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Abstract: In this paper, we study the discrete-time super-replication problem of contingent claims with
respect to an acceptable terminal discounted cash �ow. Based on the concept of Immediate Pro�t, i.e., a neg-
ative price which super-replicates the zero contingent claim, we establish a weak version of the fundamental
theorem of asset pricing. Moreover, time consistency is discussed and we obtain a representation formula for
the minimal super-hedging prices of bounded contingent claims.
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1 Introduction
Inmathematical �nance, it is very classical to solve the problemof super-replicating a contingent claimunder
a no-arbitrage condition (NA). In particular, in frictionless markets, the so-called fundamental theorem of
asset pricing (FTAP) characterising NA condition has been studied by numerous authors, see [1–3] in discrete
time and [4, 5] in continuous time. It states that NA condition holds if and only if there exist equivalent
martingale measures (EMM). In complete markets, such a martingale measure Q ∼ P is unique and the
(replicating) price of a derivative is uniquely computed as the expectation of the discounted payo� under
Q. However, in incomplete markets, there exists an in�nite number of EMM and the (minimal) super-hedging
price is di�cult to compute in practice. Indeed, this is a supremum of the expected discounted payo� over
all probability measures (see [6] and [7, Theorem 2.1.11]).

A new pricing technique called No Good Deal (NGD) pricing has been proposed in [8, 9]. A good deal
is a trade with an unusually high pro�t/loss or Sharpe ratio. Cherny [10] introduced the concept of good
deal with respect to a risk measure as a trade with negative risk. Contrarily to the classical approach where
super-replication holds almost surely, Cherny assumes that the agent seller accepts some non null risk for
its portfolio not to super-hedge the payo�. In the setting of coherent risk measures, Cherny [10] provides a
version of the FTAP under absence of NGD.

Riskmeasures aremore studied andknownon the space L∞, i.e. the space of essentially bounded random
variables. And the space Lp, p ∈ [1,∞) is a natural extension, see [11, 12]. Actually, working on the restricted
subspaces of L0, such as L∞ and Lp, is mainly motivated by the robust representation of risk measures.
However, the space L0, equipped with the topology of convergence in probability, is more adapted for some
classical �nancial and actuarial problems such as hedging, pricing, portfolio choice, equilibriumandoptimal
reinsurance with respect to risk measures.
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Delbaen in [13, 14] extends the coherent risk measure to the space L0 by enlarging its range to R ∪ {+∞}
as there is no real-valued coherent risk measure on L0 when the probability space (Ω,F, P) is atomless
[14, Theorem 5.1]. A robust representation with respect to a set of probability measures is then given [14,
Theorem5.4]. As the space L0 contains non integrable randomvariables, Delbaen in [14] truncates the random
variables from above, i.e. only considers possible future wealth up to some threshold. It is then possible to
compute the risk measures as in L∞ and then make n tend to in�nity [14, De�nition 5.3]). Therefore, the
robust representation on L∞ appears to be the key point to extend coherent risk measure to L0, see ([10,
De�nition 2.2] and [15]), which allow to formulate a FTAP with respect to NGD and solve super-replication
problems. In this approach, coherent risk measures remain characterised through families of probability
measures which are not necessarily easy to handle in practice, see e.g. the explicit representation of this
family for the Weighted VaR risk measure [16, 17].

In this paper, we de�ne risk measures on the space L0 with values in R = [−∞, +∞]. They are naturally
de�ned through the concept of acceptable set, i.e. a risk measure is seen as the minimal capital requirement
added to the position for it to be acceptable. Under some natural assumptions satis�ed by the acceptable
set, we show that a risk measure is lower semi-continuous. This allows to compute ω-wise risk measure
using similar new results on conditional essential supremum [18]. Inspired by [10], the aim of this paper
is to reconsider the super-replication problem in discrete-time with respect to a risk measure without using
a dual representation. The minimal super-hedging prices of a contingent claim are recursively de�ned in the
spirit of [18].

Based on the concept of immediate pro�t, introduced in [18], we establish a weak version of FTAP to
equivalently characterise the condition of absence of immediate pro�t (AIP). Moreover, we show that for
bounded non-negative contingent claims, the minimal super-hedging price may be computed through a
conditional (dynamic) coherent risk measure derived from the underlying risk measure. At last, we discuss
the time consistency, i.e. coherent evaluations of risk in time, since it is a very important concept developed
in the literatures for dynamic risk measures, see [19, 20].

The paper is organized as follows. Section 2 gives the de�nition of risk measures and some important
properties for these risk measures are showed. Section 3 introduces the model of super-replication with
respect to acceptable sets. We simplify the problem of minimal super-hedging price involving the essential
in�mum into a classic minimization problem just with in�mum. In Section 4, a weak version of fundamental
theorem of asset pricing is proved. Section 5 gives a price representation for the bounded non-negative
contingent claims.

2 Dynamic risk measure
Notations:
L0(R,F) is the metric space of all R-valued random variables which are F-measurable;
Lp(R,F, P), p ∈ [1,∞) (resp. p = ∞), is the normed space of all R-valued random variables which are F-
measurable and admit amoment of order p under the probability P (resp. bounded).Without any confusions,
we omit the notation P and just denote Lp(R,F);
Lp(R+,F) := {X ∈ Lp(R,F)|X ≥ 0}, Lp(R++,F) := {X ∈ Lp(R,F)|X > 0} and Lp(R−,F) := {X ∈ Lp(R,F)|X ≤
0};
In the following, we consider a complete discrete-time stochastic basis (Ω,F := (Ft)t=0,··· ,T , P) where Ft
represents the available information of the market at time t;
EP and EQ are the expectations of any integrable random variable with respect to the probability measure P
and Q. In general, we denote EP as E without of any confusions. All equalities and inequalities of random
variables are understood up to a negligible set.

