F (φ (x, y, t)) = Nxy i=1 Nt k=1 1 k (t) T (x -x i , y -y i , 0, t -t k ) φ ik
In this section, the analytical solution obtained with heat source method 120 has been presented. In the following, this method is used to study the transient surface temperature in sliding rough contact problems. Let us consider a frictional rough contact between a static solid S 2 having a rough surface and a sliding solid S 1 with a plane surface (see Fig. 2). The frictional heat is generated at the interface and its distribution depends on the physical nature of contact interactions. The contact interface is considered as a source of heat which is distributed over the upper face of each body

φ = φ 1 + φ 2
where φ is the total rate of heat generated at the interface and φ 1 and φ 2 are the rates of heat flowing through the solids S 1 and S 2 .

The real contact area is assumed to be small compared to the contacting bodies dimensions, thus it is possible to approximate the system to two semi-infinite regions. Moreover, the contact area does not change during the frictional sliding since the sliding surface is assumed to be flat.

The surface temperature of each of the two solids (θ 1 and θ 2 ) can be related to the heat flowing into them by the linearized functions F 1 and F 2

θ 1 = F 1 (φ 1 ) θ 2 = F 2 (φ 2 )
where F 1 and F 2 depend on the physical properties of the contacting solids (see Eq.( 6), section 2.3).

In this work, a thermal interface layer composed of wear debris is considered within micro-contact zones which leads to a gap of temperature at the scale of asperities (see Fig. 2). On one side, if this interface layer is considered, heat is generated within it. The exact location of heat generation is not known, thus several heat profiles will be treated. This is different from previous works [START_REF] Chantrenne | A microscopic thermal model for dry sliding contact[END_REF][START_REF]Nosko Partition of friction heat between sliding semispaces due to adhesion-deformational heat generation[END_REF] as they considered that heat is generated in the subsurface zone. Here, the generation of heat corresponds more to adhesion at the surfaces and shearing in the interface layer. On the other side, if the interface layer is not considered, the generation of heat is at the top of surface asperities and the continuity of temperature is assumed. This corresponds more to a dry friction process.

Whether if the interface is considered or not, considering the linearity of functions F 1 and F 2 , one can easily deduce the following equation

(F 1 + F 2 )( φ 1 ) = (F 2 ) (φ) + θ 1 -θ 2 (7) 
This equation is a generalization of heat partition equation as it describes the phenomenon for different regimes of friction. In comparison to [START_REF] Blok | Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Conditions[END_REF][START_REF] Barber | Distribution of heat between sliding surfaces[END_REF], this equation is established in every single contact point and considering a local temperature jump to simulate the interface, and not only where the maximal temperature is reached as assumed in blok's principle. Moreover, in this equation we do not assume that heat partition coefficient is a parameter as in [START_REF] Schaaf | On the superposition of a heat source and contact resistance[END_REF]. Rather, the coefficient of heat partition will be determined based on the thermal balance that should be satisfied in every single contact point. Furthermore, compared to [START_REF] Coulibaly | Thermomechanical coupling of rough contact asperities sliding at very high velocity[END_REF][START_REF]Bardon emphBases physiques des conditions de contact termique imparfait entre milieux en glissement relatif[END_REF][START_REF] Chantrenne | A microscopic thermal model for dry sliding contact[END_REF], heat partition is studied considering realistic complex contact situations involving roughness, velocity variation and the presence of an interface layer.

The unknowns of Eq.7 are φ 1 and the temperature gap θ 1 -θ 2 that will be expressed later as a function of φ 1 , φ and the thermal interface layer parameters.

The obtained expressions will be expressed as function of the physical properties of the interface zone and the profile of heat generation. Thus the only unknown of this equation is φ 1 . This equation is spatiotemporal. In order to solve it, we propose a strategy transforming it into a spatial equation which is easier to solve. For this aim, we consider the time step t = t N and we introduce λ defined by

λ (t) = φ 1 (t) if t ≤ t N and λ (t) = φ 1 (t N ) else.
This means that λ is equal to φ 1 in space and time except for the case where t exceeds t N and λ remains constant. Besides, we introduce ψ defined by ψ = φ 1 -λ, then

ψ (t) = 0 if t ≤ t N and ψ (t) = φ 1 (t) -φ 1 (t N ) else.
Hence ψ corresponds to the flux increment applied from time t = t N .

From Eq.( 7), replacing φ 1 by λ + ψ gives

(F 1 + F 2 )( ψ) = F 2 (φ) -(F 1 + F 2 )( λ) + θ 1 -θ 2 (8) 
This equation relates the flux ψ applied from time t = t N to the total flux φ and λ. Let us now consider t ≥ t N and assume that the flux φ 1 is known for t ≤ t N . By definition, this means that λ is also known and the only unknown of Eq.( 8) is ψ. Thus, solving Eq.( 8) enables to find ψ for t > t N and deduce φ 1 for time t > t N using the definition of ψ.

Practically, we choose an instant t N +1 very close to t N , so that we can assume ψ to be constant within the time interval [t N , t N +1 ]. Thus the resolution of Eq.( 8)

is performed only in space by finding the surface distribution of ψ. Therefore to solve the global transient problem, this explicit time scheme is used at each time increment. Indeed, φ 1 is decomposed at each time increment into the two functions ψ and λ. Then the flux increment ψ is computed and the flux φ 1 is updated so that the flux λ can be computed for the next time step, and so on.

