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Abstract 
 
Recent advances in macromolecular chemistry have revolutionized the way we perceive the 

synthesis of polymers. Polymerization, to be modern, must be "controlled", which usually 

means capable of producing macromolecules of well-defined structure. The purpose of this 

review is to examine how the chemistry of epoxy resins, an almost century-old chemistry, is 

also involved in this movement. 

Epoxy resins are characterized by both the flexibility of implementation and the qualities of 

the polymers obtained. Key materials in health-, mobility- and energy related technologies, 

these resins are heavily present in high-performance composites, electronic boards, adhesives 

and coatings. Currently, a large number of resins and hardeners are available on the market or 

described in the literature and an interesting point is that almost any combination of the two is 

possible. Common to all these recipes and processes is that a liquid (or soluble) resin at some 

point becomes insoluble and solid. It is very important to know how to manage this transition, 

physically known as the gel point, as it is the point after which the shape of the object is 

irreversibly set. Taking into account the variety of epoxy polymerization processes — 

polyaddition, anionic or cationic polymerization— we detail a number of methods to program 

the occurrence of the gel point and how this type of control affects the structure of the 

growing network. 
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1. Introduction 
 
In 1907 Leo Baekeland invented the first synthetic polymer, a phenol-formaldehyde resin 

called Bakelite that is made of chemically crosslinked polymer chains [1]. As such, it was the 

first specimen of a whole class of polymer materials: the so-called thermoset polymers [2]. 

Since then, polymer chemistry has experienced an outstanding rise from both the scientific 

and economic viewpoint. The global polymer market is measured in hundreds of millions of 

metric tons where thermoset polymers account for about 10% of the total production. They 

are largely outweighed by thermoplastic polymers [3], i.e. long polymer chains associated 

through intermolecular connections such as entanglements, hydrogen bonds and glassy 

domains [4]. However, they are still irreplaceable due to their superior mechanical properties 

and chemical resistance imparted by chemical crosslinks. 

From the processing viewpoint, thermosets are generally made of an initial liquid mixture of 

polyfunctional organic molecules that gradually react with each other to form a three 

dimensional solid network while thermoplastics are commercialized in the form of solid 

pellets that are melted and shaped into their final form. Advantageously, the low molar weight 

of thermoset precursors permits to formulate low-viscosity reactive mixtures that offer unique 

flexibility in application such as coating or wetting of fibers. However, it also requires a fine 

control of the viscosification kinetic that eventually comes with a transition from the liquid to 

the solid state: the gelation [5, 6]. This is true, for obvious reasons, in the most common 

engineering processes including injection and molding [7-10]. It is also the case when solid 

fillers (e.g. in composites [11]) or a gaseous phase (e.g. in foams [12]) are blended in the 

system prior to its solidification. In this case, the viscosification profile must be compatible 

with a homogeneous and stable dispersion of the second phase.  Moreover, the control of the 

liquid-solid transition is still an ongoing topic of research in the most recent technologies 

using thermoset materials such as self healing polymers based on vascular approaches [13] or 

3D printing [14]. 

Among the numerous chemistries used in thermoset technologies, oxirane (also called epoxy) 

based thermosets [15, 16] hold a prominent position which is intimately related to the 

molecular structure of the monomers. Indeed, in the three membered rings’ family, a ring 

strain energy of about 115 kJ/mol is estimated [17], mostly due to bond angle deformation. 

Thus small heterocyclic rings like oxirane but also aziridine [18] or thiirane [19] display 

rather strong reactivities dominated by the effects of ring strain, which promotes all types of 
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ring openings. Ring opening reactions are not only versatile and self-powered processes but 

also permit bond formation with limited shrinkage and no release of small molecule. 

However, this high reactivity has also disadvantages: aziridine and thiirane appear as rather 

unusual and deleterious compounds [20, 21]. In this context, epoxies represent a notable 

exception as they are widely present in organic synthetic chemistry, in engineering and even 

in hardware stores, in the popular form of epoxy glues. The reason of this success is the 

existence of easy to manipulate, non-volatile epoxy compounds that in fact, retain all 

aforementioned qualities of small rings molecules without having the drawbacks. Thus, they 

can yield crosslinked networks either by step growth polymerization (with amine for instance) 

or by chain growth ring opening polymerization (in the cationic or anionic mode). The 

richness of this chemistry offers the possibility to control the polymerization process through 

its different stages: from the initiation to the propagation. Most of the industrial solutions are 

currently based on robust systems that polymerize only after exposure to highly energetic 

stimuli (high temperatures or UV irradiation). However, under the increasing demand for 

greener solutions, more and more systems are now designed to polymerize in conditions close 

to the ambient (low temperatures or visible light). 

In this article, various approaches to control the onset of polymerization and the chain growth 

process of epoxy thermosets are reviewed. The selected examples embrace the diversity of 

initiation stimuli – thermal treatment and irradiation – as well as chain growing mechanisms –

step and chain growth processes. Special attention is paid to the latest developments reported 

in the literature and to the systems that offer more sustainable and energy saving solutions. 

 

 2. Epoxy thermosets: From monomers to crosslinked materials 

2.1 Typical epoxy resins and monomers and their polymer growth mechanisms 

2.1.1 Typical epoxy resins and monomers 

While the term “epoxy” can be used to describe a large variety of molecules containing an 

oxirane group, “epoxy resins” describes a broad class of molecular structures that contain at 

least two oxirane groups [15, 16, 22] (Figure 1A and Figure 1B). They are often called 

“prepolymers” in reference to their use as building block of thermosetting polymers, the 

materials obtained from their crosslinking reaction [2]. The molecular base to which the 

oxirane groups are attached can vary widely to yield different classes of thermosetting 
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polymers. It is worth noting that the cured materials are commonly called “epoxy resins” too, 

even if they no longer contain epoxy groups [22].  

The two first examples of epoxy resin used as precursor of thermosetting polymers were 

reported almost simultaneously in Europe by Pierre Castan [23]  and in the United-States by 

Sylvan Greenlee [24]. They both described the synthesis of the diglycidyl ether of bisphenol 

A (DGEBA, Figure 1A) from the reaction between bisphenol A (BPA) and epichlorhydrine in 

the presence of sodium hydroxide [25]. This process provides a prepolymer whose n value is 

controlled by the stoichiometry of the reactants. Today, this is still the main route used for the 

preparation of most of the marketed resins. Following the commercial success of BPA-based 

epoxy resins, many other type of resins have been synthesized and are now commercially 

available [26].   

Among other typical epoxy resins are molecules derived from the reaction of epichlorohydrin 

with an aromatic amine. For instance, tetraglycidylmethylenedianiline (TGMDA, Figure 1A) 

is a classical resin [27] extensively used in aerospace composites.  

 
 

Figure 1: Typical epoxy monomers used in thermoset chemistry. 

Polyglycidyl derivatives of phenolic prepolymers (phenolic resin, Figure 1A) are also 

common epoxy resins, known to give material with high Tg and high resistance to thermal 

degradation [28-30].  

Cycloaliphatic resins are another class of epoxy resins of great interest [31]. They have better 

weather resistance and less tendency to yellow than do aromatic resins [15, 32]. Their low 

viscosity combined to their good electrical loss properties contributed to their commercial 

success in electrical and electronic applications [33, 34]. As shown in Figure 1B, with the 

examples of 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (ECC) and 

bis[3,4-epoxycyclohexylmethyl] adipate (BECHMA), they usually contain ester linkages. 

Due to their aliphatic nature, they are less reactive toward classical nucleophilic crosslinkers 

than aromatic resins and might be used to offer longer pot life [31, 35]. It is worth noting that 
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the ester linkage may also react with the nucleophilic crosslinker as their use require high 

curing temperature [35]. 

In addition to these polyfunctional prepolymers, a number of monoepoxides are also used in 

epoxy resin technology. They are usually employed as reactive diluents that permit to reduce 

the viscosity of the formulation and that are incorporated in the final crosslinked network [36, 

37]. Their use generally results in a faster curing rate as well as a lower crosslink density as 

compared to the undiluted resin [38]. Epoxy monomers containing vinyl groups are also of 

practical use for the synthesis of functional polymers [39]. They include glycidyl 

methacrylate or 4-glycidyl oxystyrene as represented in Figure 1C.  

This list of resins and monomers is not exhaustive and the above-mentioned examples are just 

there to give an overview of the richness of the epoxy chemistry. A comprehensive list of 

products used in the manufacture of epoxy resins has been described elsewhere [26].  

 

2.1.2 Step growth polymerization 

A variety of coreactants can be used to cure epoxy resins through step polymerization 

processes. They include amines, acids, isocyanates and mercaptans [40]. 

Among them, polyamines are the most commonly used [41-43]. They involve a ring opening 

addition reaction. It is noteworthy that primary amine groups can react twice as shown in 

Figure 2.  

 
 

Figure 2 : Reactions between a primary diamine and 
four epoxy moieties. 

 

In this system the reactivity and thus, the kinetics of the crosslinking step, are dictated by the 

nucleophilic character of the amine and the electrophilicity of the epoxy monomer. In most 

cases, the epoxy resin is a derivative of DGEBA. In these conditions, the reactivity is mainly 

dependent upon the nucleophilicity of the amine.  
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Various solutions may be envisioned to control the reactivity of the initial system. They 

include very simple approaches, like using a weakly nucleophilic amine [44, 45], and more 

sophisticated solutions, such as preventing the reaction of the amine with a protective group 

[46, 47]. This will be detailed later in this review. From a more general point of view, it may 

be remarked that the reactivity of the NH functions is not constant throughout the curing 

process. Secondary NH functions are less reactive than primary NH groups. Moreover, as the 

reaction proceeds, the ring opening of the epoxy functions induces the formation of hydroxyl 

groups that catalyze the reaction [48]. As depicted in Figure 3, this happens through the 

formation of a trimolecular complex that is able to promote the nucleophilic attack of the 

amino group. Therefore, it is an autocatalytic reaction.  

 

Figure 3: The catalysis of the nucleophilic attack of an amino 
group onto an epoxy group in the presence of an alcohol. 

In this polymerization mode, the functionality of each epoxy function is one. Typically, 

diepoxides are used. If one wants to obtain a crosslinked network, then the coreactant 

monomer must present a global functionality higher than two. This is indeed the case with 

diamine whenever primary amine functions are present (each aminoproton reacts with an 

epoxy, Figure 4).   

 
Figure 4: Growing of a three dimensional network from the 
reaction of a diepoxide with a diamine. 

 

2.1.3. Chain growth ring opening polymerization 

As a result of their three-membered ring structure, epoxies exhibit highly polar oxygen-

carbon bonds which are expected to break ionically [22, 49, 50]. For example, the dipole 

moment of ethylene oxide in benzene solution is 1.82 D where it is only 1.1 D for regular 
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ethers [22]. Therefore, epoxies can easily be involved in either electrophilic attack through 

their oxygen atom or nucleophilic attack on their ring carbon atoms. In other word, they can 

undergo both anionic and cationic polymerization. In every case, the chain polymerization 

process presents the three classical distinctive stages of chain polymerization: 

• The initiation during which an initiator provides a suitable active center by reacting 

with a monomer 

• The propagation during which a series of consecutive addition of monomers to the 

active center is proceeding. The active center is regenerated at every step, allowing the 

reaction to continue. 

• Eventually, the termination during which the active center is neutralized.  

 
In view of the control of the crosslinking step, chain ring opening polymerization appears as a 

valuable option. Indeed, it is possible to control the kinetics through both the initiation step 

and the propagation. By tuning the reactivity of the initiator, one can control the occurrence of 

polymerization and thus of the whole crosslinking process. Once polymerization is underway, 

it is also possible to play with the rate of propagation for instance by adding a transfer agent. 

Below are presented the distinctive features of the chain ring opening polymerization in the 

anionic and cationic modes. 

2.1.3.1. Anionic polymerization 
 

Anionic polymerization is commonly initiated by tertiary amines and particularly imidazoles 

[51]. It involves the formation of an alkoxide, which then attacks a monomer while 

regenerating another alkoxide and so on. The mechanism is illustrated in Figure 5. 

 

 
 

Figure 5: Anionic polymerization of epoxide initiated by a 
tertiary amine in the presence of an alcohol 
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Figure 6: Possible terminations for the anionic polymerization of epoxide 
initiated by tertiary amines 

 

Termination may result from N-dealkylation or the β-elimination of the N substituent from 

the growing chain [52]. The two mechanisms are illustrated in Figure 6. They result in the 

regeneration of the tertiary amine.  

It is worth noting that epoxies are also copolymerized with other cyclic monomers according 

to anionic chain polymerization processes. In particular, the curing of epoxy-anhydride 

formulations, using tertiary amines as initiators, has been described as an alternating epoxy-

anhydride anionic copolymerization [53-56]. This system has been extensively studied as 

anhydrides are, with primary amines, the most commonly used crosslinkers for epoxy resins 

[40]. Recent studies have shown that the mechanism is far more complex than a strictly 

alternating epoxy-anhydrides copolymerization scheme [56]. But the overall curing 

mechanism is commonly described as a classical anionic ring opening chain polymerization 

with an initiation, a propagation and a termination as described in Figure 7. Other cyclic 

comonomers can be copolymerized with epoxies according to an anionic alternating 

copolymerization mechanism and are used in epoxy thermoset technology. They include 

bicyclic and spirocyclic bis(γ-lactone)s [57-62]. These are comonomers dedicated to the 

development of shrinkage-free or expanding curing formulations. Indeed, they react according 

to a double ring opening mechanism that results in a molecular expansion [57]. However, in 

the present review, for the sake of conciseness, the discussion on anionic polymerization of 

epoxies will be focused on the case of homopolymerization. 
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Figure 7 : The mechanism of the alternating ring-opening copolymerization of epoxides and anhydrides initiated by a tertiary 
amine. 