The dynamic risk measure X 7→ (ρt(X))t=0,··· ,T we consider is de�ned on L0. It is constructed from its
acceptance sets de�ned as follows:

Brought to you by | NANJING UNIVERSITY OF SCIENCE AND TECHNO
Authenticated

Download Date | 8/15/19 5:16 AM



896 | Jun Zhao, Emmanuel Lépinette, and Peibiao Zhao

De�nition 2.1. A dynamic acceptable set is a family (At)t=0,··· ,T of subsets of L0(R,FT) satisfying the following
conditions:

(1) X + Y ∈ At for all X, Y ∈ At;
(2) Y ∈ At whenever Y ≥ X for some X ∈ At;
(3)At ∩ L0(R,Ft) = L0(R+,Ft);
(4) ktX ∈ At for any X ∈ At and kt ∈ L0(R+,Ft).

Any element of At is said acceptable at time t. For any X ∈ L0(R,FT), we denote by AX
t the set of all Y ∈

L0(R,Ft) such that X + Y ∈ At.

De�nition 2.2. Let (At)t=0,··· ,T be a dynamic acceptance set. The risk measure associated to (At)t=0,··· ,T is, at
time t, the mapping ρt : L0(R,FT)→ L0(R ∪ {−∞, +∞},Ft) de�ned as

ρt(X) := ess inf AX
t (2.1)

up to a negligible set.

Observe that ρt(X) is the the minimal capital requirement we add to the position X for it to be acceptable at
time t. The e�ective domain of ρt is denoted as

dom ρt := {X ∈ L0(R,FT)|ρt(X) < +∞}.

In this paper, we just consider the positions whose riskmeasures are not in�nite at any time t. In other words,
we assume that ρt(X) < +∞ for any X ∈ L0(R,FT).

Lemma 2.3. For any X ∈ L0(R,FT), there exists a sequence Yn ∈ AX
t such that ρt(X) = limn→∞ ↓ Yn a.s.

Proof. We �rst observe that the set AX
t is Ft-decomposable, i.e. if Λt ∈ Ft and Y1, Y2 ∈ AX

t , then Y11Λt +
Y21Ω\Λt ∈ AX

t . To see it, we use conditions 1) and 4) of De�nition 2.1. We then deduce that AX
t is directed

downward, i.e. if Y1, Y2 ∈ AX
t , then Y1 ∧ Y2 ∈ AX

t . Indeed, Y1 ∧ Y2 = Y11{Y1≤Y2} + Y21{Y1>Y2} with {Y1 ≤
Y2} ∈ Ft. Therefore, there exists a sequence Yn ∈ AX

t such that ρt(X) = limn→∞ ↓ Yn a.s., see [7, Section
5.3.1.]
The following proposition is straightforward due to the de�nition. The proofs are showed in the Appendix C.

Proposition 2.4. The risk measure ρt de�ned as (2.1) satis�es the following properties:
Normalization: ρt(0) = 0;
Monotonicity: X ≤ X′ means ρt(X) ≥ ρt(X′);
Cash invariance: for all mt ∈ L0(R,Ft), ρt(X + mt) = ρt(X) − mt;
Subadditivity: for all X, X′ ∈ L0(R,FT), ρt(X + X′) ≤ ρt(X) + ρt(X′);
Positive homogeneity: for all k ∈ L0(R+,Ft), ρt(kX) = kρt(X).
Moreover, if acceptable set At is closed, then ρt is lower semi-continuous a.s. with the constraint ρt(X) > −∞
a.s. for all X ∈ L0(R,FT) andAt can be represented by ρt:

At = {X ∈ L0(R,FT)|ρt(X) ≤ 0}. (2.2)

De�nition 2.5. A system (ρt)0≤t≤T is called dynamic riskmeasure if ρt is a riskmeasure function de�ned as (2.1)
for each 0 ≤ t ≤ T.

3 Minimal super-hedging prices
In the discrete-time model, let (St)0≤t≤T be the discounted price process of asset where St ∈ L0(R+,Ft).
And (ρt)0≤t≤T is dynamic risk measure de�ned in De�nition 2.5. A contingent claim at time T is denoted by
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a real-valued FT -measurable random variable hT . The question is to �nd a self-�nancing strategy process
(θt)0≤t≤T to super-replicate the contingent claim hT . Here we use the concept of super-replication in the sense
of acceptable set, that is the resulting risk is negative, instead of super-hedging almost surely as the most
literatures did. In fact, super-replication almost surely usually can not be realized in a real market.

First let us start with the one step model, that is to super-replicate the contingent claim hT at time T − 1.
And the acceptable setAT−1 is assumed to be closed in this section. An notion of super-hedging with respect
to the acceptable set is given as follows. In this paper, we just consider the contingent claims which can be
super-hedged in the sense of the following de�nition.