Once the heat problem is solved, the coefficients of heat partition can be deduced by

p i = Φ i Φ
where Φ i is the total flux acting on the solid surface S i (i = 1, 2) and Φ = Φ 1 +Φ 2 is the total heat generated at the interface. Now that the key elements of the solving strategy have been presented, the discretized form of the heat partition equation is presented.

Discretization of the contact problem 130

We introduce the following space-time discretization of ψ and λ

ψ (x, y, t) = Nxy i=1 Nt k=1 1 i (x, y) 1 k (t) ψ ik and λ (x, y, t) = Nxy i=1 Nt k=1 1 i (x, y) 1 k (t) λ ik
Using the discretized form of functions F 1 and F 2 (see section 2.3), the heat partition equation Eq.( 8) established at (x, y, t N +1 ) becomes

Nxy i=1 Nt k=1 1 k (t N +1 ) (T 1 + T 2 ) (x -x i , y -y i , 0, t N +1 -t k ) ψ ik = Nxy i=1 Nt k=1 1 k (t N +1 ) T 2 (x -x i , y -y i , 0, t N +1 -t k ) φ ik - Nxy i=1 Nt k=1 1 k (t N +1 ) (T 1 + T 2 ) (x -x i , y -y i , 0, t N +1 -t k ) λ ik + (θ 2 -θ 1 ) (x, y, t N +1 )
which is equivalent to

Nxy i=1 N k=1 (T 1 + T 2 ) (x -x i , y -y i , 0, t N +1 -t k ) ψ ik = Nxy i=1 N k=1 T 2 (x -x i , y -y i , 0, t N +1 -t k ) φ ik - Nxy i=1 N k=1 (T 1 + T 2 ) (x -x i , y -y i , 0, t N +1 -t k ) λ ik + (θ 2 -θ 1 ) (x, y, t N +1 )
where T 1 (resp. T 2 ) corresponds to the solid S 1 (resp. S 2 ).

Knowing that ψ = 0 for t < t N , we have

Nxy i=1 (T 1 + T 2 ) (x -x i , y -y i , 0, t N +1 -t N ) ψ iN = Nxy i=1 N k=1 T 2 (x -x i , y -y i , 0, t N +1 -t k ) φ ik - Nxy i=1 N k=1 (T 1 + T 2 ) (x -x i , y -y i , 0, t N +1 -t k ) λ ik + (θ 2 -θ 1 ) (x, y, t N +1 ) (9) 
The discretized heat partition equation has been presented. In what follows, more details about the gap of temperature are given. In this work, we consider that heat is generated inside a thin interface layer of wear particles which is tightened between the contact zones of both surfaces.

Thus, heat can be distributed within this layer and there will be a temperature jump between the two solids. In the following, the gap of temperature θ 1θ 2 is expressed as a function of the heat distribution profile and the physical properties of the interface.

Let us consider the i th contact point and time t k . At this point, there is a temperature jump and heat is generated within the thin layer according to a given heat generation profile. In this work, we propose that this zone is modeled as a system of n thermal components (see Fig. 3). Additionally, generation of heat is represented by a discrete set of heat sources φ l distributed along the layer. The total heat generated at this contact point is thus given by

φ ik = l=n l=0 φ l ik
In the i th point and at the scale of the l th component, there is a jump of temperature θ l i,N +1 -θ l-1 i,N +1 at time t = t N +1 . This jump of temperature can be modeled as a local thermal resistance (see Fig. 3(c)) or a system combining a thermal resistance and a thermal capacitance (see Fig. 3(d)).

For the first case, the jump of temperature of the l th component reads

θ l i,N +1 -θ l-1 i,N +1 = R l N k=1 ϕ l ik
where ϕ l ik is the flux which goes through the l th component at time t = t k and R l is the thermal resistance.

For the second and more general case, a thermal capacitance C l is introduced and the temperature reads

θ l i,N +1 -θ l-1 i,N +1 = N k=1 1 -exp - t N +1 -t k R l C l R l ϕ l ik
This exponential law is chosen to simulate the mass effect of the interface layer.

Thus, as long as C l increases, the time necessary to reach the steady state increases.

Considering the presence of heat sources, we have

ϕ l-1 ik -ϕ l ik = φ l-1 ik
Considering the continuity of temperature at the interface bounds (i.e (θ 2 ) i,N +1 =

θ n i,N +1 and (θ 1 ) i,N +1 = θ 0 i,N +1
), and the continuity of heat (i.e (φ 2

) i,N +1 = -ϕ n+1 i,N +1 and (φ 1 ) i,N +1 = λ i,N +1 + ψ i,N +1 = ϕ 0 i,N +1 ), the gap of temperature in the i th point at t = t N +1 reads (θ 2 -θ 1 ) i,N +1 = N k=1 n m=1 1 -exp - t N +1 -t k R m C m R m (ψ ik + λ ik ) - N k=1 n-1 m=0 m l=0 1 -exp - t N +1 -t k R m+1 C m+1 R m+1 φ l ik With ψ = 0 for t < t N , we have (θ 2 -θ 1 ) i,N +1 = n m=1 1 -exp - t N +1 -t k R m C m R m ψ ik + N k=1 n m=1 1 -exp - t N +1 -t k R m C m R m λ ik - N k=1 n-1 m=0 m l=0 1 -exp - t N +1 -t k R m+1 C m+1 R m+1 φ l ik (10)

