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Abstract: In this paper, we revisit the discrete-time partial hedging
problem of contingent claims with respect to a dynamic risk-measure
defined by its acceptance sets. A natural and sufficient weak no-arbitrage
condition is studied to characterize the minimal risk-hedging prices. The
method relies only on conditional optimization techniques. In particular,
we do not need robust representation of the risk-measure and we do not
suppose the existence of a risk-neutral probability measure. Numerical
experiments illustrate the efficiency of the method.
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1. Introduction

The problem of super-hedging a contingent claim ξT at time T > 0 by a
self-financing portfolio process V such that VT ≥ ξT is very classical in
mathematical finance. For frictionless markets, we consider a no-arbitrage
condition (NA) characterized by the fundamental theorem of asset pricing
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in-Aid for Scientific Research from Nanjing University of Science and Technology] under
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(FTAP), see [9, 18, 19] in discrete time and [10, 11] in continuous time. For
discrete-time models, the Dalang-Morton-Willinger theorem [9] characterizes
the NA condition as equivalent to the existence of a martingale probability
measure under which the discounted price process is a martingale. More-
over, under NA, the set of all super-hedging prices is closed and the minimal
price is the supremum of the expected discounted payoff under the equivalent
probability measures, see [24] and [20, Theorem 2.1.11].

Contrarily to the classical approach, where the inequality VT ≥ ξT holds
with probability 1, Cherny [8] proposes to relax this constraint which is
difficult to achieve in practice. He assumes that the portfolio manager accepts
to take a (reasonable) risk for the portfolio not to super-hedge the payoff. To
do so, a risk-measure ρT is considered and the hedging error εT = VT − ξT
is only supposed to be acceptable at the maturity date, i.e. ρT (εT ) ≤ 0.
The classical case of the literature coincides with the specific risk-measure
defined by ρT (X) = − ess inf(X), where the essential infimum ess inf(X) is
the minimal element of the support of X, see [2]. In the setting of coherent
risk-measures, the classical notion of arbitrage opportunity is replaced by
the concept of good deal, i.e. a non negative claim attainable from a negative
risk. Cherny [8] formulates a version of the FTAP theorem, i.e. characterizes
the absence of good deals (NGD). Moreover, he provides upper and lower
bounds for the prices of super-hedging and sub-hedging strategies [7] in the
case of discrete time coherent risk-measures.

It is well known that risk-measures are usually defined on L∞ and the
spaces Lp, p ∈ [1,∞) allow natural extensions [23]. Actually, the choice of
L∞ and, more generally Lp, is mainly motivated by the dual representations
of risk-measures. However, the space L0 is more adapted to financial and
actuarial problems such as hedging, pricing, portfolio choice, equilibrium and
optimal reinsurance with respect to risk-measures. Delbaen [12, 13] extends
the coherent risk-measures to L0 by enlarging their range to R ∪ {+∞} as
there is no real-valued coherent risk-measure on L0 when the probability
space (Ω,F ,P) is atomless (see [13, Theorem 5.1]).

Actually, it seems to be hopeless to axiomatize the notion of a coherent
risk-measure on L0 (see [13, Definition 5.2]) and then to deduce a robust
representation. Motivated by the representation theorem in L∞, Delbaen
constructs a support functional associated with a set of probability measures
and proves that it is a coherent risk-measure on L0 under some conditions
(see [13, Theorem 5.4]). In detail, he truncates random variables from above,
i.e. only considers possible future wealth up to some threshold as the space
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L0 contains non integrable random variables. It is then possible to com-
pute a risk-measure from the robust representation in L∞ as a supremum of
expected loss with respect to some absolutely continuous probability mea-
sures (see [13, Definition 5.3]). Therefore, the robust representation on L∞

appears to be the key point to extend coherent risk-measures to L0, see
[6, 7, 8]. This allows to formulate a FTAP with respect to NGD and solve
super-replication problems. In this approach, coherent risk-measures remain
characterised through families of probability measures which are not neces-
sarily convenient to handle in practice, see e.g. the explicit representation of
this family for the Weighted VaR risk-measure [6].

In this paper, we consider dynamic coherent risk-measures directly defined
on the space L0 with values in R = [−∞,+∞]. They are naturally defined
from acceptable sets, i.e. a risk-measure is seen as the minimal capital re-
quirement added to the financial position for it to be acceptable. As such a
capital may be infinite, we first define a risk-measure on its effective domain
of all positions which are acceptable when adding a finite capital and then,
we extend it to the whole space L0.

As in [8], the aim of this paper is to solve the risk-hedging problem with
respect to a coherent risk-measure but the novelty is that we do not use
any dual representation. In particular, we do not make the assumption that
there exists a risk-neutral probability measure for the price process. This is
an approach which is rarely explored, see also the paper [16] where the classi-
cal semi-martingale setting is not supposed. Therefore, a backward dynamic
principle is established. This means that we first solve the problem in the
one-time step model. Precisely, we characterize the set of risk-hedging prices
of a non negative contingent claim by a jointly measurable random function
g(ω, x) so that it is possible to compute the minimal risk-hedging price as
the ω-wise infimum of g(ω, ·) on R. Then, in the discrete-time setting, the
minimal risk-hedging prices are defined recursively in the spirit of [2].

Our analysis reveals possible immediate profits with respect to the risk-
measure, as introduced in [2]. Such an arbitrage opportunity allows to super-
replicate the zero contingent claim from a negative price. A weak version of
the fundamental theorem of asset pricing is therefore formulated to character-
ize the absence of immediate profits (AIP). Actually, this weak no arbitrage
condition AIP is not formulated for the whole market as it depends on the
risk-measure or, equivalently, depends on the acceptable set chosen by the
portfolio manager. Actually, we also consider a slightly stronger condition
we call Strict Absence of Immediate Profit (SAIP) under which the sets of
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risk-hedging prices are closed for payoff functions of linear growth. Moreover,
the risk-hedging prices are time-consistent if the dynamic risk-measure is.

The paper is organized as follows. Section 2 defines the dynamic risk-
measures on the space L0 with values in R = [−∞,+∞]. Section 3 introduces
the problem of risk-hedging with respect to acceptable sets. We characterize
the essential infimum of the risk-hedging prices as a (deterministic) ω-wise
infimum. A weak version of fundamental theorem of asset pricing is then for-
mulated. Section 4 provides characterisations of minimal risk-hedging prices
while lower and upper bounds are obtained in Section 5. At last, in Sec-
tion 6, a numerical illustration computes explicit minimal risk-hedging prices
and their strategies for an European call option in the Chinese market. The
method appears to perform well on real data.

2. Dynamic risk-measures

In discrete-time, we consider a stochastic basis (Ω,F := (Ft)t=0,··· ,T ,P) where
the complete σ-algebra Ft represents the information of the market available
at time t. For any t ≤ T , L0(R,Ft) is the metric space of all R-valued random
variables which are Ft-measurable. Similarly, Lp(R,Ft,P), p ∈ [1,∞) (resp.
p =∞), is the normed space of all R-valued random variables which are Ft-
measurable and admit a moment of order p under the probability measure
P (resp. bounded). Without any confusions, we omit the notation P and
just denote Lp(R,Ft). In particular, Lp(R+,Ft) = {X ∈ Lp(R,Ft)|X ≥ 0}
and Lp(R−,Ft) = {X ∈ Lp(R,Ft)|X ≤ 0} when p = 0 or p ∈ [1,∞]. All
equalities and inequalities between random variables are understood to hold
everywhere on Ω up to a negligible set.

2.1. Construction from the acceptance set.

The dynamic risk-measure X 7→ (ρt(X))t≤T considered in this work is defined
on L0. It is constructed from its acceptance sets defined as follows:

Definition 2.1. A dynamic acceptable set is a family (At)t≤T of non empty
subsets of L0(R,FT ) satisfying the following conditions at time t ≤ T :

1) X + Y ∈ At for all X, Y ∈ At;

2) Y ∈ At whenever Y ≥ X and X ∈ At;

3) At ∩ L0(R,Ft) = L0(R+,Ft);
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4) ktX ∈ At for any X ∈ At and kt ∈ L0(R+,Ft).

Any element of At is said acceptable at time t. Note that At is a convex
cone. For any X ∈ L0(R,FT ), we denote by AXt the set of all Ct ∈ L0(R,Ft)
such that X + Ct ∈ At, i.e,

AXt := {Ct ∈ L0(R,Ft)|X + Ct ∈ At}.

Note that AXt may be empty. We denote by DomAt the set of all X ∈
L0(R,FT ) such that AXt 6= ∅, i.e.

DomAt := {X ∈ L0(R,FT )|AXt 6= ∅}.

In the following, we use the notation R = [−∞,∞].

Definition 2.2. Let (At)t≤T be a dynamic acceptance set. The coherent risk-
measure associated to (At)t≤T is defined at any time t by the mapping ρt :
DomAt → L0(R,Ft) such that:

ρt(X) := ess infAXt , X ∈ DomAt. (2.1)

Observe that ρt(X) is the minimal Ft-measurable capital requirement we
add to the position X for it to be acceptable at time t. It is clear that
ρt(X) <∞ when AXt 6= ∅.
Definition 2.3. A system (ρt)0≤t≤T is called dynamic coherent risk-measure
if ρt is a coherent risk-measure defined by (2.1) for each t ≤ T .

In the following, we formulate some properties satisfied by the coherent
risk-measures ρt as defined in Definition 2.2 . The proofs are postponed in
Appendix B.1.

Proposition 2.4. The risk-measure ρt defined by (2.1) satisfies the following
properties on DomAt:

Normalization: ρt(0) = 0;

Monotonicity: ρt(X) ≥ ρt(X
′) whatever X,X ′ ∈ DomAt s.t. X ≤ X ′;

Cash invariance: ρt(X+mt) = ρt(X)−mt if mt ∈ L0(R,Ft), X ∈ DomAt;
Subadditivity: ρt(X +X ′) ≤ ρt(X) + ρt(X

′) if X,X ′ ∈ DomAt ;

Positive homogeneity: ρt(ktX) = ktρt(X) if kt ∈ L0(R+,Ft), X ∈ DomAt.
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Moreover, if the acceptable set At is closed, then ρt is lower semi-continuous,
satisfies ρt(X) > −∞ a.s. for all X ∈ DomAt, and At can be represented by
ρt as

At = {X ∈ DomAt|ρt(X) ≤ 0}. (2.2)

2.2. Normalizations of the sets AX
t , X ∈ DomAt.

Recall that ρt is lower semi-continuous means the following: If Xn → X,
then ρt(X) ≤ lim infn ρt(Xn) a.s. We may suppose that the inequality holds
everywhere on Ω as ρt(X) may be modified on a negligible set since AXt
is Ft-decomposable, see the proof of Proposition 2.4. Actually, this means
that ρt(X) is not uniquely defined except if we consider ρt(X) as a class of
equivalent random variables. In the following, we suppose that At is closed
for every t ≤ T and we propose to normalize the sets AXt (up to negligible
sets) for X ∈ DomAt so that it is possible to uniquely define ρt(X) on the
whole space Ω whatever X ∈ DomAt.

Lemma 2.5. Suppose that At, t ≤ T , is closed and let X ∈ DomAt.
Then, there exists a Ft-measurable closed and convex set AXt such that AXt =
L0(AXt ,Ft). Moreover, AXt (ω) = cl {Cn(ω) : n ≥ 1} for every ω ∈ Ω, where
(Cn)n≥1 is a countable family of AXt 1.

Proof. Observe that AXt is Ft-decomposable and closed by the assumption
on At. Therefore, it suffices to apply [25, Corollary 2.5 and Proposition 2.7].
2

Let us consider for every X ∈ DomAt, the subset ÃXt ⊆ AXt of all elements
C ∈ AXt such that C(ω) ∈ AXt (ω) for every ω ∈ Ω. Note that ÃXt 6= ∅ by
Lemma 2.5. Moreover, each C ∈ AXt satisfies C ∈ AXt a.s., i.e. C coincides
with an element of ÃXt up to a negligible set. It is then natural to replace AXt
by ÃXt as the elements of these two sets admit the same equivalence classes,
up to a negligible set. Note that ÃXt is still Ft-decomposable, closed for the
convergence everywhere, and it is an upper set as AXt .

At last, for X ∈ DomAt, it is worth noticing that ess inf ÃXt coincides
with ess infAXt up to a negligible set. Our goal is then to choose a specific
element representing the equivalence class of ess inf ÃXt . To do so, we use the
following:

1 (Cn)n≥1 is called a Castaing representation of AX
t .
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Proposition 2.6. For all X ∈ DomAt,

inf ÃXt = inf
n
Cn ∈ AXt ,

everywhere on Ω, where (Cn)n≥1 is a Castaing representation of AXt .

Proof. Since AXt = cl {Cn : n ≥ 1} on Ω, it is clear that infC∈ÃXt C =
infnCn is Ft-measurable. The conclusion follows. 2

Corollary 2.7. For all X ∈ DomAt, inf ÃXt is Ft-measurable. We deduce
that ρt(X) := inf ÃXt is a version of the essential infimum ess infAXt . More-
over, AXt = L0([ρt(X),∞)).