De�nition 3.1. Contingent claim hT is said to be super-hedged at time T − 1 if there exists some PT−1 ∈
L0(R,FT−1) and strategy θT−1 ∈ L0(R,FT−1) such that PT−1 + θT−1∆ST − hT ∈ AT−1. And PT−1 are called
the super-hedging prices of the contingent claim hT at time T − 1.

We show that hT can be super-hedged if it satis�es the condition hT ≤ aT−1ST + bT−1 where aT−1, bT−1 ∈
L0(R,FT−1). In detail, take θT−1 = aT−1 and PT−1 = aT−1ST−1 + bT−1, then PT−1 + θT−1∆ST − hT ≥ 0 such that
PT−1 + θT−1∆ST − hT ∈ AT−1 sinceAt ∩ L0(R,Ft) = L0(R+,Ft).

The set PT−1(hT) consists of all super-hedging prices at time T − 1, that is

PT−1(hT) := {PT−1 ∈ L0(R,FT−1)|∃ θT−1 ∈ L0(R,FT−1) s.t.PT−1 + θT−1∆ST − hT ∈ AT−1}.

Since we assume that the contingent claims of consideration can be super-hedged, that is to say, we may
suppose thatPT−1(hT) ≠ ∅. According to (2.2) and the cash invariance property of ρT−1, PT−1 +θT−1∆ST −hT ∈
AT−1 if and only if PT−1 ≥ θT−1ST−1 + ρT−1(θT−1ST − hT). Then the set PT−1(hT) can be equivalently written as

PT−1(hT) = {θT−1ST−1 + ρT−1(θT−1ST − hT) : θT−1 ∈ L0(R,FT−1)} + L0(R+,FT−1).

Let
g(ω, x) := xST−1 + ρT−1(xST − hT),

then the set of super-hedging prices can be expressed as

PT−1(hT) = {g(θT−1) : θT−1 ∈ L0(R,FT−1)} + L0(R+,FT−1). (3.3)

Actually, we may construct a jointly measurable version of the random function g(ω, x) such that g(θT−1) =
θT−1ST−1 + ρT−1(θT−1ST − hT). And we can prove that g(ω, x) is convex and lower semi-continuous in x for
almost all ω under the assumption that the acceptable setAT−1 is closed.

Lemma 3.2. Let GT−1 = {(X, Y) ∈ L0(R2,FT−1)|Y ≥ XST−1 +ρT−1(XST −hT)}. Then, GT−1 is a non-empty closed
convex subset of L0(R2,FT−1). Moreover, GT−1 is FT−1-decomposable such that GT−1 = L0(GT−1,FT−1) for some
non-empty FT−1-measurable random closed convex set GT−1.

Proof. TriviallyGT−1 is closed and convex sinceAT−1 is supposed to be closed and a convex cone. AndGT−1 ≠ ∅
since PT−1(hT) ≠ ∅ from the assumption. Moreover, AT−1 is FT−1-decomposable and so GT−1 is. Thus we can
deduce that GT−1 = L0(GT−1,FT−1) for some FT−1-measurable random closed set GT−1, see [7, Proposition
5.4.3]. As GT−1 is not empty, we deduce that GT−1 ≠ ∅ a.s. Moreover, there exists a Castaing representation of
GT−1 such that GT−1(ω) = cl {Zn(ω) : n ≥ 1} for every ω ∈ Ω, where (Zn)n≥1 is a countable family of GT−1,
see [21, Proposition 2.7]. Then, by a contradiction argument and using a measurable selection argument, we
may show that GT−1 is convex as GT−1. �

Proposition 3.3. There exists a FT−1 ×B(R)-measurable function gT−1 such that GT−1 = {(x, y) : y ≥ g(ω, x)}
and Y ≥ XST−1 + ρT−1(XST − hT) if and only if Y ≥ gT−1(X) where X, Y ∈ L0(R,FT−1). Moreover, x 7→ g(ω, x) is
a.s. convex and lower semi-continuous.

Proof. De�ne the following random function

g(ω, x) := inf{α ∈ R : (x, α) ∈ GT−1(ω)}. (3.4)
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We �rst show that g is FT−1 × B(R)-measurable. To see it, since the x-sections of GT−1 are upper sets, we get
that g(ω, x) := inf{α ∈ Q : (x, α) ∈ GT−1(ω)}where Q is the set of all rational numbers of R. Let us de�ne the
FT−1 ×B(R)-measurable function I(ω, x) = 1 if (ω, x) ∈ GT−1 and I(ω, x) = +∞ if (ω, x) ∈ ̸ GT−1. Then, de�ne,
for each α ∈ Q, θα(ω, x) = αI(ω, x) with the convention R × (+∞) = +∞. As θα is FT−1 ×B(R)-measurable, we
deduce that g(ω, x) = inf

α∈Q
θα(ω, x) is also FT−1 ×B(R)-measurable.

Since GT−1 is closed, it is clear that (x, g(ω, x)) ∈ GT−1(ω) a.s. when g(ω, x) < ∞ and,moreover, g(ω, x) > −∞
by Proposition 2.4. Therefore, GT−1(ω) is the epigraph of the random function x 7→ g(ω, x). As Y ≥ XST−1 +
ρT−1(XST − hT) if and only if (X, Y) ∈ GT−1, or equivalently (X, Y) ∈ GT−1 a.s., we deduce that it is equivalent
to Y ≥ g(X).