 
2.1.3.2. Cationic polymerization 
 

Cationic polymerization of epoxy resins is commonly initiated by boron trifluoride complexes 

[63] and several onium salts [64] including diaryl iodonium [65], triarylsulfonium [66] or 

phosphonium salts [67]. The initiation mechanisms are detailed later in the Section 3.3 of this 

review. Propagation proceeds through an oxonium active center at the end of the growing 

chain as represented in Figure 8. However, it could also proceed through an activated 

monomer mechanism and this will be detailed in the Section 4.2 of this review.  

 

 

 
 

Figure 8: Cationic polymerization of epoxide Figure 9: Possible termination for the cationic 
polymerization of epoxide 

 
Combination of the propagating oxonium with an anion derived from the counteranion is 

thought to be one of the main termination steps. In the case of BF4
-, the weakly nucleophilic 

anion F- may attack the propagating oxonium cation as illustrated in Figure 9 [68]. 
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What is important to note in the chain polymerization mode is that the functionality of each 

epoxy group is 2. Therefore, as depicted in Figure 10, diepoxy monomers like DGEBA are 

enough to produce a polyether network through the homopolymerization of epoxide groups 

[69].   

 
Figure 10: Growing of a three dimensional network 
from the homopolymerization of diepoxide molecules 

In epoxy thermoset technology, cycloaliphatic resins are sometimes preferred. Because they 

are free of aromatic groups, they are better suited for UV initiated cationic ring opening 

polymerization and also less prone to coloration under UV light exposure than resin based on 

bisphenol A [32]. Furthermore, cationic polymerization is particularly suitable for these resins 

as they are very poorly reactive with common nucleophilic crosslinkers such as primary 

amines [31] (see Section 2.1.1.). 

It is worth noting that epoxides can also be copolymerized with spirocyclic bis(γ-lactone)s in 

presence of cationic initiators [70, 71]. Similarly to what is observed in the anionic 

polymerization mode (see section 2.1.3.1), this approach provides curing formulation with 

little shrinkage or even expansion. However, in that case, the oxirane ring is not directly 

involved in the ring opening polymerization. Instead, it first reacts with the spirocyclic bis(γ-

lactone)s, yielding a spiroorthoester, which in turn undergoes cationic ring opening 

polymerization. 

2.2. Physical transitions during crosslinking and industrial concerns 

2.2.1. Gelation 

Whatever the crosslinking process one considers, if the functionality of the monomer is 

adequately chosen, it is accompanied at some point by a critical transition: gelation [72]. 

From a pure macroscopic viewpoint, this transition, also termed the gel point, is characterized 

by the visible formation of a gel or insoluble polymer fraction. It involves an abrupt change 
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from a liquidlike to a solidlike behavior. Figure 11 illustrates the time dependence of viscosity 

as a function of conversion of the epoxy groups, x, for the cationic curing of DGEBA [73]. 

When x is equal to the gel conversion, xgel, the viscosity becomes infinite and a solid fraction 

is appearing whose elastic modulus increases as the conversion increases. 

 
Figure 11 : Evolution of the physical properties during the cationic 
curing of DGEBA as a function of conversion of epoxy groups 

From a molecular standpoint, gelation occurs when a growing molecule reaches a mass large 

enough to interconnect every boundary of the system. Thus, when gelation takes place it is 

common to say that there is one giant molecule throughout the system.  Its contribution to the 

total number of molecules Mn is negligible and therefore there is no particular accident on Mn 

at xgel. However, the mass fraction of this giant molecule is significant and its contribution to 

the Mw value prevails over the contribution of the much smaller species. For this reason, a 

mathematical definition of the gel point states that: Mw tends to infinite when x = xgel. 

It is interesting to note that stepwise and chainwise polymerization exhibit different behaviors 

in the pregel stage [74]. Step polymerization results from the reaction between reactive 

molecules that are homogeneously distributed in the system at the very beginning of the 

crosslinking process. Thus the system is cured in similar conditions in any part of the mixture 

as represented in the schematic illustration of Figure 12. In contrast, chain polymerization 

results from an initiation step starting at different discrete points of the system. The process is 

intrinsically inhomogeneous and may develop inhomogeneities on a nanoscale, called 

microgels [75].  As polymerization proceeds, microgels may be obtained in the form of 

crosslinked polymer coils swollen by unreacted monomers. This is illustrated in Figure 13 for 

the chain ring-opening polymerization of epoxy monomers and diepoxide crosslinkers. The 
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dimension and concentration of the polymer coils increase until the apparition of an 

interconnected structure that percolates the system resulting in macrogelation [76, 77].  

 

 

Figure 12: Schematic representation of the gelation 

transformation  (a b) in step polymerization for the 
reaction between trifunctional and bifunctional molecules. 

Figure 13: Schematic representation of the inhomogeneous 
gelation process for the chain ring-opening polymerization of 
epoxy monomers and diepoxide crosslinkers 

 
From the viewpoint of kinetics and reactivity, gelation does not influence the crosslinking 

reaction. Indeed, the characteristic time scale related to the local mobility of functional groups 

after gelation is still much shorter than the characteristic time scale to produce the chemical 

reaction. Thus, gelation essentially affects the macroscopic behavior of the system.  

 
2.2.2. Vitrification 

Vitrification or glass transition is the transformation that takes place when the system is 

transformed from a liquid or gel into a glass. It is a consequence of the reduction of the 

system’s mobility through the formation of covalent bonds and reduction of density, up to a 

point where the cooperative movement of large portions of the polymer are no longer 

possible. It must be emphasized that this transition may take place either before or after 

gelation. 

Contrarily to the gelation, the definition of this transition is not independent on temperature. 

Indeed, the possibility of producing cooperative movements of fragments of the thermosetting 

polymer increases with temperature. Thus, the conversion at which glass transition appears, 

increases with the cure temperature. More generally speaking, independently from the degree 

of advancement of the curing reaction, vitrification is always a reversible process while 

gelation cannot be reversed in conventional crosslinked material like epoxy thermoset. 
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Another significant difference with the gel point is that glass transition significantly hampers 

the curing process [78, 79]. Indeed, in the glassy state, relaxation times become very long.  

The local mobility of functional reactive groups is considerably altered and reaction is rapidly 

arrested. Polymerization may restart by increasing the temperature.   

2.2.3. Industrial processes and their demands  

 
In the field of processing, gelation and vitrification have both significant impacts. 
 

2.2.3.1 The impact of gelation 
 

As it was explained in the above sections, at the gel point the system undergoes a transition 

from a liquid to a solid state. Thus, during processing of the epoxy formulation, gelation must 

be avoided prior to the shaping of the final part. A noteworthy exception is the special case of 

epoxy vitrimers [80-82], in which the network can be reshaped after gelation by bond 

exchanges. 

The knowledge of the time needed to observe gelation, the gel time tgel, is of great practical 

importance in many industrial processes. For instance, several liquid composite molding 

techniques rely on the injection of the liquid formulations. Resin transfer molding (RTM) [8, 

9, 83] involves the pumping of the liquid precursors into a heated mold cavity containing 

preplaced fiber materials. Reaction injection molding (RIM) [79, 84, 85] is based on the 

premixture of two or more liquid components at high pressure in a hydraulically operated 

mixhead, followed by the injection in the mold cavity. For this system, it is important to be 

sure that the gel time is long enough to permit the injection in the mold prior to gelation. 

Gelation is also of utmost importance in foaming processes for different reasons. Indeed, in 

that case, a blowing agent is added to the monomers solutions [12, 86, 87]. When temperature 

increases as the reaction proceeds, the boiling point of the blowing agent is overstep leading 

to its evaporation and the subsequent formation of the foam. The end of the rise of the foam is 

determined by the gelation. Thus gelation determines the maximum height and the apparent 

density of the final foam. 

It is also noteworthy that the morphology of nanostructured materials is very dependent on the 

occurrence of the gel point. When block copolymers are dispersed in a hard epoxy matrix, the 

final size of their inclusions in the network is dictated by the occurrence of gelation that 
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precludes the relaxation of their morphology [88, 89]. In that case, the mechanical and optical 

properties of the materials are markedly influenced by the curing kinetics. 

The fundamental need to control gelation in thermoset technology is also well illustrated in 

the latest discoveries of material science.  

As an example, in the field of self-repairing material, White et al. recently reported a strategy 

to restore mechanical performance in response to large-scale damages [13]. They used a 

vascular approach, i.e. based on the delivery of reactive fluids through two independent 

networks to the site of damage.  This approach requires low viscosity components in order to 

mix and quickly wet the inner surface of the damage. In the mean time, for large damages, the 

viscosity must be high enough to prevent the effect of gravity that may cause the fluid to drip 

out of the damage region. To address this problem, White et al. proposed a two-stage 

restoration process where a first gel is formed with a very short gel time, tgel(1), in order to 

form a mechanical support that retain the unreacted fraction of the fluid. The latter forms a 

stiffer gel after a longer period of time, tgel(2), once the damage is completely filled with 

additional fluid coming from the microvascular channels. The two-stage restoration strategy is 

illustrated in Figure 14. It is an interesting example where gelation of thermosetting polymers 

must be precisely controlled to respect a complex cure schedule. 

 

Figure 14: Schematic representation of the two-stage restoration strategy developed by White and coworkers. Reactive 
monomer solutions are incorporated into a vascularized sample (blue and red channels). After an impact, chemicals are 
released into the damage region (t0). A first gel (purple) is rapidly formed (t1). The migration of fluid and gelation continues 
until the void is filled. At time t2, the gelation of the second chemical system results in recovery of structural performance 
(reproduced from (13) with permission of AAAS).  
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Similarly, in 3D printing technologies, the control of the occurrence of the gel point is of 

utmost importance. Indeed, some methods using thermoset materials or hydrogels are based 

on the layer-by-layer deposition of a monomer solution on the printing substrates as depicted 

in Figure 15. In that case, gelation must be quick enough to prevent the collapse of the 

structure obtained after extrusion [14].  

 

Figure 15: Printing process for the multilayer deposition of thermosetting 
polymers. Post-printing treatment enables the curing of the deposited 
system. The most widespread solution is UV exposition. 

 
2.2.3.2 The impact of vitrification 

 
As previously underlined, the influence of vitrification on the thermoset cure is very 

important because the polymerization kinetics is severely hindered as soon as the material 

enters the glassy region [79]. 

In some cases, this may be used as a valuable tool to store partially reacted epoxy 

formulations in the glassy state [90, 91]. Again, with the exception of vitrimers, this has to be 

accomplished before the gel point is reached in order to produce the final shaping without 

internal stresses when reheating above Tg. 

However, most of the time, as for gelation, the occurrence of vitrification during cure is a 

problem, especially for curing processes carried out at room temperature without any external 

heat source. This is the case for polymerizations activated by UV for instance. In this 
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condition, the temperature increase resulting from the exothermic polymerization has to be 

sufficient to permit the completion of the crosslinking process. 

 

Figure 16: A typical time-temperature transformation (TTT) 
diagram for a thermosetting polymer. 

 
2.3. Strategies to control the critical transition 

 2.3.1 Cure schedule and curing temperature 

To overcome the above-mentioned problems related to the onset of gelation and vitrification, 

classical solutions rely on the choice of an appropriate thermal cycle. Indeed, most of 

common thermoset resins used in the industry are thermally activated systems. Thus, in these 

cases, the knowledge of the gelation and vitrification times of the curing system at any 

temperatures is enough to devise a convenient cure schedule for a particular application. 

Gelation, vitrification but also degradation are conveniently represented in temperature vs 

time transformation (TTT) diagrams as introduced by Gillham and coworkers [92-95]. Figure 

16 shows a typical TTT diagram for a thermoset polymer.  It is a dynamic phase diagram 

where the gelation curve (red), the vitrification curve (blue) and the degradation curve (black) 

set the limits of the different phases as a function of the curing time and the curing 

temperature. The four possible phases are the liquid (before gelation), the rubber (after 

gelation but above the glass transition temperature, Tg), the gelled glass (after gelation and 

above the glass transition temperature, Tg) and the degraded polymer. Interestingly, the 

ungelled glass region is the region where the reaction is physically hindered. Vitrification 
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prevents any reaction and the system may be indefinitely stored under this form (see Section 

2.2.3.2). 

In common industrial processes, the initial temperature, T0, is chosen high enough to be 

placed in the liquid region of the TTT diagram. A low viscosity formulation is obtained, 

enabling the shaping of the part. In the mean time, T0 is chosen sufficiently low to prevent 

premature curing that will result in gelation and/or vitrification. The temperature is then raised 

in a controlled manner to prevent excessive heat dissipation that will result in monomer 

degradation and cross the gelation curve where and when it is desirable. 

However, whatever the temperature one considers in the liquid region, after a given period of 

time, the system will cross either the gelation or the vitrification curves, and shaping will be 

prevented. In most of the cases, after mixing of the reactants, this period of time is pretty short 

(hours) and it is desirable to handle it through another lever than temperature. A better control 

is achieved from the kinetics viewpoint with well-formulated systems. Reactants, initiators 

and sometimes inhibitors can be selected to program the pot life of the mixtures.  

2.3.2 Control of the polymerization onset 

2.3.2.1 Latency 

In most cases, epoxy reactive mixtures are prepared from two components (for instance a 

multivalent epoxy and a multivalent amine, or a multivalent epoxy and an initiator) that have 

to be stored separately and mixed prior to use. The first solution to control the occurrence of 

gelation and/or vitrification consists of controlling the onset of the polymerization process. As 

long as the polymerization is not running, the system stays in its liquid form and can be 

handled for injection, coating and so on. If we refer to the above mentioned TTT diagrams, 

the aim here is to design a system that will indefinitely stay in the liquid region and that will 

cross the gelation curve where and when the operator decides. This is a more suitable option 

as compared to the strategy that consists to store the system in the ungelled glassy region 

where the resin cannot flow. 