Proof. As AXt (ω) = cl {Cn(ω) : n ≥ 1} and AXt = L0(AXt ,Ft), it fol-
lows that C ≥ inf ÃXt a.s. for any C ∈ AXt . Thus, inf ÃXt is a version of
ess infAXt = ρt(X) and finally AXt = L0([ρt(X),∞)). 2

2.3. Extension of the risk-measure to L0(R,FT ).

For any X ∈ L0(R,FT ), consider the set

Λt(X) := {Ft ∈ Ft : X1Ft ∈ DomAt} .

Lemma 2.8. For any X ∈ L0(R,FT ), Λt(X) is directed-upward and admits
a maximal element Ft(X).

Proof. We need to show that F
(1)
t ∪F

(2)
t ∈ Λt(X) for any F

(1)
t , F

(2)
t ∈ Λt(X).

To see it recall that, by Definition 2.1, X1 +X2 ∈ DomAt for any X1, X2 ∈
DomAt and ktX ∈ DomAt for any X ∈ DomAt and kt ∈ L0(R+,Ft). Then,

for any X ∈ L0(R,FT ) and F
(1)
t , F

(2)
t ∈ Λt(X), we get that

X1
F

(1)
t ∪F

(2)
t

= X(1
F

(1)
t

+1
F

(2)
t
−1

F
(1)
t

1
F

(2)
t

) = X1
F

(1)
t

(1−1
F

(2)
t

)+X1
F

(2)
t
∈ DomAt,

i.e. F
(1)
t ∪ F

(2)
t ∈ Λt(X). Consider γ := ess sup{1Ft : Ft ∈ Λt(X)}. As Λt(X)

is directed-upward, there exists an increasing sequence (F n
t )n≥1 ∈ Λt(X)

such that γ = 1Ft(X) where Ft(X) = ∪nF n
t . Let us define the sequence

(En
t )n≥1 by En

t = F n
t \ F n−1

t , n ≥ 1, where F 0
t = ∅. Then, any two sets of

{En
t , n ≥ 1} are disjoint and ∪nF n

t = ∪nEn
t . Moreover, for every n ≥ 1,

there exists Cn
t ∈ L0(R,Ft) such that X1Fnt + Cn

t ∈ At. We may suppose
w.l.o.g. that F n

t = En
t . Summing up, we deduce that X1Ft(X)+Ct ∈ At where
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Ct =
∑

nC
n
t 1Ent belongs to At since the later is closed and Ft-decomposable.

We deduce that Ft(X) is the maximal element of Λt(X). 2

By Lemma 2.8, it is possible to extend ρt on the whole space L0(R,Ft).
Precisely, we set

ρt(X) := ρt(X1Ft(X)), onFt(X), and +∞, otherwise.

We claim that Proposition 2.4 may be extended to L0(R,FT ). The proofs
can be found in Appendix B.2.

Proposition 2.9. Proposition 2.4 holds on L0(R,FT ) with the conventions
0× (+∞) = 0, (0,∞)× (+∞) = {+∞} and R + (∞) = +∞.

Example 2.10. For the classical one-step super-hedging problem, a con-
tingent claim hT may be super-replicated at time T − 1 if there exist a
price PT−1 ∈ L0(R,FT−1) and a strategy θT−1 ∈ L0(R,FT−1) such that
PT−1 + θT−1∆ST − hT ≥ 0 a.s. This means that the acceptable set AT−1

is

AT−1 = {X ∈ L0(R,FT )|X ≥ 0}
= {X ∈ L0(R,FT )| ess infFT−1

X ≥ 0}
= {X ∈ L0(R,FT )| − ess infFT−1

X ≤ 0}.

In particular, we have ρT−1(X) = − ess infFT−1
X.

Remark 2.11. Since X+ess supFT−1
(−X) ≥ 0 ∈ AT−1 and ess supFT−1

(−X)
is FT−1-measurable, we get that

ρT−1(X) ≤ ess supFT−1
(−X) = − ess infFT−1

(X).

3. Risk-hedging problem and absence of immediate profit

In discrete-time, let (St)t≤T be the discounted price process of a risky asset
such that St ∈ L0(R+,Ft) for any t ≥ 0. Let (ρt)t≤T be a dynamic risk-
measure as in Definition 2.3. A contingent claim with maturity T is defined
by a real-valued FT -measurable random variable hT . The goal is to find a
self-financing strategy process (θt)t≤T to super-hedge the contingent claim hT .
Here, super-hedging needs to be understood with respect to an acceptable
set.
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3.1. Minimal risk-hedging prices in the one step model

Let us start with the one time-step model between time T − 1 and time T .

Definition 3.1. The contingent claim hT ∈ L0(R,FT ) is said to be risk-
hedged at time T − 1 if there exists a risk-hedging price PT−1 ∈ L0(R,FT−1)
and a strategy θT−1 ∈ L0(R,FT−1) such that PT−1 +θT−1∆ST −hT is accept-
able at time T − 1.

Let PT−1(hT ) be the set of all risk-hedging prices PT−1 ∈ L0(R,FT−1)
at time T − 1 as in Definition 3.1. In the following, we suppose that hT is
non negative and PT−1(hT ) 6= ∅. This is the case if there exist aT−1, bT−1 ∈
L0(R,FT−1) such that hT ≤ aT−1ST + bT−1 for all ST ∈ L0(R+,FT ). This
property trivially holds for European call and put options.

By Proposition 2.9, we may extend the set of acceptable positions (2.2) to
L0(R,FT ):

At = {X ∈ L0(R,FT )|ρt(X) ≤ 0}.

By cash invariance, we have PT−1 + θT−1∆ST − hT ∈ AT−1 if and only if
PT−1 ≥ θT−1ST−1 + ρT−1(θT−1ST − hT ). Therefore, the set of risk-hedging
prices is:

PT−1(hT ) =
{
θT−1ST−1 + ρT−1(θT−1ST − hT ) : θT−1 ∈ L0(R,FT−1

}
+L0(R+,FT−1).

The next step is to construct a jointly measurable version of the random
function

gT−1(ω, x) := xST−1 + ρT−1(xST − hT ). (3.3)

To do so, we consider the family GT−1 of all Z = (X, Y ) ∈ L0(R2,FT−1) such
that Y ≥ XST−1 +ρT−1(XST−hT ) a.s. Since we suppose that PT−1(hT ) 6= ∅,
GT−1 is not empty.

Lemma 3.2. Suppose that AT−1 is closed. Then, GT−1 is a closed convex
subset of L0(R2,FT−1). Moreover, GT−1 is FT−1-decomposable and, for fixed
X ∈ L0(R,FT−1), the section {Y : (X, Y ) ∈ GT−1} is an upper set.

Proof. Note that

GT−1 = {(X, Y ) ∈ L0(R2,FT−1) : X∆ST − hT + Y ∈ AT−1}.
9



We deduce that GT−1 is closed and convex since AT−1 is closed by assumption
and is a convex cone. Moreover, AT−1 is FT−1-decomposable and so GT−1 is.
At last, for fixed X ∈ L0(R,FT−1), since AT−1 is an upper set, so is the
X-section of GT−1. 2

Lemma 3.3. Suppose that AT−1 is closed. Then, there exists a non empty
FT−1-measurable random closed set GT−1 such that GT−1 = L0(GT−1,FT−1).
Moreover, GT−1 is convex and GT−1(ω) = cl {Zn(ω) : n ≥ 1} for every
ω ∈ Ω, where (Zn)n≥1 is a countable family of GT−1.

Proof. By Lemma 3.2, we deduce that GT−1 = L0(GT−1,FT−1) for some
FT−1-measurable random closed setGT−1, see [20, Proposition 5.4.3]. As GT−1

is not empty, we deduce that GT−1 6= ∅ a.s. Moreover, there exists a Castaing
representation of GT−1 such that GT−1(ω) = cl {Zn(ω) : n ≥ 1} for every
ω ∈ Ω, where (Zn)n≥1 is a countable family of GT−1, see [25, Proposition
2.7]. Then, by a contradiction argument and using a measurable selection
argument, we may show that GT−1 is convex as GT−1. 2

The following propositions provide a jointly measurable function gT−1(ω, x)
such that gT−1(X) = XST−1 + ρT−1(XST − hT ).

Proposition 3.4. Suppose that AT−1 is closed. There exists a FT−1×B(R)-
measurable function gT−1 such that GT−1 = {(x, y) : y ≥ gT−1(ω, x)} and,
with X, Y ∈ L0(R,FT−1), we have Y ≥ XST−1 + ρT−1(XST − hT ) if and
only if Y ≥ gT−1(X). Moreover, x 7→ gT−1(ω, x) is a.s. convex and lower
semi-continuous.

Proof. Let us define the random function gT−1 as follows:

gT−1(ω, x) := inf{α ∈ R : (x, α) ∈ GT−1(ω)} ∈ [−∞,∞]. (3.4)

We first show that gT−1 is FT−1 × B(R)-measurable. To see it, since the
x-sections of GT−1 are upper sets, we get that

gT−1(ω, x) := inf{α ∈ Q : (x, α) ∈ GT−1(ω)}

where Q is the set of all rational numbers of R. Let us define the FT−1×B(R)-
measurable function I(ω, x) = 1 if (ω, x) ∈ GT−1 and I(ω, x) = +∞ if
(ω, x) /∈ GT−1. Then, define, for each α ∈ Q, θα(ω, x) = αI(ω, x) with the
convention R× (+∞) = +∞. As θα is FT−1 ×B(R)-measurable, we deduce
that gT−1(ω, x) = inf

α∈Q
θα(ω, x) is also FT−1 × B(R)-measurable.
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Since GT−1 is closed, it is clear that (x, gT−1(ω, x)) ∈ GT−1(ω) a.s. when
gT−1(ω, x) <∞ and, moreover, gT−1(ω, x) > −∞ by Proposition 2.4. There-
fore, GT−1(ω) is the epigraph of the random function x 7→ gT−1(ω, x). As
Y ≥ XST−1 + ρT−1(XST − hT ) if and only if (X, Y ) ∈ GT−1, or equivalently
(X, Y ) ∈ GT−1 a.s., we deduce that it is equivalent to Y ≥ gT−1(X).

Moreover, as GT−1 is convex, we deduce that x 7→ gT−1(ω, x) is a.s. convex.
Let us show that x 7→ gT−1(ω, x) is a.s. lower-semi continuous. Consider a
sequence xn ∈ R which converges to x0 ∈ R. Let us denote βn := gT−1(xn).
We have (xn, βn) ∈ GT−1 from the above discussion. In the case where
infn β

n = −∞, gT−1(ω, x)− 1 > βn for n large enough (up to a subsequence)
hence (xn, gT−1(ω, x)−1) ∈ GT−1(ω) since the xn-sections of GT−1 are upper
sets. As n→∞, we deduce that (x, gT−1(ω, x)− 1) ∈ GT−1(ω). This contra-
dicts the definition of gT−1. Moreover, the inequality gT−1(x) ≤ lim infn β

n

is trivial when the r.h.s. is +∞. Otherwise, β∞ := lim infn β
n < ∞ and

(x0, β
∞) ∈ GT−1 as GT−1 is closed. It follows by definition of gT−1 that

gT−1(x0) ≤ lim infn gT−1(xn), i.e. gT−1 is lower-semi continuous. 2

Observe that, on the set {(ω, x) : gT−1(ω, x) = +∞}, GT−1 have empty
x-sections.

Corollary 3.5. We have gT−1(X) = XST−1 +ρT−1(XST −hT ) a.s. whatever
X ∈ L0(R,FT−1).

Proof. Consider a measurable selection (xT−1, yT−1) ∈ GT−1 6= ∅. We have
yT−1 ≥ gT−1(xT−1) by definition hence gT−1(xT−1) < ∞ a.s. Let us define
XT−1 = xT−11gT−1(X)=∞ +X1gT−1(X)<∞. Since we have

gT−1(XT−1) = gT−1(xT−1)1gT−1(X)=∞ + gT−1(X)1gT−1(X)<∞,

is a.s. finite, (XT−1, gT−1(XT−1)) ∈ GT−1 a.s. We deduce that

gT−1(XT−1) ≥ XT−1ST−1 + ρT−1(XT−1ST − hT )

as GT−1 = L0(GT−1,FT−1). Therefore, gT−1(X) ≥ XST−1 + ρT−1(XST − hT )
on the set {gT−1(X) < ∞}. Moreover, the inequality trivially holds when
gT−1(X) = +∞. Similarly, let us define

YT−1 = (XST−1 + ρT−1(XST − hT )) 1XST−1+ρT−1(XST−hT )<∞

+ yT−11XST−1+ρT−1(XST−hT )=+∞.