Moreover, as GT−1 is convex, we deduce that x 7→ g(ω, x) is a.s. convex. Let us show that x 7→ g(ω, x) is
a.s. lower-semi continuous. Consider a sequence xn ∈ Rwhich converges to x0 ∈ R. Let us denote βn := g(xn).
We have (xn , βn) ∈ GT−1 from the above discussion. In the case where infn βn = −∞, g(ω, x) − 1 > βn for n
large enough (up to a subsequence) hence (xn , g(ω, x) −1) ∈ GT−1(ω) since the xn-sections of GT−1 are upper
sets. As n →∞, we deduce that (x, g(ω, x) − 1) ∈ GT−1(ω). This contradicts the de�nition of g. Moreover, the
inequality g(x) ≤ lim infn βn is trivial when the right hand side is +∞. Otherwise, β∞ := lim infn βn < ∞ and
(x0, β∞) ∈ GT−1 as GT−1 is closed. It follows by de�nition of g that g(x0) ≤ lim infn g(xn), i.e. g is lower-semi
continuous. �

Corollary 3.4. We have g(X) = XST−1 + ρT−1(XST − hT) a.s. whatever X ∈ L0(R,FT−1).

Proof. Consider a measurable selection (xT−1, yT−1) ∈ GT−1 ≠ ∅. We have yT−1 ≥ g(xT−1) by de�nition hence
g(xT−1) < ∞ a.s. Let us de�ne XT−1 = xT−11{g(X)=∞} + X1{g(X)<∞}. Since we have

g(XT−1) = g(xT−1)1{g(X)=∞} + g(X)1{g(X)<∞},

is a.s. �nite, (XT−1, g(XT−1)) ∈ GT−1 a.s. We deduce that

g(XT−1) ≥ XT−1ST−1 + ρT−1(XT−1ST − hT)

as GT−1 = L0(GT−1,FT−1). Therefore, g(X) ≥ XST−1 + ρT−1(XST − hT) on the set {g(X) < ∞}. Moreover, the
inequality trivially holds when g(X) = +∞. Similarly, let us de�ne

YT−1 =
(
XST−1 + ρT−1(XST − hT)

)
1{XST−1+ρT−1(XST−hT )<∞}

+ yT−11{XST−1+ρT−1(XST−hT )=+∞}.

Wehave (XT−1, YT−1) ∈ GT−1 a.s. hence, by de�nition of g, g(XT−1) ≤ YT−1. Then, g(X) ≤ XST−1+ρT−1(XST−hT)
on {XST−1 + ρT−1(XST − hT) < ∞}. The inequality being trivial on the complementary set, we �nally conclude
that the equality holds a.s. �
The minimal super-hedging price is given in the sense of (conditional) essential in�mum. A generalized
concept and existence of conditional essential supremum (resp. conditional essential in�mum) of a family of
vector-valued random variables with respect to a random partial order are discussed in [22, 23]. Here we use
the classical case with a natural partial order for a family of real-valued random variables (see Appendix A).

De�nition 3.5. The minimal super-hedging price of the contingent claim hT at time T − 1 is de�ned as

P*T−1 := ess inf
θT−1∈L0(R,FT−1)

PT−1(hT). (3.5)

Omit L0(R+,FT−1) and denote P′
T−1(hT) := {g(θT−1) : θT−1 ∈ L0(R,FT−1)}, then

P*T−1 = ess inf
θT−1∈L0(R,FT−1)

PT−1(hT) = ess inf
θT−1∈L0(R,FT−1)

P′
T−1(hT).

Lemma 3.6. The set P′
T−1(hT) is directed downward.
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Proof. For any θ1
T−1, θ2

T−1 ∈ L0(R,FT−1), de�ne

θT−1 := θ1
T−11{g(θ1

T−1)≤g(θ2
T−1)} + θ2

T−11{g(θ1
T−1)>g(θ2

T−1)} ∈ L
0(R,FT−1).

Due to the convexity of g, it holds

g(θT−1) ≤ g(θ1
T−1)1{g(θ1

T−1)≤g(θ2
T−1)} + g(θ2

T−1)1{g(θ1
T−1)>g(θ2

T−1)}

= g(θ1
T−1) ∧ g(θ2

T−1).

That implies that there exists θT−1 ∈ L0(R,FT−1) such that g(θT−1) ∈ P′
T−1(hT) where g(θT−1) is the lower

bound of any pair g(θ1
T−1) and g(θ2

T−1) from the set P′
T−1(hT). �

Theorem 3.7.
P*T−1 = ess inf

θT−1∈L0(R,FT−1)
g(θT−1) = lim

n
↓ g(θnT−1) (3.6)

for some sequence θnT−1 ∈ L0(R,FT−1). Moreover, it holds

ess inf
θT−1∈L0(R,FT−1)

g(θT−1) = inf
x∈R

g(x). (3.7)

Proof. The �rst equality (3.6) is a direct consequence of Lemma 3.6. In order to obtain (3.7), we �rst prove that
inf
x∈R

g(x) is FT−1-measurable. De�ne

Dom g(ω) := {x ∈ R : g(ω, x) < ∞}
= {x ∈ R : ρT−1(xST − hT) < ∞}.