Latent curing agents have been designed for one-pot curing systems with long shelf life [96, 

97]. They are made of two well-chosen components that cannot react under normal 

conditions. External stimulations are necessary to trigger the curing process [64]. They 

include heating, photoirradiation, pressure, magnetism, ultrasonic wave, electron beam, X-
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rays and so on. Heating and photoirradiation are the most appropriate for obvious reasons of 

cost and safety.   

The major advantage of this approach is to combine both commercial and processing 

advantages. On one hand, the system can be stored under the form of a one-pot curing system 

over a very long period (in the liquid region). On the other hand, polymerization and 

subsequent gelation can be triggered at the exact time and place desired by the operator.  

It is important to note that curing systems must verify strict criteria to receive the appellation 

“latent” [97]. Indeed, a true latent curing system strictly shows no activity under normal 

conditions. The relationship between external stimulation and the monomer conversion of 

different systems is illustrated in Figure 17. System C and D are so called latent curing 

systems because they do not exhibit any reaction in normal conditions. System C is a better 

latent system than D due to a better responsiveness as the stimulation increases. A sharp 

increase of conversion as the stimulation is applied is an advantage from the processing 

viewpoint. System A presents an increase of monomer conversion under increasing 

stimulation. However, its activity in normal conditions is not zero. Then, A is not a true latent 

system. 

In the field of epoxy chemistry, various latent systems have been described for both step and 

chain ring-opening polymerizations. They are based on the release of reactive functions after 

cleavage of covalent or physical bonds. They are reviewed in Section 3 of the present paper. 

 
 

 
 

Figure 17: Relationship between external stimulation and 
monomer conversion for different curing systems. Plot A = 
system with no latency that reacts quickly under normal 
conditions, Plot B = system with no latency that reacts 
slowly under normal conditions, Plot C = latent system that 
reacts quickly under stimulation, Plot D = latent system that 
reacts slowly under stimulation 

Figure 18: Typical conversion profiles obtained for 
inhibited or retarded polymerization. Plot a = system free of 
retarder or additive, Plot b = profile obtained with an ideal 
inhibitor, Plot c =profile obtained with a retarder, Plot d = 
profile obtained with a retarder that also exhibit an induction 
period.   
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2.3.2.2. Inhibition and retardation 

Latent systems are externally stimulated multicomponent curing systems for which the epoxy 

formulation is blocked in the liquid region of the TTT diagram. The epoxy resin does not 

react with the hardener or the initiator as long as no external stimulus is applied.  

For some applications, it is sufficient to lengthen the lifetime of the system in this state. This 

can be achieved, without playing with temperature, by using appropriate additives called 

inhibitors and retarders [98-100]. 

Ideal inhibitors are defined as substances that cause an induction period in the polymerization 

of monomers, during which the inhibitor is consumed and after which polymerization starts at 

its normal rate (Figure 18, plot b). Typical retarders are defined as substances that cause 

retardation during the entire polymerization, without giving rise to an induction period 

(Figure 18, plot c). Inhibitors practically block all active centers produced during the 

initiation, but retarders are less efficient and permit some polymer chains to be initiated. They 

react with these growing chains and terminate them, thus acting like chain-breakers and 

reducing the molecular weight of the polymer. In thermoset technology, this means more 

dandling chains and, as a result, lower crosslink density and lower Tg. 

Inhibitors are commonly added to curing formulations to induce an induction period in very 

reactive systems. Indeed, for some two components systems that undergo rapid 

polymerization once the mixing process is underway, it is highly desirable to induce an 

induction period that is long enough to thoroughly mix the components and then process the 

reactive mixture (shaping, coating, etc.) before the gel point and/or the vitrification. This is an 

approach specific to the chain polymerization mode.  

It is commonly used for the free radical polymerization of vinylic monomers. For instance, Li 

and coworkers described the use of quinone and nitrobenzene to adjust the resin’s gel time for 

the radical crosslinking polymerization between styrene and vinyl ester resin [101] used in 

applications such as RIM and RTM. As for chain polymerization of epoxy, several inhibited 

or retarded systems have been reported in the case of cationic polymerization. A number of 

nucleophilic species can compete with monomers in the attack of cationic reactive centers 

(i.e. protons, activated monomers, activated chain ends) as described in Figure 19. In 

particular, amines were reported as effective inhibitors of the cationic polymerization of 

epoxy resins [102-104]. Water and alcohols are also commonly reported as retarder of 
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cationic polymerization [105, 106]. They are not inhibitors as the oxonium ions they form are 

not stable enough to retain the active protons on a long period. Instead, they promote transfers 

and decrease the overall rate of the polymerization. It is worth noting that alcohols and water 

could also accelerate the curing rate as the role they play is very dependent on the structure of 

both the monomers [107, 108] and the initiator [109]. This will be further discussed in Section 

4.2. On a more anecdotal level, several studies suggest that dialkyl sulfides might be efficient 

inhibitors of the cationic polymerization of epoxy resins [110, 111]. They have been used to 

develop latent two-stage formulations that are activated by UV irradiation and subsequently 

polymerized by increasing the temperature. The thermoresponsive system obtained after UV 

irradiation results from the reaction of the dialkyl sulfides with UV-generated activated 

monomers (or activated chain ends) to form stable trialkylsulfonium salts. 

In Section 4 are reported recent discoveries that have enabled the design of epoxy curing 

systems with well-controlled induction periods. 

 

Figure 19 : Different reactions that may result in the inhibition of the cationic ring-opening 
polymerization of epoxides in the presence of a nucleophilic competitor. 

 

2.3.3. Control of the chain growth process   

2.3.3.1. Gel time and critical conversion 

The general strategies to control the onset of polymerization have been briefly introduced in 

Section 2.3.2. Latent initiating systems or inhibitors are among classical solutions. However 

once the polymerization is underway, there is still room to handle the curing system. As long 

as the gel point is not attained (i.e. the system is still in the liquid region of the TTT diagrams) 

and providing the viscosity is not too high, it is possible to manipulate the liquid system. 

Thus, controlling the time between the onset of polymerization and the gel point (the gel time) 

provides another lever to optimize the processing of thermoset as suggested in Figure 20. This 
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could be achieved by tuning the polymerization rate with temperature or retarders (see section 

2.3.2.2). 

 
 

 
 

Figure 20: Control of the gel time through the polymerization 
rate. Typical configuration when a retarder agent is used. 

Figure 21: Control of the gel time through the critical 
conversion. Typical configuration when a chain transfer 
agent (CTA) is used. 

 

In a similar vein, the conversion at the gel point, xgel, also called critical conversion, is a 

parameter of practical importance. From the viewpoint of the temporal programming of the 

process (injection, coating), the higher xgel is, the longer is the period between the onset of 

polymerization and gelation. This is illustrated in Figure 21. The idea is also well illustrated 

in a conversion-temperature transformation (CTT) diagram. CTT diagrams are counterparts of 

TTT diagrams where the time axis is replaced by a conversion axis [2, 112]. A typical CTT 

diagram for a thermosetting polymer is represented in Figure 22. Similarly, the different states 

in which the system may be found are bounded by the gelation, vitrification and degradation 

curves. Clearly, if xgel is increased, then the area of the liquid region is increased, providing 

the operator with a better ability to handle the curing system. 

Thus, once polymerization is underway two possible solutions are available to delay the gel 

point: (i) slow down the polymerization rate (via addition of retarders for instance) or (ii) 

increase the critical conversion.  

Increasing the value of xgel may be beneficial to reduce the formation of internal stresses 

generated during the cure. Indeed, after the gel point the material loses its macroscopic 

mobility and the shrinkage, which is often observed after gelation, leads to the appearance of 

stress and formation of microcracks and microdeformations. When gelation appears at high 

critical conversions, curing mostly proceeds when the material is still able to relax the stress 

and the effect is limited [113, 114]. 
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Figure 22: A typical conversion-temperature transformation 
(CTT) diagram for a thermosetting polymer. 

 
 

2.3.3.2. From monomer functionality to transfer agent 

Increasing the critical conversion is not simply a question of chemical reactivity. This implies 

the control of the chain growth process of polymerization. Stepwise and chain polymerization 

do not present the same degree of freedom to control the chain growth process. If one takes a 

look at the mathematical expressions to predict the gel point, it is evident that the critical 

conversions of chain and step polymerization are dictated by very different parameters. 

(i) For stepwise polymerization, the statistical approach of Flory and Stockmayer permits to 

predict the extent of the reaction at the gel point [2, 72, 115]. For the ideal polymerization of 

NA moles of a molecule A with a functionality  (for instance A= diepoxy) and NB  

mole of a molecule B with a functionality  (for instance B = diamine), conversion at 

the gel point is given by 

  Eq. (1) 

Where  is defined as the ratio of the total number of functional groups of the limiting 

reagent to the total number of functional groups of the excess reagent (i.e. . Thus, for a 

system where the total number of A groups is less than the number of B groups,  is given 

by: 
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  Eq. (2)  

Similar expressions have been derived for mixtures containing two or more molecules with 

the same functional group but different functionalities (e.g. curing of a mixture of a triepoxy 

and a diepoxy with a diamine) or molecules with functionality equal or lower than 2 (e.g.  use 

of a monoepoxy as a reactive diluent). They are very well reviewed in reference books [2, 

98].  

By following these expressions, it appears that only two parameters might be used to control 

the conversion at the gel point: (i) the functionality of the monomers (ii) and their 

stoichiometric ratio. For instance replacing a fraction of tetrafunctional monomers by 

difunctional monomers will result in an increase of xgel [116]. But, at the same time, this will 

decrease the number of crosslink points and this could be detrimental for the properties of the 

final material. Similarly, a decrease of the stoichiometric ratio, , will be accompanied by an 

increase of the conversion at the gel point but a fraction of functional groups will remain 

unreacted and the crosslink density will be lower than in the case of the stoichiometric 

mixture of the reactants [117]. 

(ii) For chainwise polymerization, the gel conversion depends in a complex way on the 

relative rate of initiation, propagation and termination, but also on the amount of initiator [77, 

118]. Increasing the initiator concentration results in shorter primary chains and a 

corresponding increase in the gel conversion.  

There is an extensive literature on the mathematical treatment of the crosslinking process. 

Regarding the specific case of epoxy resins, detailed studies have been reported for the 

homopolymerization in the cationic [119, 120] and the anionic [121] modes as well as the 

alternating copolymerization with cyclic anhydrides [54, 56, 122].  As in the case of step 

polymerization, the statistical approach of Stockmayer can be used to derive a simple and 

general expression of the critical conversion under the assumption of ideal chain 

polymerization. In particular, when one considers the reaction of a difunctional monomer A 

(e.g. monoepoxy) with a tetrafunctional crosslinker BB (e.g. diepoxy), the Stockmayer’s 

equation predicts that the gel point is reached for [76]: 

  Eq. (3) 
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Where  is the weight-average degree of polymerization produced by a single activation 

and a single termination step (i.e the weight-average degree of polymerization of the linear 

primary chains) and  is the fraction of all functional groups residing on the crosslinker 

molecules. Thus if [A] is the concentration of monomer and [B] is the total concentration of 

functional groups of the crosslinker ([B]=2[BB]), then  is given by: 

  Eq. (4) 

It is worth noting that the ring-opening polymerization of epoxies is rapidly outside the scope 

of the ideal conditions stated by Stockmayer. In particular, intramolecular cyclizations are 

rapidly observed through the mechanisms of back- and end- biting [76]. Moreover, when the 

first functional group of a crosslinker is reacted the reactivity of the second functional group 

is often affected [98]. For all these reasons, it is very difficult to verify Stockmayer’s 

assumptions for high fractions of crosslinker BB. To take into account non-ideal phenomena 

(i.e. cyclization or reactivity ratio), it is necessary to introduce complex computational 

methods such as dynamic Monte Carlo simulation [123]. These more elaborated models will 

not be detailed here. 

Despite the limitation of the statistical approach, it is interesting to note that, according to Eq. 

(3), a number of variables can be used to control the gelation process of an epoxy system 

cured by ring-opening homopolymerization: 

− Gelation can be delayed by reducing the amount of crosslinker (i.e. decreasing ), but 

this is accompanied by serious modifications of the final properties of the material.  

− One can reduce  by using a chain transfer agent (CTA). This is a very effective 

solution that will be further discussed in the case of the cationic polymerization of 

epoxy (See Section 4).  

− One can also play with the reactivity of the functions of the crosslinker. If the reaction 

of the first function results in the decrease of the reactivity of the remaining function, 

then the gelation is markedly delayed. On the contrary, it is also possible to obtain 

extensive crosslinking with the rapid formation of tight network structure, by avoiding 

chain transfer and using high amounts of crosslinker whose functions have similar 

reactivity [75, 76, 118, 124].  
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It is interesting to note that the effect of some CTAs may be accompanied by a decrease of the 

polymerization rate. For this reason, retarders are sometimes assimilated to CTAs. However, 

CTAs and retarders are different classes of additives [98]. True CTAs lower polymer 

molecular weights but do not affect polymerization rates. Retarders lower polymerization 

rates and polymer molecular weights.  

In section 4, the control of gelation through the adjustment of the critical conversion’s value 

(xgel) is reviewed in the case of epoxy thermosets. The discussion will be focused on the 

results observed in anionic and cationic ring-opening polymerizations. Particular attention 

will be paid to the cationic mode for which the use of alcohols as CTAs has received much 

attention through the extensive work reported by Penczek and coworkers [125]. 