We have (XT−1, YT−1) ∈ GT−1 a.s. hence, by definition of g, g(XT−1) ≤ YT−1.
Then, g(X) ≤ XST−1+ρT−1(XST−hT ) on {XST−1+ρT−1(XST−hT ) <∞}.
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The inequality being trivial on the complementary set, we finally conclude
that the equality holds a.s. 2

From above, we rewrite PT−1(hT ) as

PT−1(hT ) = {gT−1(θT−1) : θT−1 ∈ L0(R,FT−1}+ L0(R+,FT−1). (3.5)

Remark 3.6. When AT−1 is closed, ρT−1(xST − hT ) is distinct from −∞
a.s. By construction of gT−1, we also deduce a lower semi-continuous and
jointly measurable version of

ĝT−1(ω, x) := ρT−1(xST − hT )(ω, x) := gT−1(ω, x)− xST−1(ω)

which is +∞ if and only if gT−1(ω, x) = +∞.

We then introduce the following random set:

Dom gT−1(ω) := {x ∈ R : gT−1(ω, x) <∞}
= {x ∈ R : ρT−1(xST − hT ) <∞}.

Observe that Dom gT−1 is an upper set, i.e. an interval. Moreover, since
PT−1(hT ) 6= ∅, there exists a strategy aT−1 ∈ Dom gT−1 hence Dom gT−1

contains the interval [aT−1,∞). We then deduce the following:

Lemma 3.7. Suppose that AT−1 is closed. Then inf
x∈R

gT−1(x) is FT−1-measurable

and coincides with inf
x∈Q

gT−1(x).

Proof. The upper interval Dom gT−1 admits a non empty interior on which
gT−1 is convex hence continuous. It follows that

inf
x∈R

gT−1(x) = inf
x∈Dom gT−1

gT−1(x) = inf
x∈int Dom gT−1

gT−1(x) = inf
x∈Q∩int Dom gT−1

gT−1(x).

We deduce that inf
x∈R

gT−1(x) ≥ inf
x∈Q

gT−1(x) so that the equality holds and

finally inf
x∈R

gT−1(x) is FT−1-measurable. 2

A generalized concept of conditional essential supremum (resp. conditional
essential infimum) of a family of vector-valued random variables with respect
to a random partial order is introduced in [21, 22]. In the following, we use
the simpler notion with respect to the natural partial order on R for a family
of real-valued random variables (see Appendix A.1).
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Definition 3.8. The minimal risk-hedging price of the contingent claim hT
at time T − 1 is defined as

P ∗T−1 := ess inf
θT−1∈L0(R,FT−1)

PT−1(hT ). (3.6)

Note that the minimal risk-hedging price of hT is not necessarily a price,
i.e. an element of PT−1(hT ) but we shall see that P ∗T−1 ∈ PT−1(hT ) under
some extra conditions. If we introduce

P ′T−1(hT ) :=
{
gT−1(θT−1) : θT−1 ∈ L0(R,FT−1)

}
,

we easily obtain that

P ∗T−1 = ess inf
θT−1∈L0(R,FT−1)

PT−1(hT ) = ess inf
θT−1∈L0(R,FT−1)

P ′T−1(hT ).

Note that the set P ′T−1(hT ) consists of all prices making it possible to hedge
the contingent claim hT up to a zero risk.

Lemma 3.9. Suppose that AT−1 is closed, then

P ∗T−1 = ess inf
θT−1∈L0(R,FT−1)

gT−1(θT−1) = inf
x∈R

gT−1(x). (3.7)

Proof. By Lemma 3.7, we know that inf
x∈R

gT−1(x) is FT−1-measurable. As

gT−1(θT−1) ≥ inf
x∈R

gT−1(x) for any θT−1 ∈ L0(R,FT−1), we deduce that

ess inf
θT−1∈L0(R,FT−1)

gT−1(θT−1) ≥ inf
x∈R

gT−1(x) as inf
x∈R

gT−1(x) is FT−1-measurable.

Reciprocally, we have gT−1(x) ≥ ess inf
θT−1∈L0(R,FT−1)

gT−1(θT−1) a.s. for all x ∈ Q.

Therefore, we deduce that inf
x∈Q

gT−1(x) ≥ ess inf
θT−1∈L0(R,FT−1)

gT−1(θT−1) and we

get (3.7) by Lemma 3.7. 2

Note that it is unclear in general how to solve an optimization problem de-
fined by the essential infimum. By Lemma 3.9, we have changed the problem
into a deterministic one, i.e. it suffices to solve it for each fixed ω ∈ Ω. Before
characterizing the minimal risk-hedging price, we first recall the concept of
immediate profit (IP) as introduced in [2]. We then give a weak version of
the fundamental theorem of asset pricing allowing for pricing.
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3.2. Weak fundamental theorem of asset pricing

Let us generalize the definition of acceptable set At to At,u ⊆ L0(R,Fu)
for time between t and u ∈ [t, T ] by the same axiomatic conditions as in
Definition 2.1. In the sequel, all acceptable sets are supposed to be closed.
The risk-measure ρt,u is defined on DomAt,u and then extended to L0(R,Fu)
as above. The risk-measure process satisfies

ρt,u(X) = ess inf{Y ∈ L0(R,Ft)|X + Y ∈ At,u}, X ∈ DomAt,u

and the corresponding acceptable set can be represented as

At,u = {X ∈ DomAt,u|ρt,u(X) ≤ 0}.

Consider a random variable ht ∈ L0(R,Ft), which represents a contingent
claim at time t. The general one time-step risk-hedging problem from t to
t+1 for the contingent claim ht+1 aims to characterize the risk-hedging prices
Pt ∈ L0(R,Ft) and strategies θt ∈ L0(R,Ft) such that Pt + θt∆St+1 − ht+1

is acceptable with respect to the acceptable set At,t+1. Equivalently, we may
express the set of all risk-hedging prices as

Pt(ht+1) = {θtSt + ρt(θtSt+1 − ht+1) : θt ∈ L0(R,Ft)}+ L0(R+,Ft).

The minimal risk-hedging price at time t for this one time-step model is
defined as

P ∗t := ess inf
θt∈L0(R,Ft)

Pt(ht+1). (3.8)

Starting from the contingent claim hT (see Section 3.1), we recursively define

P ∗T := hT , P
∗
t := ess inf

θt∈L0(R,Ft)
Pt(P ∗t+1)

where P ∗t+1 may be interpreted as a contingent claim ht+1. The interesting
question is whether P ∗t+1 is actually a price, i.e. an element of Pt(P ∗t+1).

An immediate profit is the possibility to super-replicate the zero contingent
claim from a negative price.

Definition 3.10. Absence of Immediate Profit (AIP) holds if, for any t ≤ T ,

Pt(0) ∩ L0(R−,Ft) = {0}. (3.9)
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It is clear that AIP holds at time T since PT (0) = L0(R+,FT ). Below, we
characterize the AIP condition at any time.

Theorem 3.11 (Weak fundamental theorem of asset pricing). The AIP con-
dition holds if and only if, for all t ≤ T − 1,

− ρt(St+1) ≤ St ≤ ρt(−St+1). (3.10)

Proof. Starting from P ∗T = hT = 0, we obtain that the set of risk-hedging
prices for the zero contingent claim at time T − 1 is

PT−1(0) = {θT−1ST−1 +ρT−1(θT−1ST ) : θT−1 ∈ L0(R,FT−1)}+L0(R+,FT−1)

and the minimal risk-hedging price is P ∗T−1 = ess inf
θT−1∈L0(R,FT−1)

PT−1(0). Note

that AIP holds at time T − 1 means that P ∗T−1 = 0. By Lemma 3.9, we have
P ∗T−1 = inf

x∈R
gT−1(x), where gT−1(x) = xST−1 + ρT−1(xST ). We have

gT−1(x) = x[ST−1 + ρT−1(ST )1x≥0 − ρT−1(−ST )1x<0].

With ΛT−1 := {−ρT−1(ST ) ≤ ST−1 ≤ ρT−1(−ST )}, we can deduce that

P ∗T−1 = (0)1ΛT−1
+ (−∞)1Ω\ΛT−1

.

Therefore, condition AIP holds at time T − 1 if and only if P(Ω \ΛT−1) = 0.
At last, observe that, from a price for the zero claim at any instant t, it is
possible to super-hedge a price at time t+ 1. So, if the minimal price at time
t+ 1 is P ∗t+1 = 0, then a price at any instant t is non negative. So, repeating
the procedure backwardly at any time t ≤ T − 2, we finally conclude. 2

Example 3.12. In the classical problem of Example 2.10, recall that the
risk-measure at time T − 1 is ρT−1(X) = − ess infFT−1

X, X ∈ L0(R,FT−1).
Then, by Theorem 3.11, AIP is equivalent to

ess infFt−1 St ≤ St−1 ≤ ess supFt−1
St, 1 ≤ t ≤ T, (3.11)

as formulated in [2, Theorem 3.4].

Remark 3.13. The AIP condition for the risk-measure ρT−1 implies the
same for the risk-measure ρT−1(X) = − ess infFT−1

X. Indeed, by Remark
2.11 with ST and −ST , it holds that ρT−1(−X) ≤ ess supFT−1

(X). Therefore,

ess infFT−1
ST ≤ −ρT−1(ST ) ≤ ST−1 ≤ ρT−1(−ST ) ≤ ess supFT−1

ST .
15



Interpretation. Contrarily to classical no-arbitrage conditions, the AIP con-
dition is not a no-arbitrage condition for the whole market, as it depends on
the risk-measure or, equivalently, depends on the acceptable sets chosen by
the portfolio manager. The AIP condition means that the portfolio manager
evaluates the minimal price for the zero claim by 0. By Theorem 3.11, this
is equivalent to say that there is no Ft-measurable subset of Ω at time t on
which the portfolio manager considers ∆St+1 or −∆St+1 as strictly accept-
able, i.e. such that ρt(±∆St+1) < 0. On the contrary case, he could make a
positive profit −ρt(∆St+1) or −ρt(−∆St+1) and obtain at time t an accept-
able position ∆St+1 or −∆St+1 by investing in a short or long position.

Remark 3.14. Suppose that there exists Q ∼ P such that S is a Q-martingale
and

AT−1 ⊆ {X ∈ L1(R,FT ) : EQ(X|FT−1) ≥ 0}.
Then, AIP holds.

4. Characterisation of minimal risk-hedging prices

4.1. Conditions under which the minimal risk-hedging price is a
price

The main purpose of this section is to obtain the existence of optimal hedging
strategies such that it is possible to hedge the contingent claim when starting
from the minimal risk-hedging price, i.e. such that the minimal risk-hedging
price is actually a price. In that case, the risk-measure of the hedging error
vanishes.

4.1.1. One step-time model

Let us consider the one-step model between time T − 1 and T . We shall
see that the minimal risk-hedging price P ∗T−1 is actually a price as soon as
AIP holds at time T − 1 with some extra conditions, which we call Strict
Absence of Immediate Profit (SAIP). To do so, we formulate the the following
technical lemmas. The proof of the following is postponed to Appendix B.3.

Lemma 4.1. With the convention 0/0 = 0, the following inequalities holds
a.s.:

ST−1 − ρT−1(−ST ) ≤ gT−1(y)− gT−1(x)

y − x
≤ ST−1 + ρT−1(ST ), x, y ∈ Rd.
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Corollary 4.2. The random function x 7→ gT−1(x) is non increasing on
the set {ST−1 + ρT−1(ST ) = 0} ∈ FT−1 and it is non decreasing on the set
{ST−1 − ρT−1(−ST ) = 0} ∈ FT−1.

Lemma 4.3. If ST−1 + ρT−1(ST ) > 0, then lim
x→∞

gT−1(x) = +∞. If ST−1 −
ρT−1(−ST ) < 0, then lim

x→−∞
gT−1(x) = +∞.

Proof. For any X ∈ L0((0,∞),FT−1), we have

gT−1(X) = XST−1 + ρT−1(XST − hT ) = X

(
ST−1 + ρT−1

(
ST −

hT
X

))
.

Following the proof of Lemma B.4, we get that∣∣∣∣ρT−1

(
ST −

hT
X

)
− ρT−1 (ST )

∣∣∣∣ ≤ max (|ρT−1(−hT )|, |ρT−1(hT )|)
X

.

Therefore, we may choose rT−1 ∈ L0((0,∞),FT−1) large enough so that
X ≥ rT−1 implies that ST−1 + ρT−1

(
ST − hT

X

)
> 0 and finally gT−1(X) ≥

MT−1 for a fixed MT−1 ∈ L0((0,∞),FT−1) we arbitrarily choose.

We then deduce that lim
x→∞

gT−1(x) = +∞. To see it, we argue by contra-

diction on the (non-null set) B = {ω : lim
x→∞

gT−1(x) 6= +∞}. As gT−1 is

continuous, the set B may be reformulated as

B = {ω : ∃M ∈ Q s.t. ∀r ∈ Q, ∃x ∈ [r,∞) ∩Q : g(x) < M}.