Solving of the thermal contact problem

The contact problem can now be solved by replacing the different functions by their discrete expressions. Considering the j th point and the time step t N +1 where 0 ≤ N < N t and using Eq.( 10), Eq.( 9) reads

Nxy i=1 (T 1 + T 2 ) (x j -x i , y j -y i , 0, t N +1 -t N ) ψ iN + n m=1 1 -exp - t N +1 -t N R m C m R m ψ jN = Nxy i=1 N k=1 T 2 (x j -x i , y j -y i , 0, t N +1 -t k ) φ ik + N k=1 n-1 m=0 m l=0 1 -exp - t N +1 -t k R m+1 C m+1 R m+1 φ l jk - Nxy i=1 N k=1 (T 1 + T 2 ) (x j -x i , y j -y i , 0, t N +1 -t k ) λ ik - N k=1 n m=1 1 -exp - t N +1 -t k R m C m R m λ jk (11) 
By reporting this equation in each contacting point, the following matrix equation is obtained

A N Ψ N = Φ N -Λ N (12) 
where

A N ij = (T 1 + T 2 ) (x j -x i , y j -y i , 0, t N +1 -t N )+ n m=1 1 -exp - t N +1 -t N R m C m R m δ ij (13) 
and

Φ N j = Nxy i=1 N k=1 T 2 (x j -x i , y j -y i , 0, t N +1 -t k ) φ ik + N k=1 n-1 m=0 m l=0 1 -exp - t N +1 -t k R m+1 C m+1 R m+1 φ l jk ( 14 
)
and

Λ N j = Nxy i=1 N k=1 (T 1 + T 2 ) (x j -x i , y j -y i , 0, t N +1 -t k ) λ ik + N k=1 n m=1 1 -exp - t N +1 -t k R m C m R m λ jk (15) 
and δ ij is the Kronecker symbol.

Solving scheme

In order to solve this equation, the matrix equation problem is transformed into a minimization problem by defining the objective function

f f Ψ N = 1 2 t A N Ψ N -Φ N + Λ N . A N Ψ N -Φ N + Λ N (16) 
The minimization of the function f is performed knowing the real contact area. The latter is obtained by solving the contact mechanics problem using optimization techniques (the reader may refer to [START_REF] Waddad | A multiscale method for frictionless contact mechanics of rough surfaces[END_REF] for more details). Once the mechanical problem is solved, the contact area and the contact pressure field can both be defined. From the contact pressure p n , the frictional heat is computed by φ = µp n V where µ is the friction coefficient and V is the linear velocity.

From the contact area, an additional equation is obtained, which is of the type

PΨ N = 0 (17) 
The matrix P defines the contact constraints prescribed by the real contact area geometry. The shape of P is (N xy , N r), with N r the number of surface squares which are in contact. In this matrix, 1 corresponds to a non-contacting point while 0 is for those in contact.

Besides, it is of interest to note that the matrix A N is time-independent because the time step t N +1 -t N remains the same for N ranging from 1 to N t . Thus, this matrix is computed at the beginning of the simulation.

Furthermore, the minimization technique has been chosen to avoid the computational cost of direct inversion of the matrix system in Eq.( 12) which could become tremendous if a fine mesh is used. Thus a Newton algorithm is used to optimize the function f , which is a gradient based method, considering the constraints [START_REF] Barber | The conduction of heat from sliding solids[END_REF]. Moreover, the computation of f and its gradient requires the construction of the matrix A N and a matrix product. These two operations require considerable memory storage and computational time.

In order to increase the efficiency of the model, the matrix product is replaced by a discrete convolution and the Fast Fourier transform (FFT). For more details, the reader may refer to these works [START_REF] Willner | Fully coupled frictional contact using elastic halfspace theory[END_REF][START_REF] Gallego | A fast and efficient contact algorithm for fretting problems applied to fretting modes I, II and III[END_REF]. However, considering the velocity effect, the convolution technique is just an approximation of the matrix product.

Indeed, the coefficients of A N depends on the distance separating the contact point to the center of rotation. Nevertheless, in this work, the convolution has been used because the dimensions of the contact area are meaningless when compared to the radius of rotation R c (i.e R c L x and R c L y ). This restrictive approximation has been used only to make benefits from the many advantages of the discrete convolution.

Therefore, using the FFT and the discrete convolution, the function f reads

f Ψ N = 1 2 t F -1 F A N .F Ψ N -Φ N + Λ N . F -1 F A N .F Ψ N -Φ N + Λ N ( 18 
)
where F is the FFT operator and F -1 is the inverse of the FFT. -Computation of the matrix A N from Eq.( 13)

-for N = 1...N t :

(a) Φ N and Λ N are respectively computed from Eq.( 14) and Eq.( 15);

(b) Ψ N is found by minimizing the objective function f (see Eq.( 16) or

Eq.( 18));

(c) φ 1 and φ 2 are computed at t = t N ;

(d) Computation of Φ 1 and Φ 2 and deduction of p 1 and p 2 ;

-Computation of surface temperature T 1 and T 2 ;

3.6. The special case of a perfect contact : equal surface temperatures in contact zones

In this case, the gap of temperature vanishes in all the contact points and the terms of the different matrices involved in the contact problem read

A N ij = (T 1 + T 2 ) (x j -x i , y j -y i , 0, t N +1 -t N ) Φ N j = Nxy i=1 N k=1 T 2 (x j -x i , y j -y i , 0, t N +1 -t k ) φ ik Λ N j = Nxy i=1 N k=1 (T 1 + T 2 ) (x j -x i , y j -y i , 0, t N +1 -t k ) λ ik
This section was devoted to the presentation of the numerical algorithm used to solve the transient thermal problem. The next section presents the results obtained with this model for different configurations.