3. Control of the onset of the crosslinking process  

3.1. Stepwise polymerization 

3.1.1 Classical systems 

   3.1.1.1 Amines 

In step polymerization, the first approach to control reactivity of curing systems is to adjust 

the nucleophilicity of the hardener (amine, acid).  Indeed, the pot-life of these two-

components systems is ruled by the feasibility of one single reaction: the addition of one 

hardener function on one epoxy function.  

For instance, aromatic amines are known to be less reactive than aliphatic ones due to their 

weaker nucleophilicity. Thus diaminodiphenylsulfone [126, 127] (DDS, Figure 23) can 

present pot-life of several months, while for diethylenetriamine [127] (DETA, Figure 23), it 

could hardly be longer than twenty minutes. As a counterpart, curing temperatures are much 

higher in the case of DDS and the curing process consumes more energy. 

 

 
 

Figure 23: Structures of typical amine hardeners for epoxy resins. DETA is an alkylamine 
exhibiting no latency. DDS is an aromatic amine that reacts at high temperature and confers 
thermolatency to the curing system. Dicy is a non-soluble curing agent. Dicy is known to 
act both as an amine hardener and an initiator of anionic chain polymerization. 
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Figure 24: Control of the polymerization onset through a phase transition. This 
approach is typically used with DICY, a non-soluble curing agent that melts above 
180°C. The presence of residual crystal in the cured matrix might affect the 
properties of the network 

Another typical solution to get latency is to use high melting point insoluble curing agents. 

Dicyandiamide [44, 128-132] (DICY, Figure 23), one of the most employed latent curing 

agents in epoxy technology, is a representative example. DICY has a pot life of 24 hours 

when it is dissolved in the resin with a solvent. But it is normally used in the form of fine 

powder dispersed in the resin. The resulting dispersion has a pot life of one year. As depicted 

in the scheme of Figure 24, polymerization starts at high temperature when DICY melts 

(typically 180°C). Again, very high curing temperatures are necessary. Furthermore, the 

presence of residual crystals of DICY in the cured matrix may affect the mechanical behavior 

as well as the thermal performances of the resin [44].  

It is interesting to note that, similarly, solid epoxy resins may be used to yield latent 

formulations. This approach is extensively used in coating technology with the “epoxy 

powder coating” process [15, 133]. A solid resin grounded in powder (usually a high 

molecular weight DGEBA) can be mixed in proper proportions with a powdered solid 

hardener (like DICY). They can also be combined in a fluid state, cooled down to a solid and 

grounded in powder. Under that form and as long as temperature is kept below Tg of the solid 

resin, reaction is prevented as a result of the immiscibility of the two components and/or the 

glassy state of the formulation that completely precludes the molecular motions necessary to 

observe a reaction. Upon application to a heated substrate the powdered system gains enough 

miscibility and mobility to react. This approach can be used to obtain very interesting 
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formulation with long storage life at room temperature, ease of handling and no volatile 

materials. Furthermore, they may be cured at moderate temperature as the curing agent does 

not need to have a strong thermolatent behavior and can be selected to be active even at 

temperatures lower than the Tg of the resin [134]. However, it is essentially restricted to 

coating applications. 

   3.1.1.2 Dihydrazides 

Other N-containing latent curing agents are dihydrazides. The typical chemical structure of 

this class of hardeners as well as the resulting reaction with epoxy functions are depicted in 

Figure 25 and Figure 26 respectively. They have been very scarcely described in the scientific 

literature but reports demonstrate they provide formulations with strong latent character in the 

thermal curing of DGEBA [135-137]. Interestingly, they are easily synthesized from the 

corresponding diacids and are available with very different chemical structures [40]. For 

instance, Tomuta et al. reported a comparative study of dihydrazides with aliphatic, 

cycloaliphatic and aromatic structures [135]. Like DICY, most hydrazides possess a high 

crystalline character and are dispersed as a solid in the liquid resin. Tomuta et al. observed a 

strong correlation between the melting point of the curing agent (usually >180°C) and the 

effective curing temperature. However, they also observed that a mixture of DGEBA with an 

amorphous and aliphatic dihydrazide exhibits a very high curing temperature as well.  This is 

an important difference with aliphatic amines that usually react with epoxies at room 

temperature. It can be explained by the moderate nucleophicity of the NH2 groups of 

dihydrazides whose electronic density is severely reduced by the directly adjacent NH group 

[135]. Thus, dihydrazides are interesting alternatives to DICY or classical thermolatent 

aromatic amines (e.g. DDS), to yield latent epoxy formulation while being able to introduce 

flexibility to the resulting network.  

 
 

 
Figure 25 : Structures of typical dihydrazides 
used to crosslink epoxy resins. 

Figure 26 : Reaction of an aliphatic dihydrazide with four epoxy moieties. 
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   3.1.1.3 Carboxylic acids 

Carboxylic acids form another class of curing agent that is extensively used in epoxy 

thermoset technology [40, 53, 138]. Their nucleophilicity is much lower than the above 

mentioned N-containing curing agents. Thus, the reactivity of homogeneous mixtures of 

epoxy resins and carboxylic acid hardeners is low enough to observe pot-lives of several 

months at room temperature [139]. However, for most applications, the reaction must be 

catalyzed to achieve acceptable reaction rate in reasonable temperature range [140, 141]. 

Then, pot-lives are controlled by the type and the concentration of the catalyst used. Both 

base and acid catalysis have been reported, but base-catalyzed conditions are usually 

preferred as the initiation of the competing homopolymerization of epoxies is much less in 

that case [140]. The base-catalyzed curing mechanism is illustrated in Figure 27.  Among 

classical efficient base catalysts are: (i) imidazoles [142-144], (ii) tertiary amines [138, 145, 

146], (iii) phosphonium bromide [140, 147] and (iv) some metal salts [80-82]. For instance, 

1,2-dimethylimidazole [142] and dimethylbenzylamine [145] as well as 

tetrabutylphosphonium bromide [140] and zinc acetate [82] have been reported as very 

efficient catalysts (Figure 28).   In any case, their use results in a drastic decrease of the pot-

lives from several months to a few days. An alternative to obtain true latent curing 

formulations is the use of thermo- or photo- generated catalysts. They are inactive in normal 

storage conditions (room temperature and UV-blocking containers), and are liberated under 

stimuli such as high temperature or UV exposure. They include blocked tertiary amines [148, 

149] and blocked imidazoles [150]. Most of these catalysts are actually used for the initiation 

of the ring opening homopolymerization of epoxy or the alternating ring-opening 

copolymerization with anhydrides. For this reason, they will be described in Section 3.2. It is 

worth noting that there are very few reports about the combination of carboxylic acids with 

true latent catalysts as carboxylic acids are mostly used in epoxy powder coating applications 

for which latency is insured by the solid state of the formulations [141, 151-153]. In that case, 

DICY is often used as the base-catalyst [152]. Typical carboxylic hardeners are carboxylic 

acid functional polyester resins (Figure 29). They provide materials with excellent corrosion 

resistance and adhesion which are very suitable for powder coating applications [40]. More 

recently, much attention has been devoted to bio-derived short-chain dicarboxylic acids (e.g. 

citric acid, Figure 29) and dimers or trimers of fatty acids (Figure 29) [154, 155]. 
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Figure 27 : Mechanism for the curing of epoxy resins with carboxylic 
acids under base-catalyzed conditions. 

Figure 28 : Structures of typical base catalysts 
used for the curing reaction of epoxy resins with 
carboxylic acid crosslinkers. 

 
Figure 29 : Structures of typical carboxylic acid crosslinkers used in epoxy thermoset technology. 

 

   3.1.1.4 Thiols and isocyanates 

Other typical hardeners of epoxy resins are polythiols [156-159] and polyisocyanates [160-

163]. Like carboxylic acids, their nucleophilicity is usually much lower than amines or 

dihydrazides and base-catalyzed conditions must be used to observe adequate curing rates. 

Again, the stability of the catalyzed formulation may be insured by using latent catalysts such 

as thermo- or photo- generated amines (see Section 3.2.) [157, 161]. Typical thiol hardeners 

are polysulfides (Figure 30). They provide excellent adhesion properties [40, 164, 165]. A 

common isocyanate hardener is 4,4'-diphenylmethane diisocyanate (Figure 30) [160]. 

Isocyanate may be used when high Tg and good flame retardancy are desired. Indeed, the 

reaction of isocyanate with epoxy results in the formation of highly stable heterocyclic rings, 

namely isocyanurate rings (Figure 31) [160, 161]. 
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Figure 30 : Structures of a typical polysulfide hardener and 
a typical diisocyanate hardener used in epoxy thermoset 
technology. 

Figure 31 : Reaction of an isocyanate moiety with an epoxy 
moiety and formation of an isocyanurate cycle. 

 

This overview of classical hardeners used in step polymerization is not exhaustive. However, 

one can easily identify the two main strategies to control the onset of the curing reaction in 

current industrial processes: (i) the use of poorly nucleophilic curing agents, (ii) the phase 

separation of the epoxy resins and the curing agents. Aliphatic amines seem automatically 

excluded from these strategies, precisely for the reasons that make them usually preferred: (i) 

low curing temperatures and (ii) the homogeneity of the curing formulations. Recently, new 

approaches have been proposed to confer latency to epoxy formulations using aliphatic amine 

in an effort to take advantage of their interesting properties. 

3.1.2 Encapsulated curing agents 

Instead of using a high melting point curing agent, another solution is to encapsulate the 

hardener so that it is efficiently separated from the epoxy in normal conditions but prone to 

diffuse outside the capsule when temperature increases. The principle of this approach is 

schematically illustrated in Figure 32. 

Minami and coworkers use the so called Self-Assembly of Phase Separated Polymer method 

(SaPSeP) [166] in a dispersed aqueous medium to encapsulate an aliphatic diamine (3,9-

dipropanamine-2,4,8,10-tetraoxaspiroundecane) in a cured epoxy shell [167]. They obtain 

capsules with a load percentage of 43 wt% in unreacted diamine. The capsules are 

subsequently employed to formulate a one-component epoxy adhesive. To evaluate the 

storage stability of the system, the gelation time at room temperature was measured and 

compared with that of the ordinary epoxy-amine mixture. Whereas the ordinary system looses 

fluidity within 1 hour after mixing of epoxy and diamine, the one component system, with 

encapsulated diamine, retains its fluidity for at least 6 months. By heating the mixture at 70°C 
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for 24 hours the authors observed the full curing of the adhesive pressed between two 

aluminium plates and measured a tensile shear strength of 2.5 MPa. Moreover, as the shell of 

the capsules is also made of epoxy, it is expected to chemically bind to the epoxy adhesive 

network due to unreacted moieties remaining on the particle surfaces. This method permits to 

use soluble aliphatic amines that is to say hardeners with a low curing temperature. Curing 

can be performed at moderate temperatures as long as the temperature is high enough to 

permit the release of the amine. 

 
Figure 32: Schematic representation of the latent curing system proposed by Minami and coworkers (167). Capsules loaded 
with diamine are dispersed in an epoxy resin. Upon temperature increase the diamine diffuses outside the capsule and reacts 
with the diepoxy.   

 

Inversely, Senatore et al. reported the encapsulation of a liquid epoxy crosslinker (namely an 

epoxidized linseed oil) to prevent its premature reaction with a carboxyl-functionalized 

polyester resin [168]. Again, the release of the resin is achieved by heating the system above 

the Tg of the polymeric micro-encapsulant (poly(N-vinyl)pyrrolidone). This strategy is used to 

devise new long shelf-life powder coating formulations. 

A similar strategy has also been recently tested for the step-wise polymerization of epoxy-

thiol formulations. Guzman and coworkers described the use of an encapsulated imidazole 

designed for one pot epoxy systems where a long pot life and a fast cure are required [156]. 

The capsule has a melting point at about 65 °C. Interestingly, this system offers a very good 
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storage stability for temperatures as high as 35°C (pot-life of 3 weeks) while a very fast and 

efficient curing is observed at 120°C. 

It is very interesting to note that these systems are intimately bound to the field of self-healing 

polymers based on capsule rupture [169-171]. In that case, it is also highly desirable to 

control the time and place of the polymerization process. This is achieved through the use of 

microencapsulated polymerizable agents that are embedded in the material matrix and are 

released where and when it is necessary upon crack intrusion. The first successful self-healing 

composite exploited the polymerization of encapsulated dicyclopentadiene initiated by 

Grubbs’ catalyst as the healing mechanism [171]. However, the high cost of the catalyst 

prohibits its widespread application. A cost-effective alternative was proposed by 

encapsulating liquid epoxy and amine hardeners in separate capsules, which mix and cross-

link after the rupture of their respective capsules. The principle is schematically illustrated in 

Figure 33. Several methods were proposed by Moore et al. [172] and Studart et al. [173] to 

encapsulate amine hardeners. They were employed in healing dual microcapsule [172, 174-

176] systems and bode well for the use of this approach to control epoxy-amine step 

polymerization through phase separation.  

 

Figure 33: Epoxy-amine dual capsule healing system. Schematic representation of the system proposed by Jin et al. (175) 

 

It should be remarked that others proposed the encapsulation of different hardeners, namely 

mercaptan with amine accelerator [177] or isocyanate [178]. Moreover, many methods have 

been described to control the release of chemicals in the field of drug delivery or fragrance 

[179]. It may be envisioned to use such strategies to control the curing of epoxy thermosets. 
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Despite promising results in the field of self-healing materials, the potential of encapsulation 

to control crosslinking process must be moderated for several reasons. First, encapsulation is 

a more expensive approach in comparison to the use of insoluble latent hardeners like DICY. 