This proves that B ∈ FT−1. Moreover, the set

GT−1 = {(ω,M) ∈ Ω×R+ : ∀r ∈ Q, ∃x ∈ [r,∞) ∩Q : g(x) < M},

is jointly measurable w.r.t. FT−1×B(R) and admits non empty ω-sections on
B. By measurable selection arguments, there exists MT−1 ∈ L0(R+,FT−1)
such that (ω,MT−1(ω)) ∈ GT−1 on B and we set MT−1 = +∞ otherwise.
Then, still by measurable selection arguments and using the definition of
GT−1, we deduce the existence of X ≥ rT−1 such that gT−1(X) < MT−1

on B. On the other hand, recall that gT−1(X)1B ≥ MT−11B for every X ≥
rT−1 large enough. This yields to a contradiction hence lim

x→∞
gT−1(x) = +∞.

Finally, we conclude for the case where ST−1 − ρT−1(−ST ) < 0 by similar
arguments. 2
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Since lim
x→∞

gT−1(x) = +∞ in the case where ST−1 + ρT−1(ST ) > 0, we

deduce that inf
x∈R+

gT−1(x) = min
x∈R+

gT−1(x) is a minimum. Otherwise, if ST−1 +

ρT−1(ST ) = 0 under AIP, then gT−1 is non increasing and inf
x∈R+

gT−1(x) =

gT−1(∞). Therefore, in the case where ST−1 + ρT−1(ST ) = 0, P ∗T−1 is a price
if and only if gT−1 is constant for x large enough. In the following result, we
analyze the case where gT−1 is a constant as x→ ±∞.

Lemma 4.4. Suppose that the random function x 7→ gT−1(x) is constant for
x large enough. Then, under AIP, ST−1 + ρT−1(ST ) = 0. Suppose that the
random function x 7→ gT−1(x) is constant for −x large enough. Then, under
AIP, ST−1 − ρT−1(−ST ) = 0.

Proof. By assumption, we have xST−1 + ρT−1 (xST − hT ) = cT−1 for all
x ≥ αT−1 where αT−1, cT−1 ∈ L0(R,FT−1). We may suppose that αT−1 > 0.
Dividing by x and making x→∞, we deduce that ST−1 +ρT−1(ST ) ≤ 0. We
then conclude by Theorem 3.11. 2

Corollary 4.5. Suppose that AIP holds. Then, the random function x 7→
g(x) is constant for x large enough and is constant for −x large enough if
and only if ST−1 + ρT−1(ST ) = ST−1 − ρT−1(−ST ) = 0. In that case, gT−1 is
a constant function.

Proof. It suffices to apply Lemma 4.4 and Lemma 4.1. 2

Theorem 4.6. Suppose that AIP holds at time T−1 and ST−1+ρT−1(ST ) = 0
if and only if ST−1 − ρT−1(−ST ) = 0. Then, the minimal risk-hedging price
P ∗T−1 is a price.

Proof. When ST−1 + ρT−1(ST ) = ST−1 − ρT−1(−ST ) = 0, the statement
is trivial as gT−1 is a constant function from Corollary 4.5. In particular,
the strategy θ∗T−1 = 0 is a candidate to hedge the payoff. Otherwise, we
have ST−1 + ρT−1(ST ) > 0 and ST−1 − ρT−1(−ST ) < 0. By Lemma 4.3,
lim
x→∞

gT−1(x) = lim
x→−∞

gT−1(x) = +∞ so that the infimum of g is attained by

some strategy θ∗T−1 ∈ R. 2

The theorem above proves the existence of an optimal hedging strategy
θ∗T−1 ∈ L0(R,FT−1) such that

P ∗T−1 = gT−1(θ∗T−1) = θ∗T−1ST−1 + ρT−1(θ∗T−1ST − hT ) ∈ PT−1(hT ).
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4.1.2. Strict absence of immediate profit

Motivated by Theorem 4.6 , we introduce the following no-arbitrage condi-
tion:

Definition 4.7. We say that Strict Absence of Immediate Profit (SAIP)
holds when both AIP holds and, almost surely, St + ρt(St+1) = 0 if and only
if St − ρt(−St+1) = 0.

Note that, under SAIP, ∆St+1 is risk-neutral if and only if −∆St+1 is risk-
neutral. In the following, we characterize the SAIP condition in terms of
pricing behaviour satisfied by the portfolio manager. The proof is postponed
to Appendix B.4.

Theorem 4.8. Condition SAIP holds at instant T−1 if and only if the mini-
mal risk-hedging price P ∗T−1 of each contingent claim hT such that ρT−1(−hT ) >
0 is strictly positive.

Corollary 4.9. The SAIP condition holds for any 0 ≤ t ≤ T − 1 if and only
if the minimal risk-hedging price P ∗t of each contingent claim ht+1 satisfying
ρt(−ht+1) > 0 is strictly positive.

4.1.3. Extension to the multi-period model

Definition 4.10. A stochastic process (Vt)t≤T adapted to (Ft)t≤T , starting
from an initial endowment V0 is a portfolio process if, for all t ≤ T −1, there
exists θt ∈ L0(R,Ft) such that Vt + θt∆St+1 − Vt+1 is acceptable at time t.
Moreover, we say that it hedges the payoff hT ∈ L0(R,FT ) if VT ≥ hT a.s.

Note that VT−1 +θT−1∆ST−VT is supposed to be acceptable at time T−1.
Therefore, VT ≥ hT implies that VT−1 + θT−1∆ST − hT is acceptable at time
T − 1. In the following, we actually set VT = hT where hT ∈ L0(R,FT )
is a payoff we compute the risk-hedging prices. Recall that we have defined
recursively P ∗T = hT and

Pt(P ∗t+1) = {θtSt + ρt(θtSt+1 − P ∗t+1) : θt ∈ L0(R,Ft)}+ L0(R+,Ft)
so that

P ∗t = ess inf
θt∈L0(R,Ft)

Pt(P ∗t+1).

As in Section 3.1, in order to construct a jointly measurable version of the
random function

gt(ω, x) := xSt + ρt(xSt+1 − P ∗t+1), (4.12)
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we consider the family Gt of all elements Z = (X, Y ) ∈ L0(R2,Ft) such
that Y ≥ XSt + ρt(XSt+1 − P ∗t+1) a.s. We need Gt to be non-empty. This
is why we suppose in the following that there exists a least one portfolio
process (Vt)t≤T such that VT replicates hT at time T with respect to the
risk-measure of consideration. This is the case if there exist two constants
a, b such that hT ≤ aST + b. Thereby, by constructing a jointly measurable
version of gt(ω, x), we may express P ∗t as

P ∗t = inf
x∈R

gt(x).

Since we set VT = hT , ρT−1(VT−1 +θT−1∆ST−hT ) ≤ 0. By definition of the
one-step model, we deduce that VT−1 ≥ P ∗T−1. By induction, we may easily
show that Vt ≥ P ∗t for all t ≤ T since Vt is a price risk-hedging Vt+1 ≥ P ∗t+1

at time t+ 1. In particular, Vt ∈ Pt(P ∗t+1) 6= ∅ for all t ∈ T − 1.
So, it is possible to repeat backwardly the procedure developed in the

one time step-model. In particular, if we suppose that Condition SAIP holds
at any time t ≤ T , we deduce by induction that each minimal risk-hedging
price P ∗t is a price, see Proposition 4.6, and we may finally obtain the minimal
risk-hedging price P ∗0 for the claim hT .

Proposition 4.11. Suppose that SAIP holds at any time t ≤ T . Then, each
minimal risk-hedging price P ∗t is a price.

4.2. Consistency in time

Definition 4.12. A dynamic risk-measure (ρt)t≤T is said time-consistent if
ρt+1(X) = ρt+1(Y ) implies ρt(X) = ρt(Y ) whatever X, Y ∈ L0(R,FT ) and
t ≤ T − 1 (see Section 5 in [14]).

Lemma 4.13. A dynamic risk-measure (ρt)t≤T is time-consistent if and only
if its family of acceptable sets (At)t≤T satisfies

At = At,t+1 +At+1 (4.13)

for any t ≤ T − 1.

Proof. First notice that time-consistency holds if and only if ρt(−ρt+1(X)) =
ρt(X) for any t ≤ T − 1 and X ∈ L0(R,FT ). To see it, observe that
ρt+1(−ρt+1(X)) coincides with ρt+1(X).

Let us show the “⇒” implication. Let us show that At ⊆ At,t+1 +At+1. For
any X ∈ At, ρt(X) ≤ 0. As ρt(−ρt+1(X)) = ρt(X), we get that −ρt+1(X) ∈
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At,t+1. Therefore, X = −ρt+1(X) + ρt+1(X) + X ∈ At,t+1 + At+1 since
ρt+1 (ρt+1(X) +X) ≤ 0 is trivial.

Reciprocally, for any X ∈ At,t+1 and Y ∈ At+1,

ρt(X + Y ) = ρt(−ρt+1(X + Y )) ≤ ρt(−ρt+1(X)− ρt+1(Y ))

≤ ρt(−ρt+1(X)) = ρt(X) ≤ 0

hence X + Y ∈ At and, finally, At = At,t+1 +At+1.
Let us show the “⇐” implication. As X + ρt(X) ∈ At = At,t+1 +At+1, we

deduce Xt,t+1 ∈ At,t+1 and Xt+1 ∈ At+1 such that X+ρt(X) = Xt,t+1 +Xt+1.
Then,

−ρt(X) + ρt+1(X) = ρt+1(X + ρt(X)) = ρt+1(Xt,t+1 +Xt+1)

= −Xt,t+1 + ρt+1(Xt+1) ≤ −Xt,t+1.

It follows that ρt(X)− ρt+1(X) ≥ Xt,t+1 hence

ρt (ρt(X)− ρt+1(X)) ≤ ρt (Xt,t+1) ≤ 0.

We deduce that ρt+1(−ρt+1(X)) ≤ ρt(X) for all X ∈ L0(R,FT ).
On the other hand, −ρt+1(X) + ρt(−ρt+1(X)) ∈ At,t+1 and X + ρt+1(X) ∈
At+1. Therefore, the sum X+ρt(−ρt+1(X)) ∈ At by assumption. We deduce
that ρt(X)− ρt(−ρt+1(X)) ≤ 0, i.e. ρt(X) ≤ ρt(−ρt+1(X)). We deduce that
the equality holds by the first part. 2

Observe that, if (ρt)t≤T is time-consistent, we may show by induction that
ρt(−ρt+s(·)) = ρt(·) for any t ≤ T and s ≥ 0 such that s ≤ T − t. In the
following, we introduce another possible definition for the risk-hedging prices
in the multi-period model, where the risk is only measured at time t.

Definition 4.14. The contingent claim hT ∈ L0(R,FT ) is said directly risk-
hedged at time t ≤ T − 1 if there exists a (direct) price Pt ∈ L0(R,Ft) and a
strategy (θu)t≤u≤T−1 such that that Pt +

∑
t≤u≤T−1

θu∆Su+1 − hT is acceptable

at time t.

The set of all direct risk-hedging prices at time t is then given by

P̄t(hT ) =

{
ρt

( ∑
t≤u≤T−1

θu∆Su+1 − hT

)
: (θu)t≤u≤T−1 ∈ Πt≤u≤T−1L

0(R,Fu)

}
+L0(R,Ft).
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and the minimal direct risk-hedging price is

P̄ ∗t := ess inf
(θu)t≤u≤T−1

P̄t(hT ).

We propose to prove under some conditions that the direct minimal risk-
hedging prices coincide with the minimal ones derived from the step by step
backward procedure developed before, i.e. such that P ∗t = ess inf

θt∈L0(R,Ft)
Pt(P ∗t+1),

where P ∗T = hT .

Theorem 4.15. Suppose that the dynamic risk-measure (ρt)t≤T is time con-
sistent and Condition SAIP holds. Then, P̄ ∗t = P ∗t for any t ≤ T − 1 and the
direct minimal risk-hedging prices are direct prices.

Proof. It is trivial to see that P̄ ∗T−1 = P ∗T−1 as P̄T−1(hT ) = PT−1(hT ). Let
us show the equality at time t by induction from the hypothesis P̄ ∗t+1 = P ∗t+1.
Note that this assumption is equivalent to the equality P̄t+1(hT ) = Pt+1(hT ),
since any Vt ∈ P̄t satisfies Vt + θt∆St+1 = Vt+1.

First, we show we that P̄ ∗t ≤ P ∗t . By Proposition 4.11, we know that P ∗t is
a price for any t ≤ T − 1 under SAIP. So, there exists θ∗t ∈ L0(R,Ft) such
that P ∗t = ρt(θ

∗
t∆St+1 − P ∗t+1). Moreover, by time consistency, we have:

P ∗t = ρt(θ
∗
t∆St+1 − ρt+1(θ∗t+1∆St+2 − P ∗t+2))

= ρt(−ρt+1(θ∗t∆St+1 + θ∗t+1∆St+2 − P ∗t+2))

= ρt(θ
∗
t∆St+1 + θ∗t+1∆St+2 − P ∗t+2)

· · ·
= ρt(θ

∗
t∆St+1 + θ∗t+1∆St+2 + · · ·+ θ∗T−1∆ST − hT ).