Results and case studies

Description of the studied configuration

We consider a solid cube S 2 in contact with a rotating disk S 1 (see Fig. 4).

The dimensions of the contact zone and its localization with respect to the center of rotation are reported in Tab.1. The disk surface is flat while the static solid surface is rough, and its dimensions are 1mm × 1mm. Roughness is obtained with numerical surface generation techniques [START_REF] Persson | Elastic contact between randomly rough surfaces: comparison of theory with numerical results[END_REF] which are fractal based. Indeed, a self-affine surface is generated using a power-law spectral

density P SD ∼ |k| -2(4-D f )
, where D f is the fractal dimension and k is the wave vector. The self-affinity is considered between two cut-off wave numbers k m and k M . The discrete interval [k m , k M ] defines the breadth of the roughness spectrum which means that the PSD vanishes elsewhere. Using the PSD, the rough surface is generated numerically using the discrete Fourier Transform [START_REF] Persson | Elastic contact between randomly rough surfaces: comparison of theory with numerical results[END_REF].

In particular, the height profile z is generated by the equation z

(x) = z 0 k P SD 1 2 (k) e i.( 2π 
L k.x+φ(k))
where z 0 is an amplitude parameter, L is the root square of the surface area and φ (k) are independent random variables which are uniformly distributed in the interval [0, 2π[. The surface sample considered in this study is illustrated in Fig. 5. The fractal dimension is 0.59, the low cutoff wave number is fixed at 2 and the highest one is first fixed at 10 but will be varied later. From this process, a Gaussian surface is obtained with a root mean square equal to 6.49µm. The studied surface corresponds to a narrow band of roughness.

To perform the numerical calculations, the surface is discretized into 128 × 128 square elements. Hence, the unit square dimensions are 7.8 × 7.8µm 2 . This size is sufficient for the considered scale of roughness. Indeed, a comparison has been done using this size and a coarser one (10 × 10µm 2 ) and the results were practically identical. Thus, the present work concerns only the results obtained with the refined size (i.e 7.8 × 7.8µm 2 ). Also, time discretization has been checked. The time step is small enough to get accurate results from transient analyses. Its size depends on the studied time interval. At last, we note that thermal calculations take only a few minutes to be completed for each time step.

With regard to material properties, the mechanical elastic parameters are fixed in this study while the thermal ones will be varied in the different case studies.

The rotating disk is made of steel and have a Young modulus E 1 = 220GP a and a Poisson's coefficient ν 1 = 0.33. The static solid corresponds to a friction material with E 2 = 4GP a and ν 2 = 0.15. The contact is imposed by prescribing a normal load P from which can be defined a mean contact pressure p. The contact is frictional and the coefficient of friction is µ = 0.4. In addition, thermo-mechanical deformations are not considered in this work. Using the contact mechanics model, the contact area and the pressure distribution have been computed and used in the thermal calculations.

Before discussing the results obtained with the present model, we present briefly simplified expressions of heat coefficent partition obtained from Barber[30] using Blok's postulate and a circular perfect and plane contact. According to this work, this coefficient reads for a short contact duration (very small t)

p 1 = 1 1 + κ1 κ2 χ2 χ1 (19) 
while in the steady state it becomes

p 1 = 1 1 + κ1 κ2 (20) 
One can remark that these formulas depend only on the thermophysical properties of contact solids, and should just give an idea about the order of magnitude of heat partition. In the following, the sensitivity of heat partition and surface temperature on many parameters is highlighted in several case studies. In this section, several case studies are presented with the purpose of analyzing the influence of velocity, load and roughness on heat distribution in the interface.

For these case studies, perfect contact conditions are considered. Indeed, the continuity of temperature field is assumed within all contact points. The presence of an interface layer will be considered later (see paragraph 4.3). In the different studies, the analysis concerns the evolution of heat partition and the maximal surface temperature with time t and the normal contact pressure p(M P a). In 175 addition, the presented figures will show only the coefficient p 1 as p 2 can be deduced directly from the latter (p 2 = 1 -p 1 ).

Influence of the ratio between conductivities

In this study, the ratio between the two solid conductivities κ 1 /κ 2 has been varied from 1/5 to 5 for different values of velocity (1, 10 and 100 rad.s -1 ).