Observe that Dom g is an upper set, i.e. an interval. Since PT−1(hT) ≠ ∅, there exists a strategy aT−1 ∈ Dom g
hence Dom g contains the interval [aT−1, ∞). Thus we can say that Dom gT−1 admits a non empty interior on
which gT−1 is convex hence continuous. It follows that

inf
x∈R

g(x) = inf
x∈Dom g

g(x) = inf
x∈int Dom g

g(x) = inf
x∈Q∩int Dom g

g(x).

We deduce that inf
x∈R

g(x) ≥ inf
x∈Q

g(x) so that the equality holds and �nally inf
x∈R

g(x) is FT−1-measurable.

As g(θT−1) ≥ inf
x∈R

g(x) for any θT−1 ∈ R, then ess inf
θT−1∈L0(R,FT−1)

g(θT−1) ≥ inf
x∈R

g(x) from the measurability

of inf
x∈R

g(x). For the reverse, take xn ∈ R, of course xn ∈ L0(R,FT−1) (basically xn is a constant), then
g(xn) ≥ ess inf

θT−1∈L0(R,FT−1)
g(θT−1) such that inf

x∈R
g(x) = inf

n∈N
g(xn) ≥ ess inf

θT−1∈L0(R,FT−1)
g(θT−1). Finally, the equality (3.7)

holds. �
Actually, it is not very clear how to solve the optimization problemwith the essential in�mum. Now it has

been transferred into a classical one just with in�mum according to Theorem 3.7 so that we can know how to
deal with it. Before characterizing the optimal solutions and studying the existence of optimal strategies, we
�rst recall the concept of immediate pro�t (IP) as introduced in [18] and give a weak version of fundamental
theorem of asset pricing to build a basic principle for the hedging and pricing.

4 Weak fundamental theorem of asset pricing
Let us extend the acceptable setAt toAt,t+s ⊆ L0(R,Ft+s) by the same axiomatic conditions in De�nition 2.1.
In what follows, all acceptable sets are supposed to be closed. The risk measure ρt is de�ned on L0(R,Ft+s)
for some s ≥ 0 instead of L0(R,FT), the risk measure function is

ρt(X) = ess inf{Y ∈ L0(R,Ft)|X + Y ∈ At,t+s}
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and the corresponding acceptable set is

At,t+s = {X ∈ L0(R,Ft+s)|ρt(X) ≤ 0}.

First we consider the general one-step model from t to t + 1, super-hedging the contingent claim ht+1 at
time t means that there exists some Pt ∈ L0(R,Ft) and strategy θt ∈ L0(R,Ft) such that Pt + θt∆St+1 − ht+1
is acceptable with respect to the acceptable set At,t+1. Similarly we can express the set of all super-hedging
prices as

Pt(ht+1) = {θtSt + ρt(θtSt+1 − ht+1) : θt ∈ L0(R,Ft)} + L0(R+,Ft).

The minimal super-hedging price at time t for this one-step model is

P*t := ess inf
θt∈L0(R,Ft)

Pt(ht+1). (4.8)

For the contingent claim hT we de�ne recursively

P*T = hT and P*t := ess inf
θt∈L0(R,Ft)

Pt(P*t+1)

where P*t+1 can be regarded as the contingent claim ht+1.
Let us recall the concept of immediate pro�t as introduced in [18], which means that it is possible to

super-replicate contingent claim zero with a negative price.

De�nition 4.1. Absence of Immediate Pro�t (AIP) holds if

Pt(0) ∩ L0(R−,Ft) = {0} (4.9)

for any 0 ≤ t ≤ T.

It is obvious that (AIP) property automatically holds at time T since PT(0) = L0(R+,FT). Next we characterize
(AIP) for general model with t ≤ T − 1.

Theorem 4.2. (Weak Fundamental theorem of asset pricing) (AIP) property holds if and only if

−ρt(St+1) ≤ St ≤ ρt(−St+1) (4.10)

for all 0 ≤ t ≤ T − 1.

Proof. For the backward recursion starting from P*T = hT = 0, the set of super-hedging prices for contingent
claim zero at time T − 1 is

PT−1(0) = {θT−1ST−1 + ρT−1(θT−1ST) : θT−1 ∈ L0(R,FT−1)} + L0(R+,FT−1)

and the minimal super-hedging price is P*T−1 = ess inf
θT−1∈L0(R,FT−1)

PT−1(0). From Theorem 3.7 we know

P*T−1 = ess inf
θT−1∈L0(R,FT−1)

g(θT−1) = inf
x∈R

g(x)

where g(x) = xST−1 + ρT−1(xST) for the case hT = 0. Now it is easy to see that

g(x) = x[ST−1 + ρT−1(ST)]1x≥0 + x[ST−1 − ρT−1(−ST)]1x<0.

Denote ΛT−1 := {−ρT−1(ST) ≤ ST−1 ≤ ρT−1(−ST)}, then we can deduce that

P*T−1 = (0)1ΛT−1 + (−∞)1Ω\ΛT−1 .

Now (AIP) at time T − 1 implies that the set Ω \ ΛT−1 is empty, that is

−ρT−1(ST) ≤ ST−1 ≤ ρT−1(−ST) (4.11)

holds almost surely. By repeating the procedure for time T − 2, T − 3, ... we can get the conclusion. �

Brought to you by | NANJING UNIVERSITY OF SCIENCE AND TECHNO
Authenticated

Download Date | 8/15/19 5:16 AM



Pricing under dynamic risk measures | 901

Example 4.3. For the classical one-step super-hedging problem, i.e., a contingent claim hT can be super-
replicated at time T − 1 means that there exist some PT−1 ∈ L0(R,FT−1) and strategy θT−1 ∈ L0(R,FT−1)
such that PT−1 + θT−1∆ST − hT ≥ 0 almost surely. In this case the acceptable setAT−1 is as follows:

AT−1 = {X ∈ L0
T |X ≥ 0}

= {X ∈ L0
T | ess infFT−1 X ≥ 0}

= {X ∈ L0
T | − ess infFT−1 X ≤ 0}.