Therefore, P ∗t ≥ P̄ ∗t . Conversely, if P̄t ∈ P̄t(hT ), we also have:

P̄t ≥ ρt(θt∆St+1 + θt+1∆St+2 + · · ·+ θT−1∆ST − hT )

≥ ρt(−ρt+1(θt∆St+1 + θt+1∆St+2 + · · ·+ θT−1∆ST − hT ))

= ρt(θt∆St+1 − ρt+1(θt+1∆St+2 + · · ·+ θT−1∆ST − hT ))

≥ ρt(θt∆St+1 − P̄ ∗t+1).

As P̄ ∗t+1 = P ∗t+1, we deduce that P̄t ≥ ρt(θt∆St+1−P ∗t+1) if θt ∈ L0(R,Ft) by
the induction hypothesis. Therefore, P̄t ≥ P ∗t and we deduce that P̄ ∗t ≥ P ∗t
so that the equality finally holds. Moreover, we deduce from above that

P̄ ∗t ≥ P ∗t = ρt(θ
∗
t∆St+1 + θ∗t+1∆St+2 + · · ·+ θ∗T−1∆ST − hT ).
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As P̄ ∗t is an essential infimum, we deduce that

P̄ ∗t = ρt(θ
∗
t∆St+1 + θ∗t+1∆St+2 + · · ·+ θ∗T−1∆ST − hT ),

i.e. P̄ ∗t is a direct price. 2

5. Lower and upper bounds of the prices

In this section, we show that the minimal risk-hedging price P ∗t lies in some
interval [m∗t ,M

∗
t ] for all t ≤ T − 1 if and only if the condition AIP holds. In

this part, we assume that each asset price St, 1 ≤ t ≤ T is strictly positive.
The proof of the following theorem is showed in the Appendix B.5.

Theorem 5.1. The condition AIP holds at time T − 1 if and only if the
minimal risk-hedging price of non negative contingent claim hT satisfies

m∗T−1 ≤ P ∗T−1 ≤M∗
T−1

where m∗T−1 = ST−1

(
ess infFT−1

hT
ST

)
and M∗

T−1 = ST−1

(
ess supFT−1

hT
ST

)
.

Corollary 5.2. Suppose that hT is an attainable claim. Then AIP, holds if
and only if each minimal risk-hedging price P ∗t of the contingent claim hT
satisfies

m∗t ≤ P ∗t ≤M∗
t (5.14)

where m∗t = St

(
ess infFt

hT
ST

)
and M∗

t = St

(
ess supFt

hT
ST

)
.

Proof. First, observe that the inequalities (5.14) ensure that AIP holds for
all t ≤ T − 1. Indeed, m∗t = M∗

t = 0 for any t ≤ T − 1 when hT = 0. So,
P ∗t = 0 for all t ≤ T , i.e. AIP holds.

To prove the reverse implication, we first use the tower property satisfied
by the conditional essential infimum/supremum operators (see [25, Appendix
A]) and we deduce that

m∗t = St

(
ess infFt

m∗t+1

St+1

)
(5.15)

and

M∗
t = St

(
ess supFt

M∗
t+1

St+1

)
(5.16)
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where 0 ≤ t ≤ T − 1 and m∗T = M∗
T = hT . Note that (5.15) and (5.16)

trivially hold when t = T − 1. Suppose that (5.15) and (5.16) hold for all
t+ 1 ≤ u ≤ T − 1, and let us prove them for the time u = t. Actually, it has

m∗t = St

(
ess infFt

hT
ST

)
= St

(
ess infFt ess infFT−1

hT
ST

)

= St

ess infFt

ST−1

(
ess infFT−1

hT
ST

)
ST−1

 = St

(
ess infFt

m∗T−1

ST−1

)
.

We then conclude by induction with the tower property and, by similar ar-
guments, we also get (5.16).

By Theorem 5.1, (5.14) holds at time t = T − 1. Suppose that (5.14) holds
at time t+1 and let us show it at time t. To do so, recall that, for any t ≤ T−1,
P ∗t = ess inf

θt∈L0(R,Ft)
Pt(P ∗t+1). By Theorem 5.1, we deduce that m̃∗t ≤ P ∗t ≤ M̃∗

t

where m̃∗t = St(ess infFt
P ∗t+1

St+1
) and M̃∗

t = St(ess supFt
P ∗t+1

St+1
). Thus P ∗t ≥ m̃∗t ≥

St(ess infFt
m∗t+1

St+1
) = m∗t and P ∗t ≤ M̃∗

t ≤ St(ess supFt
M∗t+1

St+1
) = M∗

t . 2

Example 5.3. Consider the call option with the payoff hT = (ST −K)+. We

get by simple computations that m∗t = St

(
1− K

ess infFt ST

)
1ess infFt ST>K

and

M∗
t = St

(
1− K

ess supFt ST

)
1ess supFt ST>K

.

6. Numerical illustration

In this section, we choose the Conditional Value-at-Risk (CVaR) as the risk-
measure to compute the minimal risk-hedging prices of an European call
option. Let us recall some well-known properties of the CVaR.

Let Z = f(x, y) be a loss function associated with the decision vector
x ∈ Rn and the random vector y ∈ Rm, where y stands for the uncertainties
in market parameters. The probability of y is assumed to have a density
function p(y). Then, the Value-at-Risk (VaR) of the loss Z associated with
a decision x, denoted as VaRβ(x), is defined by

VaRβ(x) = min{α ∈ R : Ψ(x, α) ≥ β}

where β ∈ (0, 1) is a confidence level and Ψ(x, α) =
∫
f(x,y)≤α p(y)dy is the

probability of loss not exceeding a threshold α. Furthermore, for a confidence
24



level β ∈ (0, 1), the CVaR for the loss Z associated with a decision x, denoted
as CVaRβ(x), may be defined as the expected value of the loss that exceeds
VaRβ(x), i.e.,

CVaRβ(x) =
1

1− β

∫
f(x,y)≥VaRβ(x)

f(x, y)p(y)dy. (6.17)

Let us introduce the function

Fβ(x, α) = α +
1

1− β

∫
y∈Rm

[f(x, y)− α]+ p(y)dy.

By [29, Theorem 1], we have

CVaRβ(x) = min
α∈R

Fβ(x, α).

By the law of large numbers, the function Fβ(x, α) is approximated by sam-
pling the probability distribution of the random vector y, that is,

Fβ(x, α) ' F̃β(x, α) = α +
1

J(1− β)

J∑
j=1

[f(x, yj)− α]+

where J , the size of the sample, is large enough. Thus, we approximate

CVaRβ(x) ' min
α∈R

{
α +

1

J(1− β)

J∑
j=1

[f(x, yj)− α]+
}
. (6.18)

The proof of the convergence as J → ∞ is given in Section A.3. By intro-
ducing the auxiliary variables zj, j = 1, 2, · · · , J , the optimization problem
(6.18) can be converted into the following linear programming (LP) problem:

min
α∈R

{
α +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ f(x, yj)− α, j = 1, 2, · · · , J, (6.19)

zj ≥ 0, j = 1, 2, · · · , J.

In our model, x ∈ R is the strategy variable and y = St ∈ L0(R,Ft) is the
risky asset price when the loss is considered at time t. The series of samples
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Sjt , j = 1, 2, · · · , J can be simulated by the Monte Carlo method. Note that
CVaR is a loss based risk-measure. In what follows, for any Z ∈ L0(R,Ft+1)
of the form Z = ft+1(x, St+1), we consider the dynamic risk-measure ρt(Z)
as the CVaR of the loss −Z, where 0 ≤ t ≤ T − 1. By (6.17) to (6.18), we
approximate the risk-measure ρt(Z) as

ρt(Z) ' min
α∈R

{
α +

1

J(1− β)

J∑
j=1

[
−ft+1(x, Sjt+1)− α

]+}
. (6.20)

Furthermore, (6.20) can be converted into the LP problem:

min
α∈R

{
α +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ −ft+1(x, Sjt+1)− α, j = 1, 2, · · · , J, (6.21)

zj ≥ 0, j = 1, 2, · · · , J.

6.1. Model selection and calibration

We consider the SSE 50 Index ETF Option (50 ETF Option) in China.
The underlying asset is 50 ETF (stock code:510050). We deal with the daily
closing prices of 50ETF from January the 4th of 2016 to December the 29th of
2017 as historical data. For convenience, we perform the time series analysis
for the log-return of 50 ETF in every trading day.

As a preliminary, we test whether the series of log-returns is stationary
(in the wide sense) or not. The definitions of strictly stationary and weakly
stationary (i.e. stationary in the wide sense) can be found in [17, Section 1.2].
The stationarity is the premise of time series analysis in many cases because
it guarantees the rationality of the prediction deduced from the historical
regression. We adopt the Augmented Dickey-Fuller (ADF) test for a unit root
to test the stationarity of log-return series, see [15]. Here the null hypothesis
is that the original series has a unit root, i.e. the original series is non-
stationary. The test results consist in a Test Statistic and a Critical Value
for a given confidence level. If the ‘Test Statistic’ is less than the ‘Critical
Value’, we reject the null hypothesis and we claim that the series is stationary.
The asserts H=1 or Test Statistic < Critical Value in Table 1 both imply
that the null hypothesis is rejected. Thereby, we may claim that the series of
log-returns is stationary.

26



Hypothesis test H P-Values Test Statistics Critical Values

ADF test 1 0.001 -25.3191 -1.9411
lbqtest of residual 1 2.0699×10−10 87.4408 31.4104
lbqtest of residual2 1 0 211.0243 31.4104

Table 1
Hypothesis test with a default confidence level 5%.

Let us assume that Yt = lnSt−lnSt−1 follows the mean regression equation

Yt = µ+ εt (6.22)

where µ is the regression mean and εt is the residual with E(εt) = 0. Our
aim is to estimate the value of µ and model the residual part εt.

First, let us show the QQ-plot and the distribution of residuals as Figure
1 and Figure 2. We observe that the residuals of log return εt admit a fat
tailed instead of a normal distribution. This motivates us to use a Student’s
t-distribution in the following process of residual modelling.
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Fig 1: QQ-plot of the residuals
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Fig 2: Distribution of the residuals

On the other hand, we may empirically observe the effect of volatility
clustering from the residual graph of log-returns, see Figure 3. Large shocks
tend to be followed by large shocks and small shocks tend to be followed by
small shocks. Precisely, we carry out the Ljung-Box Q-test (lbqtest) for the
autocorrelation of residuals and squared residual series. Ljung-Box Q-test is
a quantitative way to test for autocorrelation at multiple lags jointly, see
[26]. Note that lbqtest does not test directly serial dependencies other than
autocorrelation, but it can be used to identify conditional heteroscedasticity

27



(ARCH effects) by testing squared residuals series, see [27]. Here the null
hypothesis is that the tested series is not autocorrelated. The results of hy-
pothesis test are also shown in Table 1. The assertion H=1 implies that the
null hypothesis, i.e. the residuals or squared residual series are not autocor-
related, is rejected. Thus, we claim that the residuals, especially the squared
residuals are autocorrelated since the p-value of squared residuals is zero.

Jan−2016 May−2016 Aug−2016 Dec−2016 Apr−2017 Aug−2017 Dec−2017
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Fig 3: Residuals of log-returns
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Fig 4: Innovations and standard deviations

Recall that the GARCH (Generalized Autoregressive Conditional Het-
eroskedastic) process introduced by [3] can better model the effect of volatil-
ity clustering or autocorrelation of squared residuals. It is a generalization
of ARCH processes, which allows the conditional variance to change over
time as a function of past errors. The simplest models of GARCH(1,1) are
often very useful because they converge much faster to a local maximum
in quasi-maximum likelihood estimation, while delivering very competitive
forecasting performance, see [1]. The stochastic process (εt)t is said to follow
GARCH(1,1)-t model if

εt = σtZt, (6.23)

σ2
t = α0 + αε2

t−1 + βσ2
t−1, α0 > 0, α ≥ 0, β ≥ 0, (6.24)

where Zt are i.i.d. random variables with a Student’s t-distribution of the
freedom degree v and E(Zt) = 0, var(Zt) = 1, see [4, 5]. Furthermore, the
wide-sense stationarity of the GARCH model (6.24) is sufficiently guaranteed
by the constraint condition α+β < 1, see [3, Theorem 1]. Later, we will show
that the chosen model consisting of (6.22)-(6.24) fits the time series of log-
returns quite adequately.
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The parameters in mean regression equation (6.22) and conditional vari-
ance equation (6.24) are calibrated as shown in Table 2.