Here, the volumetric heat capacity of the two solids are equal and have been fixed at 1M J/m 3 K. This means that the ratio between diffusivities χ 1 /χ 2 is equal to the one between conductivities κ 1 /κ 2 . Fig. 6 shows the evolution with time of the ratio p 1 for a mean contact pressure equal to 10 M P a. As can be seen from this figure, the rate of heat going to the mobile side of the contact increases with velocity with respect to the ratio of conductivities. This behavior is in accordance with many works [START_REF] Chantrenne | A microscopic thermal model for dry sliding contact[END_REF][START_REF] Coulibaly | Thermomechanical coupling of rough contact asperities sliding at very high velocity[END_REF] and was expected since the material of the moving side is cool when it gets into contact and it needs to be brought to the temperature of surface. Moreover, it is clear that the velocity effect depends on the ratio of conductivities. Indeed, increasing κ 1 /κ 2 reduces the impact of velocity. This can be explained by the fact that the temperature level is inversely proportional to the solid conductivity with respect to the heat applied. Therefore, the velocity effect can be considered of the second order compared to conductivities especially if this ratio is quite large.

Tab.2 presents a brief comparison between the model predictions for the lowest velocity ω = 1 rad.s -1 and the results obtained with the simplified formulas ( 19)-( 20) which are based on Blok's postulate and a circular flat contact. As we can see, the order of magnitude is nearly preserved for the chosen velocity while the increasing of velocity leads to a deviation from the values obtained with these formulas. Nevertheless, it is also worth mentioning that even if the macroscale heat partition is predicted by the analytic simplified formulas, the microscale local information on heat exchange and temperature is missed.

The distribution of local surface temperature for both solids is shown in Fig. 7.

The velocity considered here is 100 rad.s κ 2 = 5, ω = rad. s -1

κ 1 κ 2 = 5, ω = rad. s -1 κ 1 κ 2 = 5, ω = rad. s -1 κ 1 κ 2 = 1, ω = rad. s -1 κ 1 κ 2 = 1, ω = rad. s -1 κ 1 κ 2 = 1, ω = rad. s -1 κ 1 κ 2 = 1 5 , ω = rad. s -1 κ 1 κ 2 = 1 5 , ω = rad. s -1 κ 1 κ 2 = 1 5
, ω = rad. s -1 of the hot zones is parallel to the velocity vector.

Barber [START_REF] Barber | Distribution of heat between sliding surfaces[END_REF] Present study (ω = 1 rad.s 

Influence of the ratio between diffusivities

In the present case study, the ratio between diffusivities χ 1 /χ 2 has been varied while the conductivities are equal and fixed at 10 W.K -1 m -1 . The variation of the ratio χ 1 /χ 2 with respect to conductivities is equivalent to the variation of the ratio between the volumetric heat capacity of the two solids.

Fig. 8 shows the transient evolution of p 1 for varied values of χ 1 /χ 2 and velocity.

While the velocity effect is well established as demonstrated in the first study, it can be seen from this figure that increasing χ 1 with respect to χ 2 leads to a decrease in the heat going to the moving side. This can be explained by the fact that the increase of diffusivity reduces the time to reach a given level of temperature. Thus, the solid having the smallest diffusivity is given a big part of heat permitting to respect the thermal balance in the contact surface zones. Of course, this explains the transient behavior of heat partition. As time increases, the diffusivity effect will vanish progressively.

A brief comparison between the model predictions for the lowest velocity ω = 1 rad.s -1 and the results based on the simplified formulas ( 19)- [START_REF] Salti | 3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance[END_REF], is shown in Tab.3. The order of magnitude is nearly preserved for the chosen velocity. The slight differences between analytic results and the present model are mainly due to velocity effect. 
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, ω = 10 rad. s -
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Influence of the variation of velocity

In the previous studies, the velocity has been fixed, thus the amount of heat released was constant within time. In this paragraph, we consider that the solid S 1 was rotating at t = 0 with ω 0 = 10 rad.s -1 . As contact is created at t = 0, the velocity decreases linearly until it reaches a steady velocity ω 1 at t = t 0 .

The variation of velocity could be encountered in many applications such as braking. For instance, if ω is reduced to ω 1 = 0, that would correspond to brake a vehicle to standstill. Thus it is interesting to study the effect of velocity variation on heat partition mechanisms. In this study, t 0 is fixed at 100 ms while ω 1 is varied from 50 to 0 rad.s -1 . The studied interval of time is [0, 200 ms].

Moreover, the two solids have the same thermal properties (κ = 10W.K -1 m -1 and χ = 10 -5 m 2 .s -1 ).

The transient evolution of heat partition is presented in Fig. 9. As we can see from this figure, the rate of heat flowing into the moving body follows the variation of velocity. It is clear that in case of a deceleration, the moving body gets less and less of heat. In the special case of ω 1 = 0, the released heat at the interface vanishes. In this case, the past-moving side will be itself a source of heat which flows meaningfully into the static side direction. Furthermore, as the velocity becomes constant, heat partition evolution retrieves progressively an evolution corresponding to its actual velocity. This was predictable as the release of heat becomes stable. On the other side, the maximal temperature evolution within time is presented in Fig. 9. The temperature evolution follows the velocity variation. This is mainly linked to the transient variation of the released heat in the contact interface. For the case where the velocity vanishes at t 0 = 100ms, the temperature elevation almost vanishes in just 100ms. For the other cases, a steady temperature is reached within 100ms. This temperature is the same as the one reached if the final velocity has been considered from t = 0.

From this case study, the effect of the velocity profile has been highlighted.

It is shown that heat partition is transient when velocity evolves in time.

When velocity attempts a steady state, the heat partition progressively becomes steady. and χ = 10 -5 m 2 .s -1 ).