Moreover, in fiber resin composites the use of a biphasic system is a major drawback. Indeed, 

microcapsules will be severely inhomogeneously distributed during the impregnation process 

and the resulting matrix will not be cured properly. 

3.1.3.  End capped curing agents 

To obtain a single-phase system with latent properties, several authors proposed chemically 

modified hardeners. The idea is to block the reactive functions of an hardener with a 

removable group. This strategy has historically been extensively used in polyurethane 

chemistry [180-183]. Figure 34 illustrates an example reported by Fréchet and coworkers. A 

molecule bearing one benzyl alcohol moiety and two isocyanate moieties blocked with 

aromatic alcohol was synthesized. Upon thermal treatment (70°C), the isocyanate moieties are 

regenerated and react with the primary alcohol to form hyperbranched polymers. 

 

 

A 

 

 

 

 

B 

 

 

 
Figure 34: Blocked isocyanate and the formation of a 
hyperbranched polyurethane by step-growth 
polymerization after thermal decomposition. 

Figure 35: (A) Regeneration of amine by imine hydrolysis 
after exposure to normal atmosphere. The released amine can 
react with epoxy. (B) Tautomeric equilibrium between the 
imine and the more basic enamine. 
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In the field of epoxy-amine thermosets, ketone-based imines have been developed as water-

initiated latent hardeners (Figure 35A). Indeed, imines are efficient protecting group of 

primary amines. The bulkier the ketone used to obtain the imine, the greater the steric 

repulsion between the epoxy and the nitrogen atom. Then, in storage conditions, ketimine’s 

nucleophilicity is low enough to obtain mixtures with long shelf-life. When used in normal 

atmosphere as coating agent or painting, the system absorbs moisture that regenerates the 

amine by imine hydrolysis (Figure 35A). However, it must be emphasized that shelf-life is not 

infinite as ketimines are not completely unreactive towards epoxies due to the enamine-imine 

tautomerism presented in Figure 35B. 

Endo et al., developed diethyl ketone-based imines showing fast hydrolysis rate in 

atmospheric conditions [47, 184, 185]. They observed that, despite the imine/enamine 

equilibrium, mixtures with epoxy resins present pot-life larger than 1 month. Thanks to their 

fast hydrolysis rate, these imines are used as hardeners for adhesives [184]. Endo and 

coworkers also show that it is possible to increase the curing rate of epoxy-imine mixtures by 

adding five-membered cyclic dithiocarbonates [186, 187]. Its reaction with an amine released 

from the imine results in the formation of a thiol group able to catalyse the amine-epoxide 

reaction. From the viewpoint of the adhesive properties, they report that the addition of 

methacrylate copolymer results in an improvement of the adhesive strength [188]. 

Takeyama et al. also proposed moisture-curable epoxy resins [189, 190]. They observe that 

the shelf-life stability and the curability of the compounds are mainly influenced by the steric 

hindrance of the ketimines. By using their system as an adhesive, they found that the lap shear 

strength is higher with a bulky ketone than with a small ketone as protective groups. This was 

attributed to the higher reaction conversion of the epoxide due to the larger plasticizing effect 

of bulky ketone. Takeyama and coworkers also reported a novel curing system based on a 

combination of urethane and epoxy resin cured with a moisture-latent hardener based on 

ketimine [191]. They compared ketimine and aromatic amine as latent curing agents and 

observed that using ketimine results in significantly higher fracture energies for this particular 

system.  

In addition to the above-cited scientific literature, ketimines are now well established in the 

patent literature. However, this system is still inappropriate for a long storage period due to 

the difficulty of ensuring water free components and also to the unavoidable tautomeric 

equilibrium between the imine and the more basic enamine (Figure 35B). Moreover, it is 
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essentially adapted to thin film applications because the regenerated ketone has to be removed 

through evaporation which is not without concern about VOC emission. 

 
 

Figure 36: The single component epoxy system proposed by Fréchet et al. A diamine is held latent by thermally degradable 
carbamate linkages with multiple epoxide moieties. Upon high temperature exposure the carbamate decomposition  yields an 
eliminated alkene (bearing epoxy moieties), a primary diamine and carbon dioxide, allowing the reaction of the amine with 
the epoxies. 

 
Recently, Fréchet and coworkers proposed a thermally activated single component epoxy 

system in which the epoxy resin and the amine hardener are combined onto the same 

molecule [32]. The single molecule precursor contains both multiple free epoxide moieties 

and a diamine held latent by thermally degradable carbamates linkages (Figure 36). Thus, 

amines are blocked by the molecules bearing the epoxy moieties. The authors claim that the 

system presents an infinite shelf life. The onset of polymerization was observed for 

temperatures ranging from 170°C to 270°C (DSC measurements) depending on the structure 

of the carbamate linkages used. 

The system takes advantage on the thermal decomposition of the carbamate functional group 

leading to an epoxy bearing alkene, a primary diamine and carbon dioxide. Thus, contrarily to 

ketimine curing agents, the byproduct here is a non-toxic gas. Fréchet et al. showed that the 

gas remains trapped within the film forming spherical bubbles with increasing size as the 

curing temperature increases. Such structures may be very useful as foam dielectrics, 

coatings, adhesives or sealants.  

However, again, the byproduct resulting from the deprotection step clearly limits the scope of 

potential applications. Moreover, the thermal stability of carbamates results in very high 

curing temperatures comparable to those of classical latent curing agents (e.g. DICY). 
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Interestingly, photo-generated amines protected under the form of carbamates [192-196] and 

O-acyloximes [197-202] have also been proposed as latent hardeners of epoxy resins.  

In particular, amines have been protected under the form of 2-nitrobenzyl carbamates. 

Aromatic nitro compounds containing a carbon-hydrogen bond in the ortho position, with 

respect to the nitro group, are known to undergo intramolecular photoarrangement in which 

the nitro group is reduced to a nitroso group and an oxygen is inserted into the ortho benzylic 

carbon-hydrogen bond [193]. This mechanism is illustrated in Figure 37 for the case of a 2-

nitrobenzyl carbamates. It results in the release of a primary amine that might be used as a 

crosslinker for an epoxy resins [195].  

When amines are protected under the form of O-acyloximes (Figure 38), the irradiation leads 

to the formation of an alkyl radical (2), an imino radical (3), and carbon dioxide. Then a 

ketimine (4) is formed by the recombination of 2 and 3, and finally an amine (5) and a ketone 

(6) are generated by the hydrolysis of 4 [203]. It is worth noting that UV exposure is not 

sufficient to recover the amine. The photo-generated product is a ketimine. As previously 

discussed, it must be hydrolyzed to yield the potent crosslinker, i.e. the amine. Many O-

acyloximes have been described in the literature and used as photolatent crosslinker of epoxy 

resin [197, 199-202]. 

For both carbamates and O-acyloximes protected crosslinkers, the photogeneration of amine 

is accompanied by the release of two byproducts: a gas, CO2, that may be trapped and forms 

bubbles, and a small organic molecule (aldehyde or ketone) that might plasticize the network.  

   
Figure 37 : Photo-generation of an amine from a 2-
nitrobenzyl carbamates. 

Figure 38 : Photo-generation of an amine from an O-
acyloximes. 

Amines blocked under the form of substituted ureas have also been used as thermolatent 

catalysts for the step-wise polymerization of epoxy-DICY [204, 205], epoxy-thiol [156, 206] 

and epoxy-isocyanate [161] formulations. For instance, Guzman and coworkers used N,N-
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dimethyl phenyl urea as a latent catalyst for the curing of DGEBA with a trithiol 

(trimethylolpropane tris(3-mercaptopropionate)) [156]. This alkylated urea is commercially 

available and it is expected to provide curing formulations with pot-life as long as 4 months 

(room temperature) according to the delivering company.  The proposed mechanism to 

explain the latency is represented in Figure 39. At high temperature (140°C for N,N-dimethyl 

phenyl urea), the urea decomposes to release N,N-dimethylamine. This secondary amine 

reacts with an epoxide to form the corresponding tertiary amine that acts as the true catalyst of 

the epoxy-thiol step polymerization. Similar substituted ureas have been used by Endo et al. 

[204] as well as Poisson et al. [205] for the catalysis of the reaction between epoxy resins and 

DICY and by Pascault et al. [161] for isocyanate-epoxy systems. In these systems, it is worth 

noting that the protected amino function is not part of the crosslinker. It plays the role of a 

catalyst. A number of protected amines have also been reported as latent catalysts for the 

anionic ring-opening homopolymerization of epoxies. This will be discussed in Section 3.2. 

The reader should keep in mind that they might also be used to catalyze the step 

polymerization of epoxies with carboxylic acid, thiol or isocyanate crosslinkers.  

 

 
Figure 39 : Thermal decomposition of the N-aryl-N’,N’-dia- 
lkyl urea used by Guzman et al. and release of a secondary 
amine. After reaction of the secondary amine with an epoxy 
moiety, the resulting tertiary amine acts as a catalyst of the 
thiol-epoxy reaction.  

 

Figure 40 : A : Hemiacetal esterification of a carboxyl 
group. B : Thermal dissociation of an hemiacetal ester and 
reaction of the deprotected carboxylic group with an epoxy 
moiety. 

 

End capped carboxylic acids [207-212] and thiols [213, 214] hardeners have also been used to 

design thermo- and photo- latent formulations with epoxies. 

In a series of papers, Endo and coworkers examined the control of the thermal dissociation 

reaction of hemiacetal esters resulting from the reaction between carboxylic acids and alkyl 

vinyl ethers (Figure 40A) [215, 216]. They demonstrate that carboxylic acids may be released 

in a controlled fashion for temperature ranging from 150°C to 250°C by playing with 
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chemical factors such as the bulkiness of the alkyl vinyl ethers. Similar thermal latent 

carboxylic derivatives were used to design epoxy resin formulations with high storage 

stability [209, 211, 212]. In these systems, the thermal dissociation of the hemiacetal esters is 

a rate determining step that permits to control the addition with epoxies as depicted in Figure 

40B.  Interestingly, this approach also increases the compatibility of the coexisting ingredients 

by suppressing the strong hydrogen bonding that normally exists in uncapped carboxylic 

acids, but again with release of a volatile organic compound.  

 

Figure 41 : Photo-generation of a difunctional thiol in a phenolic epoxy resin and subsequent thermal crosslinking of the 
system. 

In the field of thiol-epoxy chemistry, a photo-cleavable crosslinker was described by 

Nishikubo et al [213, 214]. This system uses the photosensitive 2-nitrobenzyl moiety (Figure 

41) already mentioned as a cleavable protective group for amine crosslinkers. Under normal 

storage conditions (room temperature, UV-blocking container), the slow reaction that is 

normally observed between free thiols and epoxides is completely precluded. Therefore, the 

pot-life of these formulations is very long. When desired, they can be cured according to a 

two-step process: (i) UV exposure to deprotect the thiols (ii) increase of the temperature to 

achieve acceptable reaction rates. Nishikubo used protected thiols in different epoxy resins, 

including polyphenol epoxy resins and poly(glycidyl methacrylate). They demonstrated that 

up to 80% of the thiol functions were deprotected after 60 min of UV irradiation. Similarly, 

up to 80% of the epoxy groups were consumed by heating at 120°C for 6 hours.  

In the field of ring-opening polymerization, a large number of latent epoxy systems are 

available. Below, a description of the main approaches reported in the literature is proposed. 

It is focused on thermolatent and photolatent systems. Other external stimulations have been 

reported, notably high-energy irradiation [217-219], but their use is still very restrained and is 

not discussed here. 
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3.2. Anionic homopolymerization 

 
Tertiary amines have been extensively used as initiators of epoxy anionic 

homopolymerization. For instance imidazoles have long been recognized as highly effective, 

fast curing agents [51, 220]. However, unmodified imidazoles have low stability when mixed 

with epoxies making them unsuitable for use in one-pot compositions. In the following 

section are presented the main strategies to design initiators able to deliver tertiary amines 

under thermal and light stimuli in a latent fashion as depicted in the schematic view of Figure 

42. Particular attention is paid to recent development in the design of stabilized imidazole 

initiators. It is worth noting that tertiary amines are also key products in other curing 

processes. They are used as initiators of the anionic alternating copolymerization of epoxides 

with cyclic anhydrides (see Section 2.1.3) and they are essential catalysts for the step 

polymerizations with many hardeners including carboxylic acids and thiols (see Section 

3.1.1). For the sake of conciseness, the following section is focused on the use of latent 

tertiary amines as initiators of the anionic homopolymerization of epoxides. But the reader 

must keep in mind that they might be employed to formulate other latent curing systems.   

 

 
Figure 42: Schematic representation of the working principle of latent anionic initiators 

 

3.2.1. Thermogenerated amines 

Confronted to the low stability of imidazoles, several authors have proposed solutions to 

improve their workability by stabilizing the lone pair of the nitrogen atoms. One of the 

earliest strategies involves the preparation of metal-imidazole complexes. Hamerton and 

coworkers [221-223] reported considerable improvement of the stability of complexed 

imidazole initiators, with high onset temperature of polymerization (above 120°C). However, 

most metal imidazole complexes are crystalline materials with very low solubility in common 

epoxies [221]. 
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Figure 43: Proposed mechanism for the initiation of 
epoxy resin cross-linking with a 1,3-dialkylimidazolium: 
the decomposition of the imidazolium into an 1-
alkylimidazole is followed by the formation of a 1-
alkylimidazole/epoxy resin 1:1 adduct and the onset of 
anionic polymerization (classically X- = Cl-, BF4

-, PF6
- or 

N(CN2)
-, R1 = methyl and R2 = ethyl, butyl or decyl) 

Figure 44: Plot of the epoxide groups conversion versus time 
showing the formulation of DGEBA with 3 wt% of 1-ethyl-3-
methylimidazolium dicyanamide at 80°C for 1 h followed by 
complete cure at 165°C within 20 min. Inset (b) shows the 
same mixture after 60 days at room temperature with no 
apparent changes ((a) is the neat resin). Inset (c) shows the 
mixture after cure at 165°C for 2 h: a cross-linked and 
darkened sample is obtained (reproduced from (224) with 
permission of the American Chemical Society). 