Parameter Value Standard Error T Statistic

C 0.00050545 0.00032268 1.5664
K 2.6379×10−6 1.5843×10−6 1.6651

GARCH(1) 0.90041 0.035308 25.5016
ARCH(1) 0.073249 0.031478 2.3270

DoF 3.9935 0.85359 4.6785

Table 2
The calibrated parameters

In detail, µ = C = 0.00050545, α0 = K = 2.6379× 10−6, α = ARCH(1) =
0.073249 and β = GARCH(1) = 0.90041. The freedom degree of the Stu-
dent’s t-distribution is v = DoF = 3.9935. Thus, the log-return of 50 ETF
at time t, i.e. Yt = lnSt − lnSt−1 can be expressed as

Yt = 0.00050545 + εt, (6.25)

σ2
t = 2.6379× 10−6 + 0.073249ε2

t−1 + 0.90041σ2
t−1 (6.26)

where εt = σtZt and Zt follows t-distribution of the freedom degree 3.9935.
Notice that α + β = 0.073249 + 0.90041 < 1 in the conditional variance
equation (6.26), the wide-sense stationarity is satisfied.

The estimated residual (innovation) εt and conditional standard deviation
σt are shown in Figure 4. It may be observed that the size of σt is consis-
tent with the fluctuations of εt. Especially, the larger shocks appear at the
beginning period where the conditional standard deviation σt reaches rela-
tively large values. From this point of view, our estimated volatility σt is
well-estimated.

Furthermore, let us carry out the calibration by Monte Carlo simulation
for the regression models (6.25) and (6.26) using the historical data of the
following 255 trading days from January the 8th of 2018 to March the 29th
of 2019. The observed prices between all of these trading days are denoted
as (st)0≤t≤T−1. The main lines of the simulation are given as follows.

Step 1: Generate a random matrix with t-distribution Z = (Z(j, t))J×T
where j = 1, 2, · · · , J and t = 0, 1, · · · , T − 1. Note that ε0 and σ0 are given
such that Z(j, 0) = Z0 = ε0/σ0 in the every simulation j.

Step 2: Generate a volatility matrix σ = (σ(j, t))J×T by the conditional
variance equation (6.26).

29



Step 3: The price matrix S = (S((j, t)))J×T is computed by the mean
of equation (6.25) such that S(j, t) = St−1 exp{µ + σ(j, t)Z(j, t)}, where
St−1 = st−1 for each 1 ≤ t ≤ T − 1.

Step 4: Finally, the price St is approximated by the average of Sjt = S(j, t)
with respect to all j.

The total number of simulated paths is fixed to J = 1000. The distribution
of relative error |St− st|/st between the estimated price St and the observed
one st is shown in Figure 5. In particular, the average of error is 0.0631% and
the maximum error is 0.1553%. This implies that the price estimation based
on the equations (6.25) and (6.26) is quite satisfactory.
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Fig 5: Distribution of the price estimation error.

6.2. Verification of the AIP condition

In the following, we compute the values of −ρt(St+1) and ρt(−St+1) for each
of the 255 trading days from January the 8th of 2018 to March the 29th
of 2019. We consider the risk-measure ρt(Z) as the value of CVaR for the
loss Z = ft+1(x, St+1) associated with a decision x. Recall that ρt(Z) can be
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approximated as the optimal value of the LP problem (6.21). That is

ρt(Z) ' min
α∈R

{
α +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ −ft+1(x, Sjt+1)− α, j = 1, 2, · · · , J, (6.27)

zj ≥ 0, j = 1, 2, · · · , J

where β is the confidence level and Sjt+1 is the simulated price by Monte
Carlo. Recall from Section 6.1, that we consider

Sjt+1 = S(j, t+ 1) = St exp{µ+ σ(j, t+ 1)Z(j, t+ 1)},

where St = st is an observed price. Here, Z = ft+1(x, St+1) = −St+1. Then
ρt(Z) = ρt(−St+1) is approximated by the optimal value of the LP problem:

min
α∈R

{
α +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ Sjt+1 − α, j = 1, 2, · · · , J, (6.28)

zj ≥ 0, j = 1, 2, · · · , J.

Similarly, with Z = ft+1(x, St+1) = St+1, we approximate ρt(Z) = ρt(−St+1)
by the optimal value of the LP problem:

min
α∈R

{
α +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ −Sjt+1 − α, j = 1, 2, · · · , J, (6.29)

zj ≥ 0, j = 1, 2, · · · , J.

We choose β = 0.95 and J = 1000. Then, the LP problems (6.28) and
(6.29) can be solved using the CPLEX optimization software, see [28], with
a Matlab interface, which makes possible a relatively fast speed in the large-
scaled linear optimization problem.

Comparing the values of−ρt(St+1), ρt(−St+1) and St = st for every 0 ≤ t ≤
T−1, we observe that the equivalent characterization of AIP, i.e. −ρt(St+1) ≤
St ≤ ρt(−St+1), holds for each t, see Figure 6. Better, the condition SAIP
is satisfied on the historical data, i.e. −ρt(St+1) < St < ρt(−St+1) holds for
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each t. By Proposition 4.11, each minimal risk-hedging price P ∗t = inf
x∈R

gt(x)

is a price, where gt(x) = xSt + ρt(xSt+1 − P ∗t+1) and P ∗T = hT . In the next
part, we compute the minimal risk-hedging prices of European call options
with the payoff hT = (ST −K)+.
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Fig 6: Visualization of the SAIP Condition

6.3. Computation of minimal risk-hedging prices

The only option that can be traded in the Chinese market, the 50 ETF option,
is observable on February the 9th of 2015. According to the trading rules of
50 ETF options, there are nine strike prices: one at-the-money option, four
out-of-the-money options and four in-the-money options. In the following,
we focus on computing the risky-hedging price of at-the-money option by
considering the case where K = S0.

We suppose that the discrete time series is given by (ti)0≤i≤n where ti = iT
n

.
In particular, t0 = 0 and tn = T . Note that Sti is the price observed in the
time interval [ti, ti+1) for each 0 ≤ i ≤ n − 1. We choose the interval [0, T ]
that corresponds to a period of one week, which is composed of 5 trading
days, i.e. n = 5. The risk-hedging strategy is implemented on every 51 weeks
from January the 8th of 2018 to March the 29th of 2019. Starting from St0 ,
the series of prices (Sti)1≤i≤4 are generated by Monte Carlo simulation of
the GARCH model we have calibrated before, i.e. Sti may take the values
(Sjti)1≤j≤J for each 1 ≤ i ≤ 4, where J is the total number of simulation.
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At time ti, the minimal risk-hedging price P ∗ti of the 50 ETF call option is
given by

P ∗ti = inf
x∈R

gti(x)

where gti(x) = ρti(xSti+1
−xSti −P ∗ti+1

) and P ∗t4 = (St4 −K)+. Recall that, if
the risk-measure ρt(Z) is the CVaR value of minus the loss Z = ft+1(x, St+1),
associated with a decision x, then ρt(Z) can be approximated as (6.27). With
the loss function Z = fti+1

(x, Sti+1
) = xSti+1

− xSti − P ∗ti+1
,we then deduce

that for any 0 ≤ i ≤ 3

gti(x) ' min
α∈R

{
α +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ P ∗jti+1

− xSjti+1
+ xSti − α, j = 1, 2, · · · , J, (6.30)

zj ≥ 0, j = 1, 2, · · · , J,

or equivalently

gti(x) ' min
α∈R

{
α + xSti +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ P ∗jti+1

− xSjti+1
− α, j = 1, 2, · · · , J, (6.31)

zj ≥ 0, j = 1, 2, · · · , J

such that

P ∗ti(Sti) ' min
x,α∈R

{
α + xSti +

1

J(1− β)

J∑
j=1

zj

}
s.t. zj ≥ P ∗jti+1

− xSjti+1
− α, j = 1, 2, · · · , J, (6.32)

zj ≥ 0, j = 1, 2, · · · , J,

with P ∗jt4 = (Sjt4 −K)+ and P ∗jti+1
= P ∗ti+1

(Sjti+1
) for each i = 0, 1, 2.

Note that (6.32) is a dynamic programming problem. In particular, the
objective function and the constraint conditions are all linear although the
number of variables is quite large. We may solve it with the help of the
professional optimization solver CPLEX, see [28]. As the Section 6.2, we
choose β = 0.95 and J = 1000. And the family of price (Sjti+1

)j∈J is generated
by Monte Carlo simulation for each observed price Sti = sti .

33



Starting from P ∗t4 = (St4 − K)+, we then successively solve the dynamic
programming problem (6.32) for t3, · · · , t0. In particular, we get the minimal
risk-hedging prices P ∗t0 . The ratios P ∗t0/St0 over all 51 weeks are computed,
see Figure 7. The empirical average of P ∗t0/St0 is 1.74% and its standard
deviation is 0.63%.
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Fig 7: Distribution of the Ratio P ∗t0/St0

In the above backward iteration process of solving risk-hedging price P ∗t0 ,
we may obtain a family of strategies (θti)0≤i≤3 by considering the observed
price Sti = sti for every 0 ≤ i ≤ 3. Then, it is possible to express the
risky-hedging error as

εhT = P ∗t0 +
3∑
i=0

θti(Sti+1
− Sti)− (St4 −K)+

where Sti = sti , 0 ≤ i ≤ 3, are all the observed prices of 50 ETF. The
computed risky-hedging errors on every 51 weeks are shown in Figure 8. The
empirical average of εhT is 0.0316 and its standard deviation is 0.0167.

The results are clearly satisfactory despite the possible maximum error of
0.0593 which represents 2.24% of E(St0) = 2.65. It may be observed in Figure
8 that almost all risky-hedging errors are positive, except for the two weeks
between the 8th of October 2018 and the 19th of October 2018. It can be
explained by the the falling Chinese stock market by 3.7% the 8th of October
2018.
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Fig 8: Distribution of the risk-hedging error εhT

6.4. Comparison to the (exact) super-hedging prices

We compare the ratios P ∗t0/St0 and the risk-hedging errors εhT with the exact
super-hedging prices when the coherent risk-measure is ρt(X) = − ess infFt X.
To do so, we consider the model of [2], i.e. ess infFt−1 St = kdt−1,tSt−1 and
ess supFt−1

St = kut−1,tSt−1 for any t ∈ {1, 2, · · · , T}. It has been proved

that AIP condition holds at every instant t if and only if kdt−1,t ∈ [0, 1] and
kut−1,t ∈ [1,+∞], see [2, Theorem 3.6]. Implementing Monte Carlo simula-
tions for the equations (6.25) and (6.26) between the 255 trading days from
January the 8th of 2018 to March the 29th of 2019, we may estimate the
parameters kdt−1,t and kut−1,t. The values of ess infFt−1 St and ess supFt−1St
are estimated respectively as the minimum and maximum simulated prices
Sjt . We deduced the parameters kdt−1,t and kut−1,t as St−1 = st−1 is an observed
price.

Similarly, consider 50 ETF at-the-money option with S0 = K and the
maturity is one week composed of 5 trading days. Let us implement the
super-hedging strategy in [2, Theorem 3.6] on every 51 weeks from January
the 8th of 2018 to March the 29th of 2019. The ratios P̂ ∗0 /S0 and the super-
hedging errors

ε̂hT = P̂ ∗t0 +
3∑
i=0

θ̂ti(Sti+1
− Sti)− (St4 −K)+

are presented in Figure 9 and 10.
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Fig 9: Distribution of the ratio P̂ ∗t0/St0
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Fig 10: Distribution of the Super-hedging Error ε̂hT
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The empirical average of P̂ ∗0 /S0 is 4.76% and its standard deviation is
0.51%. As expected, it is larger than the ratio we obtain with the CVaR.
The empirical average of ε̂hT is 0.1019 and its standard deviation is 0.03.
The possible maximum error of 0.1854 accounts for 7% of E(St0) = 2.65. In
conclusion, the CVaR strategy provides here better results.

Appendix A: Auxiliary theory

A.1. Conditional essential supremum/infimum

Let (Ω,F ,P) be a probability space and let H be a sub-σ-algebra of F . The
concept of generalized conditional essential supremum in L0(Rd) is given in
[21, Definition 3.1]. Existence and uniqueness when d = 1 is provided by [21,
Lemma 3.9].

Proposition A.1. Let Γ 6= ∅ be a subset of L0(R∪ {+∞},F). There exists
a unique H-measurable random variable γ̂ ∈ L0(R ∪ {+∞},H) denoted as
ess supH Γ such that the following conditions hold:

(i) γ̂ ≥ γ a.s. for any γ ∈ Γ;
(ii) if γ̃ ∈ L0(R ∪ {+∞},H) satisfies γ̃ ≥ γ for any γ ∈ Γ, then γ̃ ≥ γ̂ a.s.

A.2. Random sets

A random set is defined as follows. We suggest to read [25, Section 2.1] for
more details.

Definition A.2. A set-valued function ω 7→ X(ω) ⊂ Rd from a complete
probability space (Ω,F ,P) to the family of all subsets of Rd is called F-
measurable random set if its graph

graph X = {(ω, x) ∈ Ω×Rd : x ∈ X(ω)} ⊂ Ω×Rd

belongs to the product σ-algebra F ⊗ B(Rd).

The random set X is said to be closed if X(ω) is closed for almost all ω.