First, the contact area evolution with the contact pressure is presented in the contact area decreases as the roughness scale increases. This is in good accordance with classical works as [START_REF] Persson | Elastic contact between randomly rough surfaces: comparison of theory with numerical results[END_REF] and was quite predictable since the size of contact asperities get smaller and smaller with k M increasing. On the other side, reducing the root mean square with respect to the scale of roughness leads to an increase of the contact area. Additionally, the scatter between the different realizations continues to decline significantly as the contact pressure increases.

With regard to heat distribution, the evolution of the mean heat partition coefficient p 1 for each configuration is shown in Fig. 11 for different values of velocity and for a large time nearing the steady state. On the one hand, it 280 is clear from this figure that the scatter introduced by randomness has not a big effect on the thermal response. On the other hand, the amplitude of roughness and its scale have a considerable effect on heat partition. This can be explained by the notable influence of these parameters on the contact area definition and thereafter the thermal exchanges at the interface. It is clear also that the increase of contact area (due to the scale or the amplitude of roughness) can only increase the amount of heat going through the moving side with respect to velocity. The evolution of the local maximal temperature with contact pressure is shown in Fig. 12 for all the studied cases and for a large time nearing the steady state.

One can see the difference in maximal temperature levels for the different tested is the thickness of the wear debris interface layer which is considered to be equal to 1µm. In what follows, the different results will be presented depending on these dimensionless coefficients.

Influence of the heat generation profile

The exact location of the produced heat is not known for certain, many profiles of heat generation can be imagined. Therefore, we propose in this study 3 examples of heat distribution within a contact point (see Fig. 3 and Fig. 13): A surface heat distribution in the plane next to the sliding solid S 1 ; a volume heat distribution within the interface layer with a uniform or a linear profile. In the linear case, the maximum of heat is on the sliding solid surface S 1 . For the three considered profiles, a study has been performed on the same sample studied in the first case study (same roughness) with a velocity varying from 1 rad.s -1

to 100 rad.s -1 . The contact pressure is fixed at 10 M P a. The interface layer is discretized into n = 10 components. This number is sufficient as the most complex profile of heat is linear. For each interface component, the following dimensionless parameters are considered C * = 10 3 and R * = 1.

The heat partition coefficient evolution with time is shown in Fig. 14. As we can see, the coefficient p 1 is affected by the profile of heat generation. In particular, it is clear that the volume heat generation (linear or uniform) leads to a decrease in the amount of heat that goes into the sliding solid S 1 . Indeed, going from the uniform to the linear profile and then to the surface profile, leads to an increase of the heat created near to S 1 . Consequently, the more heat generated is close to S 1 , the largest heat will be absorbed by S 1 (which consequently leads to an increase of p 1 ). This is in qualitative accordance with Chantrenne et al. [START_REF] Chantrenne | A microscopic thermal model for dry sliding contact[END_REF] even if they have considered a more simpler contact problem and a subsurface heat generation in the vicinity of the interface.

With regard to the maximal temperature (see Fig. 15), the latter is reached in the static solid (S 2 ) except the case where heat is generated near to the surface of S 1 (the sliding solid). The fact that the temperature of the static solid is more important is due to the cooling effect in the sliding solid. In the case of the surface profile, the temperature of S 1 is more important because of the considerable amount of heat absorbed by S 1 comparing to S 2 . These results

show an interesting aspect regarding the maximal temperature in presence of the interface layer. The heat profile generation which is linked to friction regime affects clearly the localization of the maximal temperature. In this case study, we consider a uniformly distributed profile of heat. Both the dimensionless resistance and capacitance are varied and their impact on heat partition (resp. the maximal temperature) is shown in Fig. 16 (resp. Fig. 17). On one side, as we can see, increasing the thermal resistance leads to a considerable decrease of p 1 especially when the velocity is high. On the other side, the capacitance affects heat partition in the considered interval of time (20ms).

After this time, heat partition reaches progressively a steady state. It can also be seen that for lower values of velocity, the considered range of R * and C * have R * =10 0 , C * =10 3 , ω = rad. s -1 R * =10 0 , C * =10 5 , ω = rad. s -1 R * =10 -2 , C * =10 5 , ω = rad. s -1 R * =10 0 , C * =10 3 , ω = 10 rad. s -1 R * =10 0 , C * =10 5 , ω = 10 rad. s -1 R * =10 -2 , C * =10 5 , ω = rad. s -1 R * =10 0 , C * =10 3 , ω = 100 rad. s -1 R * =10 0 , C * =10 5 , ω = 100 rad. s -1 R * =10 -2 , C * =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = 10 rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = 10 rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = 100 rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = 100 rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = 10 rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = 10 rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = 100 rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = 100 rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = 10 rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = 10 rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 R ∘ =10 0 , C ∘ =10 3 , ω = 100 rad. s -1 R ∘ =10 0 , C ∘ =10 5 , ω = 100 rad. s -1 R ∘ =10 -2 , C ∘ =10 5 , ω = rad. s -1 While the effect of these features is physically quite predictable and well understandable, the effect of contact roughness is more complex. By studying several rough surface samples, characterized by the standard deviation and roughness scale, it has been shown that both roughness and contact pressure affect considerably the temperature and heat distribution.
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Furthermore, the presence of an interface layer made of wear debris accumulation has been considered. This interface has been modeled by a set of thermal resistances and capacitances and heat is generated within it. The study of different profiles of heat generation and interface parameters have shown that the interface leads to a gap of temperature mainly dependent on the heat profile 420 and the thermal resistance. However, from a physical point of view, more tools are needed to identify properly the properties of the interface layer and the profile of heat generation. As aforementioned, the study conducted here was to highlight the sensibility of the model predictions to the interface parameters.