 

Joullié and coworkers [150] proposed the use of the 1,3-dialkylimidazolinium ion as 

thermolatent initiator. They showed that the quaternization of imidazole with a heat-labile 

group can block the active site effectively and extend the shelf-life considerably. They 

observed that, by heating above 200°C, 1,3-dimethylimidazolium iodide liberates methyl 

iodide as a side product and 1-methylimidazole that is able to initiate polymerization. The 

mechanism is illustrated in Figure 43. The aim of this work was to overcome the problem of 

solubility and it paved the way to a current trend in the field of thermolatent anionic initiators: 

the use of ionic liquids. 

Indeed, for the past few years, several authors proposed the use of commercial ionic liquid as 

latent initiators. In many cases, they are dialkylimidazolium ions that decompose at high 

temperature just like Joullié’s system. Spychaj and coworkers first proposed the use of 1-

butyl-3-methylimidazolium tetrafluoroborate [225]. Recently, they showed that the reaction 

activity of various imidazolium cations, differing by the length of their alkyl chain and the 

nature of their counteranion, was related to their thermal decomposition characteristics [226]. 

They found optimal curing temperature ranging from 150°C to 200°C.  Palmese et al. [224, 

227] proposed the use of 1-ethyl-3-methylimidazolium dicyanamide as an efficient 

thermolatent initiator. They observed pot-life at room temperature of more than 60 days. 

Curing operates in less than 20 minutes at 165°C as shown in Figure 44. Gérard and 
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coworkers also described the influence of ionic liquid on the curing properties of several 

epoxy systems [228-230]. From all aforementioned solutions one has to remark the 

particularly high curing temperatures. This is undoubtedly due to the stability of the N-C bond 

that has to be broken. 

Interestingly, Shin and coworkers [231-234] recently proposed the encapsulation of imidazole 

to afford latent curing systems. They observed shelf-life of more than 30 days at 20°C 

compared to 1 hour to 1 day for the free imidazole system [232].  Though elegant, this 

solution is unsuitable for many applications including the manufacture of pre-impregnated 

fiber composite materials. 

 

Concurrently, the group of Endo proposed several systems to release amine bases, other than 

imidazole, upon exposure to heat. They described a number of solutions all based on the 

cleavage of a covalent bond to liberate a secondary amine (piperidine [236-239], curing at 

190°C) or a tertiary amine (1,1-dimethylamino-2-propanol [148], curing at 150°C). Very 

recently, they described the use of urea-derivatives of 4-aminopyridine [235]. They proposed 

a mechanism based on the thermal dissociation of the urea with possible involvement of some 

intact urea moieties in the acidic activation of the epoxy moieties. The postulated mechanism 

is presented in Figure 45. Curing systems are reported to be stable at 80°C and very reactive 

at 120°C, while the system with the unprotected pyridine is reported to be reactive at 80°C.  

Again, the systems proposed by Endo and coworkers all require quite high temperatures to 

release the base and initiate the polymerization. High energy input is needed to break 

particularly stable covalent bonds. 

 
 

 
 

Figure 45: Plausible mechanism for the polymerization of 
epoxide using the urea (X=O) or thiourea (X=S) derivatives 
of 4-aminopyridine as proposed by Endo et al. (235) 

Figure 46:  Plausible mechanism for the polymerization of 
epoxide using the aminimide  proposed by Tomita et al.  
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Recently Tomita et al., proposed a novel thermal latent anionic initiator for lower 

temperatures [240, 241]. They reported a new class of aminimides that liberate 1,1-

dimethylamino-2-propanol upon heating at temperature as low as 80°C. Chemicals formulas 

and the initiation mechanism are reported in Figure 46. The shelf-life is limited to 2 weeks in 

that case. 

3.2.2. Photogenerated amines 

Radiation curing is an interesting alternative to combine long shelf-life of ready-to-use 

formulations with lower curing temperature as compared to thermolatent systems. To this end, 

several authors have developed photobase generators [149], that liberate amines under 

suitable irradiation, and some of them have applied their systems to the photoinitiation of 

anionic polymerization of epoxies [242-245]. 

For instance, Chemtob and coworkers reported the use of several alpha-amino acetophenones 

that liberate tertiary amines upon irradiation. They used it in the simultaneous sol–gel and 

anionic photopolymerization of 3-(glycidyloxypropyl)trimethoxysilane [244]. Zeng and 

coworkers investigated a series of quaternary ammonium salts made of triethylenediamine 

bearing different chromophores. They were tested for the curing of a commercial DGEBA 

resin [243]. Figure 47 illustrates the photo-generation of triethylenediamine from the 

quaternary ammonium salt bearing the 4-acetylbiphenyl chromophore moiety.  

 

 
 

 
 

Figure 47: Proposed mechanism for the initiation of the 
anionic polymerization of epoxy in the presence of a 
photosensitive quaternary ammonium salt made of 
triethylenediamine and a 4-acetylbiphenyl moiety 
chromophore. 

Figure 48: Photogeneration of a tetramethylguanidine 
molecule through hydrogen transfer between a 
tetramethylguanidinium ion and a decarboxylated 
phenylglyoxylate and subsequent initiation of the anionic 
polymerization of epoxy 
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In both cases, the processes suffer from the low reactivity of the generated bases. They are 

much less active than imidazoles. Usually, UV-exposure must be accompanied by a post-

baking step at high temperature [242-244] to overpass vitrification. Chemtob et al. subject 

their samples to a post bake at 120°C to observe a 75% yield conversion of the epoxy 

function. Zeng et al., heat their sample at 130°C for hours to observe complete epoxy 

conversion. Thus, these systems are not strictly speaking photolatent systems, but rather 

combine the characteristic features of photo- and thermo-latent systems.  

Recently, Allonas and coworkers [245] described an original photobase generators with a  

hydrogen transfer between a tetramethylguanidinium ion and a decarboxylated 

phenylglyoxylate mediated by irradiation. It yields a tetramethylguanidine molecule with a 

strong basic character (pKa= 13.6, Figure 48). Using this system, they observed the complete 

polymerization of an epoxidized hydrogenated bisphenol A resin at room temperature.  

This last solution appears as a promising approach in the field of controlled anionic 

polymerization. However, it is restricted to the process of coating and thin films application 

due to the photo radiation dependence and byproducts evolution.   

3.3. Cationic homopolymerization 

Like in anionic polymerization, photolatent and thermolatent initiators have been described 

for the cationic polymerization of epoxy. Lewis acids, particularly BF3, are used for long time 

as initiators and activators in epoxy polymerization. Concurrently, in the 1970s, a new type of 

initiator based on organic onium salts was introduced. These concepts permitted the 

development of both photo- and thermo-latent initiators. Overall, the richness of the initiation 

chemistry dedicated to cationic polymerization greatly contributed to the substantial success 

of this polymerization mode in thermoset technology despite the historical hegemony of step 

polymerization.  

3.3.1. Lewis acid 

   3.3.1.1. Metal halides and triflates 

Lewis acids have long been reported as initiators of epoxide polymerization [15, 50, 246]. In 

particular, many metal halides are active initiators. They include: AlCl3, SbCl5, BeCl2, FeCl3, 

FeBr3, SnCl4, TiCl4, ZrCl4, ZnCl2, BF3 and BCl3 [15]. In the field of epoxy resin technology, 

they are usually considered as initiator of the cationic polymerization according to the 
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mechanism illustrated in Figure 49. It is worth noting that the chain propagation is terminated 

by a Cl- transfer. 

 

 
Figure 49 : Mechanism of the cationic polymerization of 
epoxides in the presence of a Lewis acid (SbCl5). 
Termination occurs by transfer of an halide anion from 
the metal to the activated chain end. 

Figure 50 : Mechanism of the metal-mediated polymerization of 
epoxides in the presence of a Lewis acid (FeCl3).  

 

However, early reports demonstrated that the polymerization mechanism is highly complex 

and not necessarily well described in terms of cationic polymerization.  In particular, in 1956, 

Price and Osgan observed that, if an optically active monomer (e.g. L-propylene oxide) is 

reacted with FeCl3, the optical activity is retained and the resulting polymer is stereoregular 

and crystalline [247]. Similar works demonstrated that several transition and post-transition 

metal halides might be used to synthesize crystalline and optically active polymers from 

monoepoxide monomers [248]. On the basis of these observations, a metal-mediated 

mechanism was proposed. It is illustrated for the case of FeCl3 in Figure 50. An initial 

reaction corresponds to the reaction of the metal halide with a few epoxy molecules to yield a 

product which may be represented as ClFe(OR)2 (in the case of FeCl3) where OR are alkoxide 

groups. Overall, this reaction presents the characteristic features of cationic polymerization. 

Experimentally, it occurs at room temperature but rapidly stops and polymerization is only 

restarted at higher temperature (80°C-100°C), at a much slower rate. The mechanism for this 

second part of the reaction is thought to proceed by successive attacks of monomers by the 

alkoxides groups after their insertion in the coordination sphere of the complex. In this model, 

the mechanism should be considered as anionic as the active species are anion (alkoxides). 

These discoveries were the starting point of metal-mediated stereoselective epoxide 

polymerization. Since then, a wide variety of metal complexes were screened for epoxide 

homopolymerization and it opened up new horizon in epoxy chemistry, notably the 

stereoselective copolymerization with CO2 [249].  

However, from the view point of epoxy resins’ and thermoset’s technologies, the cure cycles 

required to give optimum properties are usually too long with these complexes [15]. For this 
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reason, to our knowledge, there is no report on resin systems using metal complexes based on 

transition or post-transition metals as initiator of the cationic polymerization. 

In this context, only one Lewis acid has met commercial success in the epoxy resin 

technology: the metalloid halide BF3. The homopolymerization of epoxy initiated by BF3 is 

an extremely fast reaction that is very convenient to yield highly crosslinked materials [15, 

40]. An extensive literature is devoted to the stabilization of BF3 with Lewis bases such as 

amines to form latent donor-acceptor complexes. This will be detailed in Section 3.3.1.2. 

Unlike the case of transition and post-transition metal halides, the polymerization mechanism 

has been established as cationic.  

Other metalloid halides have been reported as efficient cationic initiator of epoxy 

polymerization. They include SbCl5 [246], PF5 [98] and BY3 where Y=Cl, Br or I [250, 251]. 

However, to our knowledge, they have not been used in epoxy resin’s technology. 

Recently, another class of Lewis acids has been proposed for the initiation of the cationic 

polymerization of epoxy resins: lanthanide triflates [252-255]. Interestingly, they combine a 

very acidic metal center (lanthanide) with a poorly nucleophilic anion (triflate). Therefore, the 

coordination of the oxiranic’s oxygen with the metal is extremely tight and the proportion of 

chain-end processes is expected to be very low. Moreover, they are very stable compounds 

that are not moisture sensitive. The mechanism has been assumed to be cationic and 

propagation is described according to the equations reported in Figure 49. Given the very low 

nucleophicity of triflate, the anion is probably not involved in the termination step contrarily 

to chlorine or fluorine anions. Lanthanum (III), samarium (III), dysprosium (III), erbium (III) 

and ytterbium (III) triflates have all been successfully employed for the cationic curing of 

DGEBA [255]. Although the pot-life of formulations using these initiators has not been 

clearly discussed in the literature, the fairly high curing temperatures (>100°C) reported in 

many different studies suggest that these initiators might provide reasonable pot-lifes. 

Moreover, they have been used with solid DGEBA resins to develop formulations suitable for 

powder coating technology [253]. 

3.3.1.2. BF3-Lewis base complexes 

The boron trifluoride Lewis acid has been extensively used as a cationic initiator in epoxy 

polymerization. BF3 is usually stabilized by complexation with the lone pair of a Lewis base 

which can be an ether [256], an alcohol [257] or an amine [63, 69, 105, 258, 259]. Classical 
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examples are illustrated for the three stabilization options in Figure 51. Due to their higher 

stability, BF3–amine complexes are usually preferred. Several authors demonstrated that the 

reactivity of such complexes increases with decreasing basicity of the amine [63, 260]. For 

instance, Pascault and coworkers observed that BF3-aromatic amine complexes do not show 

latency (aniline, pKa=4-5). They readily initiate polymerization at room temperature. 

Concurrently BF3-amine, where the amine is aliphatic (pKa=9-10), hardly initiates the 

polymerization for temperatures below 100°C [63, 261, 262]. Thus, by using aliphatic amines, 

it is possible to obtain thermolatent initiators. The complex of boron trifluoride and 

monoethylamine (BF3-MEA, Figure 51) is still extensively used in large scale industrial 

applications including electrical insulating laminates and carbon reinforced plastics [263]. It 

gives very long pot-life formulations for temperatures below 100°C. It is generally used at 

elevated curing temperatures comprised between 120°C and 180°C.   

 

 

 
 

 
Figure 51: Typical BF3-Lewis base complexes used as 
cationic initiator of epoxy polymerization. 

Figure 52: Initiation mechanism for the cationic 
polymerization of epoxy in the presence of BF3-amine 
complexes according to Harris and Temin (260). 
 