This also implies that ρT−1(X) = − ess infFT−1 X. Then from Theorem 4.2 AIP property can be expressed as the
same equivalent condition:

ess infFT−1 ST ≤ ST−1 ≤ ess supFT−1 ST . (4.12)

Indeed, ST−1 ≥ −ρT−1(ST) = ess infFT−1 ST and ST−1 ≤ ρT−1(−ST) = − ess infFT−1 (−ST) = ess supFT−1 ST . Thus
the second equivalent condition of (AIP) in [18, Theorem 3.4] is one of the special cases in our paper when taking
the worst-case risk measure ρT−1(X) = − ess infFT−1 X.

Remark 4.4. The condition (4.11) implies (4.12) trivially. Actually, the risk at time T−1 of position X ∈ L0(R,FT)
given by ρT−1(X) = − ess infFT−1 X is the worst-case (maximum) one. Indeed, from (2.1), we can easily see that

ρT−1(X) ≤ ess supFT−1 (−X) = − ess infFT−1 X

since X + ess supFT−1 (−X) ∈ AT−1 and ess supFT−1 (−X) is FT−1-measurable. By considering −X it holds that

ρT−1(−X) ≤ ess supFT−1 (X)

such that we can get by taking X = ST that

ess infFT−1 ST ≤ −ρT−1(ST) ≤ ST−1 ≤ ρT−1(−ST) ≤ ess supFT−1 ST .

5 Price representation
In this section, the study is restricted to bounded non-negative contingent claims. Themain purpose is to give
the speci�c expression of minimal super-hedging prices in the sense of risk management.

Notice that the risk measure ρt is based on the space L0 and its dual representation is not used in the
previous content. Next we give a new risk measure de�ned on the space L∞ under which the minimal super-
hedging price of a bounded contingent claim is just the risk of its opposite payo�.

Let us recall the general axiomatic de�nition of conditional coherent risk measure ρt : L∞(R,FT) →
L0(R,Ft) (see De�nition 1,2 and 3 in [24]):

De�nition 5.1. ([24]) A map ρt : L∞(R,FT)→ L0(R,Ft) is said to be a conditional coherent risk measure if it
satis�es the following properties:
-Normalization: ρt(0) = 0;
-Conditional translation invariance: for all X ∈ L∞(R,FT) and mt ∈ L∞(R,Ft),

ρt(X + mt) = ρt(X) − mt;

-Monotonicity: for all X, X ∈ L∞(R,FT), X ≤ X′ means ρt(X) ≥ ρt(X′);
-Subadditivity: for all X, X′ ∈ L∞(R,FT), ρt(X + X′) ≤ ρt(X) + ρt(X′);
-Conditional positive homogeneity: for all k ∈ L∞(R+,Ft), ρt(kX) = kρt(X).

Let us de�ne recursively (ρ̃t)0≤t≤T for some bounded position Y ∈ L∞(R,FT) based on the given dynamic risk
measure (ρt)0≤t≤T as

ρ̃T(Y) = −Y and ρ̃t(Y) = inf
x∈R

ρt(x∆St+1 − ρ̃t+1(Y)).
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Actually, it can be proved that ρ̃t are conditional coherent risk measures de�ned in De�nition 5.1 for all
0 ≤ t ≤ T and (ρ̃t)t is time-consistent, that is for all X, Y ∈ L∞(R,FT) and 0 ≤ t ≤ T, ρ̃t+1(X) = ρ̃t+1(Y) implies
ρ̃t(X) = ρ̃t(Y) (see Section 5 in [24]). Then the pricing problem is naturally equivalent to measure the risk of
contingent claim under the conditional coherent risk measure ρ̃t, that is

P*t = ρ̃t(−hT) (5.13)

which is the time-consistent price process.

Lemma 5.2. Assume the condition (AIP) holds, then ρ̃t are conditional coherent risk measures for all 0 ≤ t ≤ T
on L∞. Moreover, (ρ̃t)t is time-consistent whenever the underlying dynamic risk measure (ρt)t is or not.

Proof. Indeed, ρ̃T(·) trivially satis�es the conditions in the De�nition 5.1 such that ρ̃T(·) is a conditional
coherent risk measure. And all the other properties except normalization for ρ̃t with 0 ≤ t ≤ T − 1 are easy
to be inherited from ρt by the induction. Here we just need to prove the normalization. Assume ρ̃t+1(0) = 0,
then

ρ̃t(0) = inf
x∈R

ρt(x∆St+1)

= inf
x∈R

[xρt(∆St+1)1x≥0 − xρt(−∆St+1)1x<0]

= 0

as (AIP) implies that ρt(∆St+1) and ρt(−∆St+1) are both non-negative. The time-consistency can be easily
deduced from the de�nition of (ρ̃t)t. �
Next we can give the expression of P*t in the sense of robust representation for conditional coherent risk
measure ρ̃t. First let us give the following sets of probability measures for all 0 ≤ t ≤ T as:

Qt := {Q is a probability measure|Q� P and Q = P|Ft}. (5.14)

Theorem 5.3. Assume (AIP) property holds, then the minimal super-hedging price can be represented as

P*t = ess supQ∈Q*t
EQ(hT |Ft)

where
Q*t := {Q ∈ Qt|EQ(Y|Ft) ≥ −ρ̃t(Y), ∀ Y ∈ L∞(R,FT)}. (5.15)

Proof. From Lemma 5.2 ρ̃t is a conditional coherent risk measure. And the lower semi-continuity of ρ̃t is
inherited from the underlying risk measure ρt. Thus the following robust representation (see [24]) can be
obtained

ρ̃t(Y) = ess supQ∈Q*t
{−EQ(Y|Ft)}

where Qt and Q*t are de�ned as (5.14) and (5.15). Then let Y = −hT it is easy to conclude from (5.13). �

Appendix

A. Conditional essential supremum/in�mum

Given a measurable probability space (Ω,F, P) and H is a sub-σ-algebra of F. Recall the concept of gen-
eralized conditional essential supremum (see [22], De�nition 3.1) in L0(Rd) as well as the existence and
uniqueness for the case where d = 1 (see [22], Lemma 3.9). A similar result holds for the conditional essential
in�mum.
Lemma 3.9([22]) Let Γ ≠ ∅ be a subset of L0(R ∪ {+∞},F). Then there exist a uniqueH-measurable random
variable γ̂ ∈ L0(R ∪ {+∞},H) denoted as ess supH Γ such that the following conditions hold:
(i) γ̂ ≥ γ a.s. for any γ ∈ Γ;
(ii) if γ̃ ∈ L0(R ∪ {+∞},H) satis�es γ̃ ≥ γ a.s. for any γ ∈ Γ, then γ̃ ≥ γ̂ a.s.
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B. Measurable subsequences

First, let us recall the existence of convergent subsequences of the random sequence from L0(Rd), see [7,
Lemma 2.1.2]. The technical constructions of these convergent subsequences can be found in the proof of this
lemma.
Lemma 2.1.2([7]) Let ηn ∈ L0(Rd) be such that η := lim inf |ηn| < ∞. Then there are η̃k ∈ L0(Rd) such that for
all ω the sequence of η̃k(ω) is a convergent subsequence of the sequence of ηn(ω).

It is worth noting that the subsequence η̃k is random due to the fact that

η̃k(ω) = ηnk(ω)(ω) =
∞∑
p≥k

ηp(ω)1nk=p .

The more detailed results about the random convergent subsequence can be found in [25, Section 6.3]. Let
(K, d) be a compact metric space and N be the set of all natural numbers.
De�nition 6.3.1([25]) An N-valued, F-measurable function is called a random time. A strictly increasing
sequence (τk)∞k=1 of random times is called ameasurably parameterised subsequence or simply ameasurable
subsequence.
Lemma 6.3.2([25]) Let (fn)∞n=1 be a sequence of F-measurable function fn : Ω → K. Let τ : Ω → {1, 2, 3, · · · }
be an F-measurable random time, then g(ω) = fτ(ω)(ω) is F-measurable.
Proposition 6.3.3([25]) For a sequence (fn)∞n=1 ∈ L0(Ω,F, P;K) we may �nd a measurably parameterised
subsequence (τk)∞k=1 such that (fτk )∞k=1 converges for all ω ∈ Ω.
Proposition 6.3.4([25]) Under the assumptions of Proposition 6.3.3 we have in addition:
(i) Let x0 ∈ K and de�ne

B = {ω ∈ Ω : x0 is an accumulation point of (fn(ω))∞n=1}.

Then the sequence (τk)∞k=1 in Proposition 6.3.3 may be chosen such that

lim
k
fτk(ω)(ω) = x0, for each ω ∈ B.

(ii) Let f0 ∈ L0(Ω,F, P;K) and de�ne

C = {ω ∈ Ω : f0 is not the limit of (fn(ω))∞n=1},

where the above means that either the limit does not exist or, if it exists, it is di�erent from f0(ω). Then the
sequence (τk)∞k=1 in Proposition 6.3.3 may be chosen such that

lim
k
fτk(ω)(ω) ≠ f0(ω), for each ω ∈ C.

C. Proof of Proposition 2.4

The �rst �ve conventional properties are directly deduced from the de�nition of ρt in (2.1). Let us prove the
“Moreover" part under the assumption that the acceptable setAt is closed.

First, we can prove that ρt(X) > −∞ a.s for all X ∈ L0(R,FT). Indeed, by Lemma 2.3, for any X ∈ L0(R,FT)
there exists a sequence Yn ∈ AX

t , i.e. Yn ∈ L0(R,Ft) satisfying X + Yn ∈ At such that ρt(X) = limn ↓ Yn.
Suppose that P{ρt(X) = −∞} > 0. Denote the Ft-measurable set Λt := {ω ∈ Ω : ρt(X) = −∞} = {ω ∈ Ω :
limn ↓ Yn = −∞}. Let us consider it by the following steps:

Step 1: By taking K = R ∪ {−∞} and x0 = −∞ in [25, Proposition 6.3.4 (i)], there is a Ft-measurably
parameterised subsequence (τk)∞k=1 such that the subsequence (Lk)∞k=1 := (Yτk )∞k=1 diverges to −∞ on the set

Λt of positive probability. Since (X(ω) + Lk(ω))1Λt = (X(ω) + Yτk(ω)(ω))1Λt = (X(ω) +
∞∑
p≥k
Yp(ω)1τk=p)1Λt =
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∞∑
p≥k

(X(ω) + Yp(ω))1τk=p1Λt and τk is Ft-measurable, then we can deduce from the additivity and the positive

homogeneity ofAt that X + Lk ∈ At on the set Λt.
Step 2: By the normalization procedure X̄k := X

|Lk|
and L̄k := Lk

|Lk|
, we get that X̄k + L̄k ∈ At on the set Λt.