A.3. Technical results

Let X be an integrable random variable on the probability space (Ω,F , P ).
Let K ∈ R and k > 1. We define the function

g(α) = α + kγ(α), γ(α) = E(X − α)+.
37



As k > 1, we may show that lim|α|→+∞ g(α) = +∞. Therefore, the continuous
and convex function g admits a minimal element min(g) reached at some
point α∗ ∈ R. We consider a sequence (Xi)i≥1 of i.i.d. random variables
distributed as X. Let us introduce

gJ(α) = α +
k

J

J∑
i=1

(Xi − α)+, J ≥ 1.

We may also show that lim|α|→+∞ g
J(α) = +∞ and, by a measurable selec-

tion argument, there exists α∗J ∈ L0(R,F) such that min(gJ) = gJ(α∗J).

Theorem A.3. We have min(gJ)→ min(g) a.s. as J →∞.

Proof. Let us fix ε > 0 arbitrarily small. By the law of large numbers,
there exists a.s. J1(ω) such that J ≥ J1(ω) implies that min(g) = g(α∗) ≥
gJ(α∗)−ε ≥ min(gJ)−ε. On the other hand, for every rational number α ∈ Q,
there exists J0(α, ω) such that J ≥ J0(α, ω) implies g(α) ≤ gJ(α) + ε/2. We
may suppose that this property holds with probability one for all α ∈ Q as
Q is countable. By continuity of gJ , let us define α̃J ∈ L0(Q,F) such that
gJ(α̃J) ≤ min(gJ) + ε/2. We then define J0(ω) = J1(ω) ∨ J0(α̃J(ω), ω). For
J ≥ J0(ω), we have min(g) ≤ gJ(α̃J(ω))+ ε/2 ≤ min(gJ)+ ε. The conclusion
follows. 2

Theorem A.4. The sequence α∗J ∈ L0(R,F) is almost surely convergent, at
least for a random subsequence, to α∗∞ ∈ L0(R,F) such that g(α∗∞) = min(g).

Proof. By definition, we have

α∗J = min(gJ)− k

J

J∑
i=1

(Xi − α∗J)+.

By Theorem A.3, the sequence (min(gJ))J≥1 is a.s. convergent. Moreover,

1

J

J∑
i=1

(Xi − α∗J)+ ≤ 1

J

J∑
i=1

|Xi|,

and the r.h.s. of the inequality above is a.s. convergent by the law of large
numbers. We deduce that the sequence (α∗J)J≥1 is a.s. bounded. By a com-
pactness argument, we deduce a random subsequence Jm such that α∗Jm →
α∗∞. Moreover, we observe α 7→ gJ is a Lipschitz function with Lipschitz co-
efficient k + 1. We deduce that limJ→∞ g

J(α∗Jm) = limJ→∞ g
J(α∗∞) such that

min(g) = g(α∗∞). 2
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Lemma A.5. The function g admits a unique α∗ such that min g = g(α∗).

Proof. Suppose that there exists α1 < α2 such that min g = g(α1) = g(α2).
Let us define α = (α1 +α2)/2. By convexity, g(α) ≤ min g. Therefore, we get
that g(α) = min g = (g(α1) + g(α2))/2 and we deduce that

E(X − (α1 + α2)/2)+ =
1

2
E(X − α1)+ +

1

2
E(X − α2)+.

This implies that

(X − (α1 + α2)/2)+ =
1

2
(X − α1)+ +

1

2
(X − α2)+, a.s.

Therefore X ≥ α2 or X ≤ α1 a.s. Recall that g(α) = Eh(α) where h(α) =
α + k(X − α)+. By above, we get that

h(αi) = αi1X≤α1 + (αi(1− k) + kX) 1X≥α2 ,

g(αi) = αi (1− kP (X ≥ α2)) + kE(X1X≥α2), i = 1, 2.

We claim that 1−kP (X ≥ α2) 6= 0. Indeed, otherwise, we deduce that g is a
constant function,hence limα→∞ g(α) 6= +∞. Therefore, it must have α1 = α2

as g(α1) − g(α2) = (α1 − α2) (1− kP (X ≥ α2)) = 0, which contradicts our
assumption. On the other hand, the assumption that there exists α1 > α2

such that min g = g(α1) = g(α2) can be excluded by the similar arguments.
Finally, we may conclude. 2

The following corollary is a directed consequence of Lemma A.5 and The-
orem A.4.

Corollary A.6. We have α∗J → α∗ a.s.

Appendix B: Main proofs

B.1. Proof of Proposition 2.4

First we give the following two preliminary lemmas.

Lemma B.1. For any X ∈ DomAt, there exists a sequence Cn ∈ AXt such
that ρt(X) = limn→∞ ↓ Cn everywhere on Ω.

Proof. We first observe that the set AXt is Ft-decomposable, i.e. if Λt ∈ Ft
and C1, C2 ∈ AXt , then C11Λt +C21Ω\Λt ∈ AXt . To see it, we use conditions 1)

39



and 4) of Definition 2.1. We then deduce that AXt is directed downward, i.e.
if C1, C2 ∈ AXt , then C1 ∧C2 ∈ AXt . Indeed, C1 ∧C2 = C11C1≤C2 +C21C1>C2

with {C1 ≤ C2} ∈ Ft. Therefore, there exists a sequence Cn ∈ AXt such that
ρt(X) = limn→∞ ↓ Cn everywhere on Ω, see [20, Section 5.3.1.]. 2

Lemma B.2. Let X ∈ DomAt and Ft ∈ Ft. Then, X1Ft ∈ DomAt and
ρt(X1Ft) = ρt(X)1Ft.

Proof. Observe that Ct ∈ AXt implies that Ct1Ft ∈ A
X1Ft
t . We deduce

that X1Ft ∈ DomAt. In particular, we have 1FtAXt ⊆ A
X1Ft
t . Reciprocally,

consider Ct ∈ A
X1Ft
t , then Ct1Ft ∈ A

X1Ft
t and finally X + Zt ∈ At where

Zt = Ct1Ft + ρt(X)1Ω\Ft . Therefore, Zt ∈ AXt and Ct1Ft = Zt1Ft ∈ 1FtAXt ,

i.e. 1FtA
X1Ft
t ⊆ 1FtAXt . We finally deduce that 1FtA

X1Ft
t = 1FtAXt . Therefore,

1Ftρt(X) = 1Ft ess infAXt = ess inf
(
1FtAXt

)
= ess inf

(
1FtA

X1Ft
t

)
= 1Ft ess inf

(
AX1Ft
t

)
= 1Ftρt(X1Ft).

Since 1FtA
X1Ft
t ⊆ AX1Ft

t , ρt(X1Ft) ≤ Ct1Ft if Ct ∈ A
X1Ft
t hence ρt(X1Ft) ≤ 0

on Ω \ Ft. At last, since X1Ft + ρt(X1Ft) ∈ At, multiplying this property
by 1Ω\Ft , we deduce that ρt(X1Ft)1Ω\Ft ∈ At hence ρt(X1Ft)1Ω\Ft ≥ 0 and
finally ρt(X1Ft)1Ω\Ft = 0. The conclusion follows. 2

Proof of Proposition 2.4: The first four statements are directly deduced
from the definition of ρt in (2.1). The positive homogeneity is easily seen in
the case where kt ∈ L0((0,∞),Ft) as AktXt = ktAXt when kt > 0 a.s. In the
general case, i.e. kt ≥ 0, consider k̃t = kt1kt>0 +1kt=0 ∈ L0((0,∞),Ft). Then,
ρt(k̃tX) = k̃tρt(X) for any X ∈ DomAt. Replacing X by X1kt 6=0, we get by
Lemma B.2 that

ρt(ktX) = ρt(kt1kt 6=0X) = k̃tρt(X1kt 6=0) = ktρt(X).

By Lemma B.1, we know that ρt(X) = limn→∞ ↓ Cn a.s. where Cn ∈ AXt
a.s. As the set At is closed, Ft-decomposable and contains 0, we deduce that
X + ρt(X) ∈ At on the set ρt(X) ∈ R. Actually, we shall see below that
ρt(X) > −∞ holds with probability one.

Let us consider a sequence Xn ∈ DomAt which converges to X0. With
αn := ρt(Xn), Xn + αn ∈ At. Notice that we may assume w.l.o.g. that
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lim inf αn < ∞. Indeed, otherwise, the inequality ρt(Xn) ≤ lim inf αn = ∞
trivially holds. Suppose that α∞ := lim inf αn = −∞. Then, using the nor-
malization procedure α̃n := αn

|αn| , we get that Xn
|αn| + α̃n ∈ At. As |α̃n| = 1

and At is closed, Ft-decomposable, we may assume by [20, Lemma 2.1.2],
up to some Ft-measurable random subsequence, that α̃n converges to some
α̃ with |α̃| = 1. Actually, α̃ = −1 a.s. as α̃n < 0 for n large enough. Then
limn( Xn|αn|+α̃n) = α̃ = −1 ∈ At ifAt is closed, which contradicts the third con-

dition in Definition 2.1. So, we may assume w.l.o.g. that α∞ ∈ L0(R,Ft) and
X0 + α∞ ∈ At. It follows that α∞ ∈ AX0

t and ρt(X0) ≤ α∞ = lim inf ρt(Xn)
a.s. Note that on the negligible set {ρt(X0) > α∞}, we may replace ρt(X0)
by α∞ so that we may suppose that the inequality holds everywhere, i.e.
ρt satisfies the l.s.c. inequality on Ω. The constraint ρt(X) > −∞ for all
X ∈ DomAt is proven similarly using Lemma B.1.

At last, if the set At is closed, X + ρt(X) ∈ At on ρt(X) < ∞ for all
X ∈ L0(R,FT ). Then, At = {X ∈ DomAt|ρt(X) ≤ 0}. Indeed, it is clear
that ρt(X) ≤ 0 for all X ∈ At. Reciprocally, if ρt(X) ≤ 0 we get that
X = −ρt(X) + at where at ∈ At. Finally, we deduce that X ∈ At since
0 ≤ −ρt(X) ∈ At and At +At ⊆ At. 2

B.2. Proof of Proposition 2.9

Lemma B.3. Let X ∈ L0(R,FT ) and Ft ∈ Ft. Then, ρt(X1Ft) = ρt(X)1Ft.

Proof. First, observe that

Λt(X1Ft) =
{
F̃t ∈ Ft : X1Ft1F̃t ∈ DomAt

}
=
{
F̃t ∈ Ft : Ft ∩ F̃t ∈ Λt(X)

}
.

It follows that Ft(X1Ft) = (Ft(X) ∩ Ft) ∪ (Ω \ Ft). Therefore,

ρt(X1Ft) = ρt(X1Ft1Ft(X1Ft )
)1Ft(X1Ft )

+∞1Ω\Ft(X1Ft )

= ρt(X1Ft(X)∩Ft)1Ft(X1Ft )
+∞1Ω\Ft(X1Ft )

.

By Lemma B.2 applied to X1Ft(X) ∈ DomAt, we deduce that

ρt(X1Ft(X)∩Ft)1Ft(X1Ft )
= ρt(X)1Ft(X)∩Ft .

On the other hand, Ω \ Ft(X1Ft) = (Ω \ Ft(X)) ∩ Ft hence

∞1Ω\Ft(X1Ft )
= ρt(X)1Ω\Ft(X)1Ft .
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The conclusion follows. 2

Proof of Proposition 2.9: Recall that, for every X ∈ L0(R,FT ),

ρt(X) = ρt(X1Ft(X))1Ft(X) + (+∞)1Ω\Ft(X).

Let us verify the statements of Proposition 2.4. Normalization is trivial as
Ft(0) = Ω. If X,X ′ ∈ L0(R,FT ) with X ≤ X ′, we deduce by Definition
2.1, Condition 2), that AXt ⊆ AX

′
t . Therefore, Λt(X) ⊆ Λt(X

′) and, finally,
Ft(X) ⊆ Ft(X

′). We deduce that

ρt(X
′) = ρt(X

′1Ft(X))1Ft(X) + ρt(X
′1Ft(X′)\Ft(X))1Ft(X′)\Ft(X) + (+∞)1Ω\Ft(X′)

where X ′1Ft(X) ∈ DomAt. Since X1Ft(X) ≤ X ′1Ft(X), we deduce that
ρt(X1Ft(X)) ≥ ρt(X

′1Ft(X)) so that ρt(X) ≥ ρt(X
′) on Ft(X), and the in-

equality still holds on Ω as ρt(X) = +∞ on Ω \ Ft(X).
For all mt ∈ L0(R,Ft), it has Ft(X + mt) = Ft(X) as AX+mt

t 6= ∅ if and
only if AXt 6= ∅. Therefore, by Proposition 2.4,

ρt(X)−mt = ρt(X1Ft(X))1Ft(X) + (+∞)1Ω\Ft(X) −mt1Ft(X) −mt1Ω\Ft(X)

=
(
ρt(X1Ft(X))−mt1Ft(X)

)
1Ft(X) + (+∞)1Ω\Ft(X)

= ρt
(
(X +mt)1Ft(X)

)
1Ft(X) + (+∞)1Ω\Ft(X) = ρt(X +mt)

For any X,X ′ ∈ L0(R,FT ), we have AXt +AX′t ⊆ AX+X′

t . We deduce that
Ft(X)∩Ft(X ′) ⊆ Ft(X+X ′) and ρt(X+X ′) ≤ ρt(X)+ρt(X

′) by Proposition
2.4 on the set Ft(X)∩ Ft(X ′). Otherwise, we see that ρt(X) + ρt(X

′) = +∞
on the set Ω \ (Ft(X) ∩ Ft(X ′)) = (Ω \ Ft(X)) ∪ (Ω \ Ft(X ′)). Thus, the
inequality ρt(X +X ′) ≤ ρt(X) + ρt(X

′) holds on Ω.