Finally, many improvements can be done to the present model, in particular thermo-mechanical coupling between the shear process and frictional heat generation could be considered. This will impact the contact area and thus the thermal balance. Moreover, surface wear has not been considered, and thus roughness has been kept unchanged in the thermal contact solving process. In the same context, the circulation of wear debris and the apparition of the third body can modify the interface from a mechanical viewpoint. The last point has been considered but the interface layer remained unchanged during thermal simulations. All these aspects can be handled in the present thermal model using an appropriate contact mechanics model.

Figure 1 :

 1 Figure 1: Schematic of a rotating solid heated through a fixed source on its surface
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 3 The transient temperature and heat distribution in sliding contact problems 3.1. General equations 125

Figure 2 :

 2 Figure 2: Schematic of the real contact interface. Heat is generated within the real contact zones. Two cases are considered : (a) The perfect contact case meaning that θ 1 = θ 2 at the contact area, and (b) θ 1 = θ 2 at the contact area due to the presence of wear debris
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 3 Expression of the gap of temperature: the thermal resistance and capacitance, and profiles of heat generation 135

Figure 3 :

 3 Figure 3: Schematic of the interface. A gap of temperature is introduced to consider the presence of an interface layer of wear debris. (a) : The produced heat is distributed according to a profile φ(z). (b) : The interface layer is composed of n thermal components. Each component can be modeled as a local thermal resistance (c) or a system combining a thermal resistance and a thermal capacitance (d)
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 15 As summary of this paragraph, we present the main steps of the thermal contact algorithm solving : Definition of the studied geometry, surface roughness and physical properties; 2. Space-time discretization; 3. Computation of the contact area A r and pressure p n using a contact 145 mechanics model; 4. Computation of heat space-time distribution φ; Solving of the thermal contact problem :

  y c (mm) x c (mm) L x (mm) L y (mm) µ

Figure 4 : 1 .Figure 5 :

 415 Figure 4: Geometry of the studied problem. A static solid cube S 2 in contact with a rotating disk S 1 .
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 1 High temperatures are reached within the real contact area. The maximal rise of temperature is close to 1200 • C. One can remark the distortion of temperature field on the mobile side of the interface and mostly outside contact zones. Note that the direction

Figure 6 :

 6 Figure 6: Time evolution of the heat partition coefficient p 1 -which is going into the moving disk-for a given contact pressure (p = 10M P a) and for various values of ω and κ 1 /κ 2

Figure 7 :

 7 Figure 7: Surface temperature field in both the static and mobile sides for p = 10M P a, ω = 100rad.s -1 and κ 1 = κ 2

Figure 8 :

 8 Figure 8: Time evolution of the heat partition coefficient p 1 for a given contact pressure (p = 10 M P a) and for various values of ω and χ 1 /χ 2 . The conductivities are equal and fixed at 10 W.K -1 m -1 .
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 19124 Figure 9: Time evolution of the the heat partition coefficient p 1 (a) and surface maximal temperature (b) for a given contact pressure (p = 10M P a) and considering a linear variation of velocity ω from ω 0 to ω 1 during [0, 100 ms] followed by a constant velocity ω = ω 1
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 10 Fig.10 for the different configurations. Note that each curve represents the mean response issued from 20 random samples. From this figure, the discrepancy 270

Figure 10 :

 10 Figure 10: Contact area evolution with contact pressure for the different configurations of roughness. For each case, the curve presents the mean response issued from 20 random samples and the vertical bars are for the standard deviation

Tab. 4

 4 presents a brief comparison between the present study results and those of Coulibaly et al.[START_REF] Coulibaly | Thermomechanical coupling of rough contact asperities sliding at very high velocity[END_REF]. In their work they studied a rough contact between two identical solids in relative motion. The rough surface is formed by uniformly spaced square asperities. They have shown that p 2 = 1 -p 1 (χ A in their notation) decreases with velocity with respect to contact area. Based on Fig.11, the maximal and minimal values of heat partition coefficient p 1 are displayed in Tab.4 for each velocity and are compared to the values of p 1 obtained by Coulibaly et al.[START_REF] Coulibaly | Thermomechanical coupling of rough contact asperities sliding at very high velocity[END_REF]. Note that to get the equivalence with their work, rotation velocity has been converted to linear velocity using the rotation radius. As can be seen in Tab.4, the obtained values are globally in accordance with the reference values except a considerable deviation for ω = 1 rad.s -1 which can be explained by the large gap between the contact area in their work (A = 36 µm 2 ) and those considered in this work (minimal contact area A ∼ 200 µm 2 ).
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Figure 11 :

 11 Figure 11: Evolution of the steady heat partition coefficient p 1 with contact pressure for the different configurations of roughness and values of ω. For each case, the curve presents the mean response issued from 20 random samples and the vertical bars are for the standard deviation
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 124341 Figure 12: Evolution of the steady surface maximal temperature with contact pressure for the different configurations of roughness and values of ω. For each case, the curve presents the mean response issued from 20 random samples and the vertical bars are for the standard deviation