Applying [25, Proposition 6.3.3] to the sequence (L̄k)∞k=1, there is aFt-measurably parameterised subsequence
(σi)∞i=1 such that the subsequence (L̄σi )∞i=1 converges to some L̄. As |L̄k| = 1 for any k ≥ 1,we can see that |L̄| = 1.
Actually, L̄ = −1 a.s. as L̄σi < 0 for large enough i.

Step 3: Next we can say that −1 is also the limit of the sequence (L̄k)∞k=1 a.s. Otherwise, the set C := {ω ∈
Ω : −1 is not the limit of (L̄k(ω))∞k=1} has positive probability. By taking f0 = −1 in [25, Proposition 6.3.4 (ii)],
then Ft-measurably parameterised subsequence (σi)∞i=1 may be chosen such that limi L̄σi(ω)(ω) ≠ −1 for each
ω ∈ C. This is contradicted with the above statement L̄ = −1. Thus, we can deduce that limk L̄k = −1.

Step 4: On the other hand, X̄k = X
|Lk|

trivially converges to zero as Lk diverges to −∞. Finally, we deduce
that limk(Xk + L̄k) = −1 ∈ At on the set Λt if At is closed. This is contradicted with the third condition:
At ∩ L0(R,Ft) = L0(R+,Ft) in the De�nition 2.1. Thus, the assumption ρt(X) = −∞with a positive probability
is impossible, that is ρt(X) > −∞ with probability one.

Since we assume that ρt(X) < +∞ for any X ∈ L0(R,FT), then it holds ρt(X) ∈ L0(R,Ft). By Lemma 2.3,
we know that ρt(X) = limn ↓ Yn a.s. where Yn ∈ L0(R,Ft) satisfying X + Yn ∈ At. As the set At is closed,
Ft-decomposable and contains 0, we deduce that X + ρt(X) ∈ At for any X ∈ L0(R,FT). Now let us prove the
lower semi-continuity of ρt. Consider a sequence Xn ∈ L0(R,FT) which converges to X0. Denote αn := ρt(Xn),
then Xn + αn ∈ At. Our goal is to prove the inequality ρt(X0) ≤ lim inf αn a.s. Let us divide it into the following
three cases:

a) As for the case where lim inf αn = +∞, the inequality ρt(X0) ≤ lim inf αn holds trivially. Thus we may
assume w.l.o.g. that lim inf αn < +∞.

b) Let us consider the case where lim inf αn = −∞. Suppose that the Ft-measurable set Γt := {ω ∈ Ω :
lim inf αn = −∞} has a positive probability. Obviously, −∞ is an accumulation point of (αn)∞n=1 on the set
Γt. For convenience, denote α∞ := lim inf αn. Again, [25, Proposition 6.3.4 (i)] implies that there is a Ft-
measurably parameterised subsequence (µk)∞k=1 such that the subsequence (βk)∞k=1 := (αµk )∞k=1 diverges to
−∞ on the set Γt of positive probability. Let (Zk)∞k=1 := (Xµk )∞k=1 be the corresponding subsequence of the
sequence Xn. Thenwe can see that Zk+βk ∈ At on the set Γt as (Zk(ω)+βk(ω))1Γt = (Xµk(ω)(ω)+αµk(ω)(ω))1Γt =
∞∑
p≥k

(Xp(ω) + αp(ω))1µk=p1Γt . Then, using the normalization procedure Z̃k := Zk
|βk|

and β̃k := βk
|βk|

, we get that

Z̃k + β̃k ∈ At on the set Γt. By passing once again to a measurably parameterised subsequence, we may
assume that β̃k converges to −1 according to the similar statements in the above Step 2 and Step 3. Note
that Zk = Xµk converges to X0 and βk diverges to −∞ such that Z̃k converges to zero, we �nally get that
limk(Z̃k + β̃k) = −1 ∈ At on the set Γt if the set At is closed. This contradicts with the third condition in the
De�nition 2.1. Thus, α∞ = lim inf αn > −∞ with probability one.

c)Combining the cases a) and b), we can assumew.l.o.g. that α∞ ∈ L0(R,Ft) and X0 + α∞ ∈ At. It follows
that ρt(X0) ≤ α∞ = lim inf ρt(Xn) a.s.

At last, if the setAt is closed, the acceptable setAt can be represented asAt = {X ∈ L0(R,FT)|ρt(X) ≤ 0}.
Indeed, it is clear that ρt(X) ≤ 0 for all X ∈ At. Reciprocally, if ρt(X) ≤ 0, we get that X = −ρt(X) + at where
at ∈ At. Finally we can deduce that X ∈ At since 0 ≤ −ρt(X) ∈ At andAt + At ⊆ At. �
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