The initiation mechanism of such complexes has long been discussed. Early models rely on 

the BF3-amine complex dissociation with heat, liberating BF3, that reacts with the epoxide 

according to the mechanism classically invoked for the cationic polymerization of epoxides 

initiated by Lewis acids (see Figure 49). 

Harris and Temin [260] refuted the assumption of thermal dissociation of the complex. 

Indeed, they observed that BF3–amine complexes are thermally stable up to their sublimation 

temperature. Instead, they proposed a mechanism assuming the activation of the epoxy group 

through the formation of a weak hydrogen bond between the epoxy oxygen and a proton from 

the amine as illustrated in Figure 52. Eventually, the activated epoxy group is attacked by 

another nucleophilic epoxy group in a ring-opening step to give an activated chain end with 
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the counteranion X- = (RNHBF3)
 -. This mechanism was accepted and is still invoked by some 

authors [263]. However, the formation of the anion X- is hardly conceivable and several 

authors have disputed these assumptions. They showed that the truly active species is actually 

HBF4 or/and HBF3(OH)/HBF2(OH)2. In the absence of water, Tackie and Martin [264] 

invoked the thermal disproportionation of the BF3–amine complex through the transfer of one 

molecule of HF, resulting in ammonium tetrafluoroborate and tetrafluoroboryl-amine. This 

option is represented in Figure 53. In the presence of water, Ghaemy [265, 266] as well as 

Smith et al. [267, 268], invoked the gradual hydrolysis of BF3 into borate as a potential source 

of HF, which is able to generate HBF4 or one of its salts from BF3. 

This last option appears as the most realistic. Furthermore, it is in accordance with classical 

initiating systems described in cationic polymerization of the carbon-carbon double bond. 

They were surprisingly eluded by aforementioned authors despite evident similarities. Indeed, 

initiation of carbon-carbon double bond polymerization with Lewis acid often relies on an 

initiator-coinitiator complex, also called syncatalyst system [98]. They consist in the 

association of a Lewis acid and a proton donor (a protogen). The most common initiating 

system combines boron trifluoride and water giving H+.-BF3(OH). Figure 54 illustrates the 

formation of ammonium salts from BF3-MEA in the presence of water. This is in accordance 

with the observation of Smith et al., who reported the formation of HBF4, HBF3(OH) and 

HBF2(OH)2 when using BF3-MEA as an initiator of DGEBA polymerization. 

 

 
  

 
Figure 53: Thermal generation of tetrafluoroboron acid 
through the disproportionation of the BF3-amine complex 
according to Tackie and Martin. 

Figure 54: Thermal generation of tetrafluoroborate 
ammonium salt in the presence of water as a coinitiator. 

 
Concurrently to BF3-amine complexes, BF3-ether and BF3-alcohol are very reactive 

complexes [257]. They readily crosslink epoxy monomers, even at low temperature. Again, it 

is interesting to note that several authors proposed to encapsulate this type of initiators to 

control their reactivity [256, 269-271]. Yong and coworkers encapsulate BF3-diethyl etherate 

in a tube structure for prolonging the shelf-life of an epoxy resin-based microelectronic 

packaging material [269]. Xiao et al. propose to use capsules loaded with the same initiator 
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for the design of new self-healing materials. They described a two-components healing agent 

based on a cationic initiator and epoxy monomers loaded microcapsules [256, 270, 271].  

3.3.2. Onium salts 

From the historical standpoint, BF3-alkylamine adducts were the first thermolatent cationic 

initiators developed and applied in the field of epoxy polymerization. Concurrent efforts to 

design photolatent initiators of cationic polymerization have led to the development of 

another class of latent initiator: onium salts. First examples were reported in the 1970s and 

they have been the object of a particularly active research field since then. These salts are 

organic compounds containing a cationic heteroatom center with a metalloid fluoride anion. 

They mainly include iodonium, sulphonium, phosphonium and N-containing onium salts. As 

for the systems previously reported for step and ionic polymerization, their latent properties 

are based on the release of active species subsequently to the cleavage of a covalent bond 

upon external stimulation. 

With a few exceptions, the generic mechanism for the production of active species relies on a 

heterolytical or homolytical rupture of a carbon-heteroatom bond, leading to the formation of 

cations or radical cations, respectively. Figure 55 provides a schematic illustration of the 

generic mechanism. Polymerization is subsequently initiated by a carbocation or by a strong 

electrophilic Brønsted acid resulting from the reaction with a hydrogen donating solvent or a 

monomer.  

Below are presented the main characteristics of the systems reported in the literature. Latent 

properties and curing conditions are discussed as well as recent developments of the field. 

 

 
Figure 55: Typical heterolytic or hemolytic bond rupture that onium salts 
initiators undergo under exposure to heat or irradiation. Ht is a heteroatom (Ht 
= N, S, P or I), X- is a metalloid fluoride anion (X- = SbF6

-, AsF6
- or PF6

-) 
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3.3.2.1. Photolatent onium salts initiators 

The real breakthrough in the field of onium salts cationic initiators was the description of 

iodonium and sulfonium salts as photoinitiators by Crivello and Lam [65, 66, 272-276]. Since 

then, a variety of onium photoinitiators have been reported in the literature with properties 

covering a wide spectrum in terms of thermal stability, solubility and efficiency to generate 

reactive species. Their typical chemical structures are illustrated in Figure 56. Detailed 

reviews specifically dedicated to this field are available [64, 277-279].  

Among them, diaryliodonium compounds are most prominent due to their very easy 

preparation as well as high stability and reactivity. In their simplest form, they initiate 

polymerization under quite energetic UV radiation (220-300 nm). Their remarkable initiation 

efficiency and photosensitivity has contributed to their successful use in the polymerization of 

a large variety of epoxy monomers [218, 219, 278, 280-285]. Their initiation mechanism is 

representative of the general route to produce cationic species from onium salts and is 

described in Figure 57A. 

 
 

A 

 

B 

 
Figure 56: Chemical structures of the main onium salts used 
as photoinitiators of cationic polymerization. 

Figure 57: (A) Proposed mechanism for the generation of 
cationic species from iodonium salts under irradiation. RH 
may be the solvent or a monomer. (B) The overall 
mechanism resulting in the reversible photogeneration of 
acid by phenacylsulfonium salt. 

Sulfonium salts have also been extensively used under their triaryl or alkylaryl forms. Like 

iodonium salts, they efficiently initiate the polymerization upon exposure to short- to mid-

wavelenght UV light. Most of the time, they initiate polymerization through the formation of 
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a strong Brønsted acid. But when used in their benzyl form, benzyl cations are the true 

initiating species and benzyl groups are incorporated into the growing chains. Their use has 

been reported in the polymerization of a number of epoxy monomers [108, 286-290].  

Besides iodonium and sulfonium salts, phosphonium [291-295], pyridinium [296-302] or 

anilinium [303, 304] salts have been reported as effective photoinitiators for the cationic 

polymerization of epoxy. Most of them are aryl onium salts. However, alkoxypyridinium 

[299-301] and dialkylphenacylsulfonium [305, 306] are two exceptions that have 

considerably gained momentum over conventional aryl substituted salts. The former are 

remarkably soluble in most of the cationically polymerizable monomers. The latter undergo 

reversible photolysis so that it is possible to switch on and off the curing process through 

controlled UV exposure. The mechanism is schematically illustrated in Figure 57B. 

Current investigations in this area are driven by the development of new initiating systems 

working under visible light [307, 308]. Indeed, systems with low energy requirement have 

become a matter of concern in the scope of green chemistry. However, most of the simple aryl 

onium salts undergo photolysis for wavelengths below 300 nm (UV). Several strategies have 

been proposed for improving the performance of these initiators in the near UV and visible 

spectral regions. They include (1) the direct modification of the initiator structure by 

introducing chromophoric groups on their aromatic rings [309, 310] or (2) indirect activation 

by combining the onium salt with additives.  

These additives can be free radical photogenerators.  They yield electron-rich donors upon 

visible light that are able to reduce onium salt. The radical induced decomposition of the 

onium salts is accompanied by the production of active cations [311, 312]. For instance, 

Durmaz et al. demonstrated that it is possible to observe a very efficient curing of epoxy 

monomers at 400 nm by combining a iodonium salt, that does not absorb at wavelength larger 

than 340 nm, with the benzoyltrimethylgermane, an efficient free radical photoinitiator for 

wavelength as long as 425 nm [313]. The adsorption spectra of the two initiators are 

compared in Figure 58A. The initiation mechanism proposed by Durmaz and coworkers is 

presented in Figure 58B. It is based on the photogeneration of germyl radicals and benzoyl 

radicals in a first step. Subsequent oxidation of germyl radicals by onium salts yields 

germanium cations capable of initiating the cationic polymerization of epoxy monomers. 
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Figure 58: (A) Optical absorption spectra of 
benzoyltrimethylgermane (BTG) and diaryliodonium salt in 
CH2Cl2 (reproduced after (313) with permission from the 
American Chemical Society) (B) Photoinitiation of the 
cationic polymerization of epoxy by reduction of 
diaryliodonium salt in the presence of photogenerated 
germyl radicals (free radical promoted cationic 
polymerization) at 400 nm.  

Figure 59: (A) Optical absorption spectra of curcumin (3.10-

5 M in basic aqueous solution (NaOH 0.5 M) (B) Study of the 
photopolymerization of limonene-dioxide with 1.0 mol% of 
diaryliodonium salt in the absence of a photosensitizer and 
in the presence of 0.1 mol% of curcumin (light intensity 395 
mJ/cm2 min, wavelength 407 nm) (reproduced after (314) 
with permission from Wiley) 

 

A second mode of indirect activation of onium salts for long wavelength initiation is based on 

the use of photosensitizers. These are polynuclear chemicals able to absorb energy from 

visible light and transfer this energy to the onium salt (energy transfer mechanism) [301] or  

electron-rich donors that bind to the onium salts to yield complexes with absorption 

wavelength extending to the visible light (charge transfer mechanism) [315, 316]. For 

instance, Crivello and Bulut proposed to use curcumin, an intensely yellow dye isolated from 

Indian turmeric, as an electron-transfer photosensitizer [314, 317]. The chemical structure as 

well as the adsorption spectrum of curcumin are presented in Figure 59A. The molecule, that 

exists almost completely in the hydrogen bond-stabilized enol form, is strongly conjugated 

and adsorbs from 330 to 500 nm (λmax = 427 nm; ε = 55000). Figure 59B illustrates the 
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exothermic profiles as a function of irradiation time for the photopolymerization of limonene 

dioxide initiated by a diaryliodonium salts in the presence and in absence of curcumin under a 

wavelength of 407 nm. In the absence of curcumin, photopolymerization was not observed 

even after 500 s. In contrast, when curcumin is present, an exothermic peak with a maximum 

temperature of 65°C is indicative of immediate polymerization. It is consistent with a strong 

photosensitization effect. 

Following these strategies, elegant green systems have been proposed [318-325] such as the 

polymerization of renewable epoxy monomers under sunlight [319]. 

This is contributing to make photolatent onium salts more and more attractive. Today, they 

are among the most prominent options to control the chain polymerization of epoxy 

monomers. They offer extremely long pot-life providing that the solutions are stored in the 

dark. But again, these appealing properties are balanced by the wide range of applications 

they cannot embrace including molding and injection. In the mean time, they are extremely 

attractive candidates in more recent technologies like 3D-printing [326]. 

 
3.3.2.2. Thermolatent onium salts initiator 

Most of the onium salts described in the previous section may actually be activated 

thermolitically too. Some of them are too stable though, and many researches have been 

devoted to the adjustment of their pattern of substitution to observe bond rupture in a 

reasonable temperature range. Typically, a thermolatent onium salt contains a benzyl moiety. 

Common benzylsulfonium, benzylammonium and benzylphosphonium salts are illustrated in 

Figure 60. As depicted in Figure 61, they may release an initiating species in the form of a 

carbocation (Figure 61A) or in the form of a proton stemming from their benzylic methylene 

group (Figure 61B).   
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Figure 60: The most common benzyl onium salts used as 
thermolatent initiators of cationic polymerization. 

Figure 61: The two typical initiation mechanism of cationic 
polymerization with a thermolatent benzyl onium salt. 

 

Papas and Hill [327] first reported the use of sulfonium salts as thermolatent cationic 

initiators. They established a basis for the rational design of latent thermal initiators with the 

help of relevant kinetic parameters to maximize stability while minimizing the curing 

temperature. Indeed, the ultimate goal of thermolatent initiation is to achieve high latency in a 

reasonable temperature range. In the language of chemical kinetics, this means that the system 

should have both high activation energy Ea and high frequency factor A, in its Arrhenius 

equation (Eq. (5)). 

  Eq. (5) 

When Ea increases, the threshold temperature corresponding to the cleavage of the initiator 

and the beginning of the polymerization increases too. However, according to the Arrhenius 

equation, this is accompanied by a decrease of the reaction rate constant (k) and a sluggish 

polymerization, which is detrimental to practical use. A concomitant increase of the frequency 

factor, A, may compensate the decrease of k. Thus, according to Papas et al. the latent 

performance of a series of thermal initiators may be estimated and classified through the 

comparison of their respective Ea and A factors. 

Following this work, the group of Endo and coworkers has been the major contributor to the 

field of latent thermal initiators over the last three decades. They demonstrated that several 

sulfonium [328-336], phosphonium [67, 68, 337-340], pyridinium [296, 298, 341-344] and 

other N-containing onium salts [345-347] could serve as latent thermal cationic initiators for 
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epoxy polymerization. They observed that their initiating activity could be efficiently 

controlled through the variation of the electronic and steric properties of their substituents.   