Figure 13 :

 13 Figure 13: Schematic of the profiles of heat generation within the interface layer. Three cases are considered : (a) A surface heat distribution in a plane between the two contact surfaces, (b) A uniform volume heat distribution within the interface layer, and (c) a linear heat distribution within the interface layer

Figure 16 :

 16 Figure 16: Evolution of the heat partition coefficient p 1 for various values of the thermal interface layer resistance R * and capacitance C *

Figure 17 :

 17 Figure 17: Evolution of the maximal temperature in both surface sides for various values of the thermal interface layer resistance R * and capacitance C *
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are the coordinates of the i th surface element center, d is the half dimension of the square element, 1 k is the indicator function of the time interval [t k , t Nt ] and φ ik is the flux increment applied on the i th square and emitted steadily from the instant t k .

  

	1 i (x, y) 1 k (t) φ ik
	where 1 i is the indicator function of the space domain [x i -d, x i + d]×[y i -d, y i + d],
	(x i , y i )

Table 1 :

 1 Position of S 2 and the dimensions of the contact zone 4.2. Parametric study : the perfect contact case (absence of the interface layer)

Table 2 :

 2 Results based on Blok's postulate from Barber[30] compared to the results of the present model for different values of κ 1 /κ 2

Table 3 :

 3 Results based on Blok's postulate from Barber[START_REF] Barber | Distribution of heat between sliding surfaces[END_REF] compared to the results of the

	present model for different values of	χ 1 χ 2	and a fixed conductivity

Table 4 :

 4 Heat partition results from Coulibaly et al.[19] compared to the results of the present model for different values of velocity ω. The M in and M ax values correspond to the limit values calculated for a given velocity.

  1 , kM = 10, σ= 7 µm ω=1 rad.s -1 , kM = 30, σ= 4 µm ω=1 rad.s -1 , kM = 30, σ= 7 µm ω=10 rad.s -1 , kM = 10, σ= 4 µm ω=10 rad.s -1 , kM = 10, σ= 7 µm ω=10 rad.s -1 , kM = 30, σ= 4 µm ω=10 rad.s -1 , kM = 30, σ= 7 µm ω=100 rad.s -1 , kM = 10, σ= 4 µm ω=100 rad.s -1 , kM = 10, σ= 7 µm ω=100 rad.s -1 , kM = 30, σ= 4 µm ω=100 rad.s -1 , kM = 30, σ= 7 µm

  1 , kM = 10, σ= 4 µm ω=1 rad.s -1 , kM = 10, σ= 7 µm ω=1 rad.s -1 , kM = 30, σ= 4 µm ω=1 rad.s -1 , kM = 30, σ= 7 µm ω=10 rad.s -1 , kM = 10, σ= 4 µm ω=10 rad.s -1 , kM = 10, σ= 7 µm ω=10 rad.s -1 , kM = 30, σ= 4 µm ω=10 rad.s -1 , kM = 30, σ= 7 µm ω=100 rad.s -1 , kM = 10, σ= 4 µm ω=100 rad.s -1 , kM = 10, σ= 7 µm ω=100 rad.s -1 , kM = 30, σ= 4 µm ω=100 rad.s -1 , kM = 30, σ= 7 µm
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Figure 14: Evolution of the heat partition coefficient p 1 for the 3 studied profiles of heat generation in the interface layer little impact on the partition predictions. Compared to Chantrenne et al. [START_REF] Chantrenne | A microscopic thermal model for dry sliding contact[END_REF],

we obtain qualitatively the same tendencies regarding the effect of the thermal resistance. The presence of the resistance reduces the amount of heat going to the sliding solid.

With regard to the maximal temperature evolution with time, the gap between the maximal temperature of the two surfaces expands as the resistance increases.

Increasing the capacitance lengthens the duration necessary to reach the steadystate. The gap of temperature reached at 20ms is mainly controlled by the thermal resistance. Once again, it is clear that the impact of the interface parameters is amplified by the increase of velocity.

From these studies, the effect of the properties of the interface and the heat generation profiles have been examined. As we can see, the interface can have an influence on the heat partition and the gap between the maximal temperature reached in the two solids can be quite considerable with respect to the range of velocity. However, one must keep in mind that the ratio between the two solids conductivities is fixed here at 1. And as it has been presented in the previous section, this ratio has a first order influence on the thermal balance. Thus, one 390 could expect a possibly minor or major impact of the interface parameters on heat partition if this ratio changes. Furthermore, by these case studies, the objective was clearly to test the sensitivity of the thermal contact problem to the assumptions considered in the interface.

Besides, the interface parameters have been introduced to get more realistic 395 results based on a more realistic contact conditions. However, the choice of these parameters presents a difficulty that has to be overwhelmed in future works by

Conclusions

In this work, heat partition and surface temperature in sliding contact problems have been studied using a numerical model based on heat source theory. In this model, surface roughness and velocity are both considered. Also, heat is produced within the contact surface or an interface layer introduced 405 between the two contacting solids. The problem is discretized into a linear system that is solved with optimization methods accelerated by the FFT technique.

From the obtained results, it has been shown that velocity and the ratio between