Note that, if kt ∈ L0((0,∞),Ft), AktXt 6= ∅ if and only if AXt 6= ∅. There-
fore, Λt(X) = Λt(ktX) and Ft(ktX) = Ft(X). Therefore, we have

ρt(ktX) = ρt(ktX1Ft(X))1Ft(X) + (+∞)1Ω\Ft(X),

= ktρt(X1Ft(X))1Ft(X) + kt(+∞)1Ω\Ft(X) = ktρt(X).

Let us now consider the general case kt ≥ 0. Consider k̃t = kt1kt>0+1kt=0 > 0.
By the first step, we get that ρt(k̃tX) = k̃tρt(X) and Λt(X) = Λt(k̃tX)
whatever X ∈ L0(R,FT ). Replacing X by X1kt 6=0 and using Lemma B.3 ,
we get that

ρt(ktX) = ρt(kt1kt 6=0X) = k̃tρt(X1kt 6=0) = ktρt(X).

Finally, l.s.c. and finiteness ρt(X) > −∞ hold for any X ∈ L0(R,FT ) as
ρt(X) = +∞ on Ω \ Ft(X). Also, At = {X ∈ L0(R,FT )|ρt(X) ≤ 0}. 2
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B.3. Proof of Lemma 4.1

Lemma B.4. For all X, Y ∈ L0(R,FT−1) such that X 6= Y a.s., we have

ST−1 − ρT−1(−ST ) ≤ gT−1(Y )− gT−1(X)

Y −X
≤ ST−1 + ρT−1(ST ).

Proof. Suppose that X, Y ∈ L0(R,FT−1). On the set {Y > X} ∈ FT−1,
we have:

ρT−1 (Y ST − hT ) = ρT−1 (XST − hT + (Y −X)ST )

≤ ρT−1 (XST − hT ) + ρT−1((Y −X)ST )

≤ ρT−1 (XST − hT ) + (Y −X)ρT−1(ST ).

We deduce that gT−1(Y ) ≤ gT−1(X) + (Y −X)(ST−1 +ρT−1(ST )) and finally

gT−1(Y )− gT−1(X)

Y −X
≤ ST−1 + ρT−1(ST ). (B.33)

By symmetry, we deduce that (B.33) holds also on {Y < X}. Similarly, on
the set {Y < X},

ρT−1 (Y ST − hT ) ≤ ρT−1 (XST − hT ) + ρT−1((Y −X)ST )

≤ ρT−1 (XST − hT ) + (X − Y )ρT−1(−ST ).

Therefore,

gT−1(Y )− gT−1(X)

Y −X
≥ ST−1 − ρT−1(−ST ). (B.34)

By symmetry, we deduce that (B.34) holds also on {Y > X}. 2
Corollary B.5. We have gT−1(x) ∈ R, for all x ∈ R a.s. In particular, gT−1

is a.s. continuous.

Proof. By Lemma B.4, we have |gT−1(X)| ≤ kT−1|X|+ |ρT−1(−hT )| for all
X ∈ L0(R,FT−1) so that gT−1(X) ∈ R, where

kT−1 := max (|ST−1 + ρT−1(ST )|, |ST−1 − ρT−1(−ST )|) .

Consider the set

A := {ω ∈ Ω : ∀x ∈ R, gT−1(ω, x) <∞} = {ω ∈ Ω : ∀x ∈ Q, gT−1(ω, x) <∞}.
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The equality above holds because gT−1 is convex and any x ∈ R is a convex
combination of two rational numbers. We deduce that B = Ω \ A ∈ FT−1.
If B 6= ∅, as the jointly measurable set {(ω, x) ∈ Ω ×R : gT−1(ω, x) = ∞}
admit non empty ω-sections, we may use a measurable selection argument.
We then deduce X ∈ L0(R,FT−1) such that gT−1(X) = +∞ on B, which
yields a contradiction.2

Proof of Lemma 4.1: Consider the set B = B1 ∪B2 where

B1 =
⋃
y>x

{ω ∈ Ω : gT−1(y)− gT−1(x) > (ST−1 + ρT−1(ST )))(y − x)},

B2 =
⋃
y>x

{ω ∈ Ω : gT−1(y)− gT−1(x) < (ST−1 − ρT−1(−ST )))(y − x)},

By Corollary B.5, g is a.s. continuous hence B1 and B2 may be rewritten as
countable unions. Therefore, B is FT−1-measurable. Suppose that P (B) > 0
and let us introduce the jointly measurable set GT−1 = G1

T−1 ∪G2
T−1 where

G1
T−1 = {(ω, x, y) ∈ Ω×R2 : gT−1(y)− gT−1(x) > (ST−1 + ρT−1(ST )))(y − x)},

G2
T−1 = {(ω, x, y) ∈ Ω×R2 : gT−1(y)− gT−1(x) < (ST−1 − ρT−1(−ST )))(y − x)}.

As the ω-sections of GT−1 are not empty on B, we deduce by a measur-
able selection argument the existence of X, Y ∈ L0(R,FT−1) such that
(ω,X(ω), Y (ω)) ∈ GT−1 a.s. on B and we set X = Y = 0 otherwise. This
leads to a contradiction by Lemma B.4. 2

B.4. Proof of theorem 4.8

Suppose that SAIP holds. When ST−1 +ρT−1(ST ) and ST−1−ρT−1(−ST ) are
both equal to 0, we know that gT−1(x) is a constant function by Corollary 4.5
such that P ∗T−1 = gT−1(0) = ρT−1(−hT ) > 0. Otherwise, ST−1+ρT−1(ST ) > 0
and ST−1−ρT−1(−ST ) < 0. Since P ∗T−1 is a price by Theorem 4.6, there exists
θ∗T−1 ∈ L0(R,FT−1) such that

P ∗T−1 = θ∗T−1ST−1 + ρT−1(θ∗T−1ST − hT )

≥ ρT−1(−hT )1θ∗T−1=0 +
(
θ∗T−1ST−1 + ρT−1

(
θ∗T−1ST

))
1θ∗T−1>0

+
(
θ∗T−1ST−1 + ρT−1

(
θ∗T−1ST

))
1θ∗T−1<0

= ρT−1(−hT )1θ∗T−1=0 + (ST−1 + ρT−1 (ST )) θ∗T−11θ∗T−1>0

+ (ST−1 − ρT−1 (−ST )) θ∗T−11θ∗T−1<0 > 0.
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For the reverse implication, let us prove first that AIP holds. We fix hT such
that ρT−1(−hT ) > 0. Recall that P ∗T−1 = inf

x∈R
gT−1(x) > 0 hence gT−1(x) > 0

for all x ∈ R ∪ {±∞}. Let us show that the sets {ST−1 + ρT−1(ST ) < 0}
and {ST−1 − ρT−1(−ST ) > 0} are empty a.s. Otherwise, in the case where
P(ST−1 + ρT−1(ST ) < 0) > 0, we define

θT−1 := − ρT−1(−hT )

ST−1 + ρT−1(ST )
1{ST−1+ρT−1(ST )<0} ≥ 0.

We have

gT−1(θT−1) = θT−1ST−1 + ρT−1(θT−1ST − hT ),

≤ θT−1ST−1 + ρT−1(θT−1ST ) + ρT−1(−hT ),

≤ θT−1(ST−1 + ρT−1(ST )) + ρT−1(−hT ),

≤ ρT−1(−hT )1{ST−1+ρT−1(ST )≥0}.

Therefore, P ∗T−1 ≤ 0 on the set {ST−1 + ρT−1(ST ) < 0} in contradiction with
the assumption. Similarly if P(ST−1 − ρT−1(−ST ) > 0) > 0 we define

θT−1 := − ρT−1(−hT )

ST−1 − ρT−1(−ST )
1{ST−1−ρT−1(−ST )>0} ≤ 0.

We also get that P ∗T−1 ≤ 0 when ST−1− ρT−1(−ST ) > 0, i.e. a contradiction.

Let us show that ST−1−ρT−1(−ST ) = 0 if ST−1+ρT−1(ST ) = 0. Otherwise,
suppose that ΛT−1 := {ST−1+ρT−1(ST ) = 0}∩{ST−1−ρT−1(−ST ) < 0} satis-
fies P(ΛT−1) > 0. If hT = ∆ST , then ρT−1(−hT ) = ρT−1(−∆ST ) > 0 on ΛT−1.
On the complimentary set, we fix hT = γT−1 > 0, γT−1 ∈ L0((0,∞),FT−1).
It follows that ρT−1(−hT ) > 0 hence P ∗T−1(hT ) > 0. On the other hand, if
θT−1 ≥ 1, P ∗T−1(hT ) ≤ ρT−1(θT−1∆ST −∆ST ) = (θT−1−1)ρT−1(∆ST ) = 0 on
ΛT−1. It follows that P ∗T−1(hT ) ≤ 0 on ΛT−1, i.e. a contradiction. Similarly,
we show that ΓT−1 := {ST−1 − ρT−1(−ST ) = 0} ∩ {ST−1 + ρT−1(ST ) > 0}
is empty a.s. Finally, we conclude that ST−1 + ρT−1(ST ) = 0 if and only if
ST−1 − ρT−1(−ST ) = 0. 2

B.5. Proof of theorem 5.1

Notice that m∗T−1 ≥ 0 when hT ≥ 0 hence AIP holds with hT = 0. Let us
show the reverse implication. To do so, we observe that

gT−1(x) = xST−1 + ρT−1

((
x− hT

ST

)
ST

)
.
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Since ess infFT−1

hT
ST
≤ hT

ST
≤ ess supFT−1

hT
ST

, we deduce that(
x− ess supFT−1

hT
ST

)
ST ≤

(
x− hT

ST

)
ST ≤

(
x− ess infFT−1

hT
ST

)
ST .

Therefore,

ρT−1

((
x− hT

ST

)
ST

)
≥ ρT−1

((
x− ess infFT−1

hT
ST

)
ST

)
and

ρT−1

((
x− hT

ST

)
ST

)
≤ ρT−1

((
x− ess supFT−1

hT
ST

)
ST

)
.

This implies that

gT−1(x) ≥ xST−1 + ρT−1

((
x− ess infFT−1

hT
ST

)
ST

)
:= mT−1(x) (B.35)

and

gT−1(x) ≤ xST−1 + ρT−1

((
x− ess supFT−1

hT
ST

)
ST

)
:= MT−1(x), (B.36)

where the r.h.s. mT−1(x) and MT−1(x) of the inequalities (B.35) and (B.36)
need to be understood as jointly measurable and l.s.c. random functions w.r.t.
(ω, x). To see it, it suffices to repeat the construction of gT−1. As we have
mT−1(x) ≤ gT−1(x) ≤MT−1(x) for all x, we get by Lemma 3.9 that

m∗T−1 := inf
x∈R

mT−1(x) ≤ P ∗T−1 ≤ inf
x∈R

MT−1(x) =: M∗
T−1.

Notice that

mT−1(x)=



x (ST−1+ρT−1(ST ))−
(

ess infFT−1

hT
ST

)
ρT−1(ST ),

if x ≥ ess infFT−1

hT
ST

x (ST−1−ρT−1(−ST ))+

(
ess infFT−1

hT
ST

)
ρT−1(−ST ),

if x < ess infFT−1

hT
ST
.
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By Theorem 3.11, ST−1 + ρT−1(ST ) ≥ 0 and ST−1 − ρT−1(−ST ) ≤ 0 under
AIP. Thus, the infimum of mT−1(x) is reached at point x∗ := ess infFT−1

hT
ST

and

m∗T−1 = ST−1

(
ess infFT−1

hT
ST

)
.

Similarly, the upper bound function MT−1 may be expressed as

MT−1(x)=



x(ST−1+ρT−1(ST ))−
(

ess supFT−1

hT
ST

)
ρT−1(ST ),

if x ≥ ess supFT−1

hT
ST

x(ST−1−ρT−1(−ST ))+

(
ess supFT−1

hT
ST

)
ρT−1(−ST ),

if x < ess supFT−1

hT
ST
.

Similarly, under AIP, the infimum ofMT−1(x) is reached at x̄∗ := ess supFT−1

hT
ST

and

M∗
T−1 = ST−1

(
ess supFT−1

hT
ST

)
.

The conclusion follows. 2
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