 

Table 1: Structure of various benzyl pyrazinium salts investigated as thermolatent cationic 
initiator in the polymerization of glycidyl phenyl ether (GPE). Influence of the benzyl and 
pyrazine substituents are under consideration as well as the influence of the counteranion. 

 1 2 3 4 5 6 7 8 9 
R0 H H H H H H H H H 
R1 H H CH3 H H H H H H 
R2 H CH3 CH3 CH3 CN H H H H 
R3 H H H CH3 H H H H H 
R4 H H H H H OCH3 H H H 

MtX n
- SbF6

- SbF6
- SbF6

- SbF6
- SbF6

- SbF6
- AsF6

- PF6
- BF4

- 
 

 A B 

  
Figure 62 : (A) Temperature-conversion relationships in the bulk polymerization of GPE with the pyrazinium salts 1 to 6 
(see Table 1)  used at the molar ratio 3mol% after a period of 2 hours (C) Temperature-conversion relationships in the bulk 
polymerization of GPE with the pyrazinium salts 1 and 7 to 9 (see Table 1)  used at the molar ratio 3 mol% after a period of 2 
hours (reproduced after (348) with permission from the American Chemical Society) 

 

For instance, the activity of benzyl pyrazinium salts can be tailored by introducing either 

electron-donating or electron withdrawing substituent on the pyrazinium ring (Table 1). 

Figure 62A illustrates the conversion profiles as a function of temperature for the cationic 

polymerization of the glycidyl phenyl ether (GPE) initiated by the benzylpyrazinium salts of 

hexafluoroantimonate with various substituents on the benzyl and pyrazinium rings. The 

results show that the introduction of electron-donating substituents (CH3) on the pyrazinium 

ring is accompanied by an increase of the temperature threshold of initiation (entries 2, 3 and 

4 of Table 1 and corresponding conversion profiles of Figure 62A). The opposite effect is 
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observed when withdrawing substituents are introduced either on the benzyl or on the 

pyrazinium rings (entries 5 and 6 of Table 1 and corresponding conversion profiles of Figure 

62A). The initiator activity is also dependent on the counteranion’s nucleophilicity (entries 7, 

8 and 9 of Table 1). Figure 62B represents the conversion profiles as a function of 

temperature for the cationic polymerization of GPE initiated by benzylpyrazinium salts with 

various counteranions. Clearly, as the nucleophilicity of the counteranion is decreased (BF4
- > 

PF6
- > AsF6

- > SbF6
- ) the sharpness of the thermal response of the initiator is improved. The 

same type of study was carried out with the other main onium salt families, including 

sulfonium [331], anilinium [345] and phosphonium [67, 340]. This strategy has allowed the 

design of effective latent catalyst with threshold temperatures ranging from 60°C to 200°C. 

Most of reported examples are distributed in the upper part of this temperature range (e.g. 

above 100°C).      

Concurrently, Yagci and coworkers proposed another approach to control the thermal 

initiation of cationic polymerization. Similarly to photolatent onium initiators that may be 

activated through the use of free radical coinitiator upon visible light, they suggested to 

activate thermolatent cationic initiators by using free radical sources that are released at lower 

temperature than the normal onium salt’s temperature threshold [349-352].  To this end, they 

developed a series of specially designed allyl onium salts. Their typical chemical formulas are 

depicted in Figure 63. They include allyl sulfonium, allyl ammonium and allyl phosphonium 

salts. The mechanism of the free radical promoted initiation is illustrated in Figure 64 for the 

system based on the combination of an allyl pyridinium salt of hexafluoroantimonate with 

2,2’-azobis(isobutyronitrile) (AIBN) as a radical coinitiator.  The addition of the thermally 

generated radical on the allylic moiety of the onium salt results in the formation of a radical 

cation that subsequently undergoes a rapid fragmentation to release a new radical cation 

capable to initiate cationic polymerization. Using the same radical coinitiator, Yagci and 

coworkers demonstrated that the cationic polymerization of cyclohexene oxide initiated by 

allyloxypyridinium salts may be fully completed within 1 hour at 70°C. In the absence of the 

coinitiator, the conversion is smaller than 10% after 1 hour at the same temperature. The 

conversion profiles of the two systems are compared in Figure 65. Allylsulfonium salts [353], 

allylpyridinium salts [354], allyloxypyridinium salts [355-357], allylanilinium [358] salts and 

allylphosphonium salts [295] were synthesized and successfully used in combination with 

thermal radical initiators to polymerize a variety of epoxy monomers. The numerous radical 
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initiators, including AIBN or benzoyl peroxide (BPO), offer flexibility to this initiation 

strategy.  

However, it is important to note that the use of radical intermediates results in the loss of the 

main advantage of cationic polymerization over its radical counterpart: the insensitivity 

towards oxygen.  

In this context and under the pressure of their “greener” photolatent cousins, thermolatent 

onium initiators have progressively loss momentum over the past few years. To the best of 

our knowledge, the last new thermal latent onium salts were reported by Gupta and coworkers 

in 2009 [359-361]. The future of this research field will be dependent on the development of 

molecular structures with highly effective latent properties in very moderate temperature 

ranges.    

From the viewpoint of practical and industrial applications, their use is now well established 

in a number of technical domains including molding and coating. 

 
 

Figure 63: Structures of common allyl onium salts used in thermally induced radical 
fragmentation of onium salts to initiate cationic polymerization of epoxides. 
 

 
 

Figure 64: General mechanism for the thermally 
induced radical fragmentation of onium salts illustrated 
with the example of an allyl pyridinium salt. 

Figure 65: Conversion profiles for the thermal polymerization of 
cyclohexene oxide initiated by an allyl alkoxypyridinium salt 
(c=5.10-3 mol.L-1) alone or in combination with a thermal radical 
initiator (AIBN, c=5.10-3 mol.L-1). Reaction is performed at 70°C, 
the typical decomposition temperature of AIBN. The onium salt 
is normally stable at this temperature (reproduced after (351) with 
permission from Wiley) 
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3.3.3 Supramolecular control of the initiation 
 
From above-mentioned examples, it appears that, in most of the cases, cationic 

polymerization is actually initiated by a strong Brønsted acid HMtFn where Mt is a metalloid. 

Classically, Mt = B (n=4), P (n=6), As (n=6) or Sb (n=6) [362, 363]. Once the Brønsted acid 

is released, either by photolysis or thermolysis of an onium salt but also by the thermolysis or 

hydrolysis of a BF3-amine complex (see section 3.3.1.2), epoxy monomers are rapidly 

activated and polymerization proceeds very quickly according to the ring opening 

polymerization mechanism (Figure 66A).  

However, prior to the growth of the polymer chains, the activation of the monomers is in 

competition with the acid/base equilibria resulting from the presence of the various basic 

chemicals that may be contained in the resin [364]. Typically, this could be residual water 

whose reaction with the Brønsted acid HMtFn results in the formation of an hydronium ion, 

H3O
+ [108, 283]. Under this form, the Brønsted acid is still involved in a rapid exchange 

between all the basic species present in the medium, including the monomers, and the onset of 

polymerization is rapidly observed as depicted in Figure 66B. 

A 

 

B 

 

C 

 
 

Figure 66: Initiation mechanism with the formation of a strong Brønsted acid HMtFn where Mt is a metalloid 
(classically Mt = B, P, As or Sb) and n is the number of fluorine atom linked to the metalloid center (n=4 for B, 6 for 
P, As and Sb). (A) Initiation when the only basic species are the epoxy monomers (B) Initiation in the presence of 
water (C) Initiation in the presence of water and a crown ether, 18-crown-6. 
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Crivello et al. reported the possibility to stabilize the Brønsted acid in the form of an 

hydronium ion through the complexation of H3O
+ by a crown ether, 18-crown-6 [283], whose 

cavity size and symmetry perfectly fit the C3v geometry of H3O
+ (Figure 66C) [365].  Using 

this strategy, they observed retardation periods of the order of seconds to minutes for the 

photopolymerization of epoxy resins initiated by various onium salts. This approach provides 

additional flexibility to the control of photopolymerization but it is very dependent on the 

amount of water present in the resin. 

Still aiming at releasing a strong Brønsted acid in a well controlled manner, Vidil et al. 

proposed the concept of supramolecular initiator [366]. The underlying idea of this approach 

is to shield the ammonium moiety of the tetrafluoroborate salt, BF4
-−RNH3

+, that acts as the 

true initiator in standard BF3-amine cured epoxy resins and to be able to deprotect it and 

initiate the cationic polymerization for low curing temperatures. Interestingly, in this system, 

the sequestration of the Brønsted acid is no longer dependent on the amount of residual water 

present in the resin. 

In order to design such a system, Vidil et al. selected a low pKa amine, namely the 4-

chloroaniline (4CANH2, pKa  4.1). Under its deprotected form, the corresponding 

tetrafluoroborate ammonium salt, BF4
-−4CANH3

+,  readily release the strong Brønsted acid, 

HBF4 and polymerization can be initiate at room temperature [63].  

On the basis of many published structures of primary ammonium and crown ether complexes 

[367-371], 18-crown-6 was selected as the hosting molecule to shield the ammonium moiety 

of BF4
-−4CANH3

+. Indeed, similarly to H3O
+, NH3

+, exhibit the right symmetry (C3v) and an 

appropriate ionic radius (4.9) to fit the inner cavity of 18-crown-6 and form a stable 

supramolecular complex. It is stabilized by the formation of three hydrogen bonds. Under its 

protected form, the dissociation rate of BF4
-−4CANH3

+ into the corresponding Brønsted acid 

(HBF4) and primary amine (4CANH2) is considerably reduced. Moreover, the ammonium 

moiety is effectively protected from the direct nucleophilic attacks of epoxy monomers. A 

slight increase of temperature can disrupt the labile hydrogen bonds and results in the release 

of the highly reactive tetrafluoroborate ammonium salt, BF4
-−4CANH3

+, as depicted in Figure 

67. 
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Overall, this system is expected to provide a supramolecular initiator that is stable and 

inactive at room temperature and that is able to release a strong Brønsted acid for moderate 

curing temperature. 

 
 

 

 
Figure 67:  Schematic representation of the supramolecular 
initiation principle proposed by Vidil et al. An ammonium 
tetrafluoroborate–crown-ether is used as a supramolecular 
initiator. As temperature increases, the complex dissociates 
with release of a Brønsted acid, HBF4, which is able to 
trigger the cationic ROP of an epoxy monomer (reproduced 
after (366) with permission from the Royal Society of 
Chemistry). 

Figure 68: Time dependence of viscosity (measured by 
rheometry in the oscillatory mode at 1 s-1) during curing of 
DGEBA initiated by 0.026 eq. per epoxy of BF4-4CA+•18-
crown-6 at various temperature (reproduced after (366) with 
permission from the Royal Society of Chemistry). 

 

Vidil et al. successfully isolated the supramolecular complex BF4
-−4CANH3

+•18-crown-6 and 

demonstrated that it could be used as a thermoresponsive initiator. Figure 68 presents the 

viscosity profile for the curing of DGEBA initiated by BF4
-−4CANH3

+•18-crown-6 at various 

temperatures. The profile remains unchanged after hours at room temperature while a sharp 

increase of viscosity is observed after a few minutes at 70°C. The quantitative measurement 

of the gel points show that a gel is obtained in five minutes at 70°C and 1 day at 20°C. 

Moreover, the activation energy, Ea, were estimated from the temperature dependence of the 

gel point for the curing of DGEBA initiated by the supramolecular initiator BF4
-

−4CANH3
+•18-crown-6 as well as the unprotected salt BF4

-−4CANH3
+, and  the 

corresponding BF3−amine complex, BF3−4CANH2. Ea is close to 70 kJ/mol for both 

BF3−4CANH2 and BF4
-−4CANH3

+, confirming that they share the same initiation mechanism 

(see section 3.3.1.2). A significantly higher value of 100 kJ/mol is measured for the 

supramolecular initiator BF4
-−4CANH3

+•18-crown-6. As mentioned in section 3.3.2.2, Ea can 

be used to rank initiators according to their thermal stability. Here, the increase of activation 
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energy of about 30 kJ/mol in the case of the supramolecular initiator is a rough quantification 

of the gain of stability conferred by the crown ether to the active species BF4
-−4CANH3

+.   

When compared to classical thermolatent onium salts (see section 3.3.2.2.), the activation 

energy of the supramolecular initiator is of similar magnitude (100 kJ/mol) but it initiates the 

cationic polymerization in a much lower range of temperatures. For instance, sulfonium salts 

[327] are usually inactive for temperatures below 100°C. On the other hand, the 

supramolecular initiator exhibits the right combination of stability and thermal responsivity to 

provide long pot-life at ambient temperature and fast curing rates as temperature rises below 

100°C. These are appropriate characteristic features to minimize the energy consumption of 

the curing system but also to reduce the extent of monomer degradation, side reactions as well 

as VOC emission. 

In the end, the supramolecular complexation of Brønsted acids is a promising method to 

control the polymerization onset. It is a flexible approach, based on the disruption of weak 

physical bonds that provides long pot-life while preserving the possibility to trigger the 

polymerization in a reasonable temperature range. On the opposite side, systems based on the 

cleavage of strong covalent bonds cannot be activated in the same temperature range. 

It is noteworthy that Crivello and Aldersley reported the complexation of another cationic 

species, namely the iodonium cation of diaryl iodonium photoinitiators [372]. The structure of 

the complex resulting from the interaction of a diaryl iodonium salt and 18-crown-6 

determined by X-ray diffraction is shown in Figure 69. This complexation results in a 

substantial increase of the storage lifetimes of monomer’s mixtures at elevated temperature.  

Again, this bodes well for application of supramolecular complexation to control the thermal 

polymerization of epoxy thermosets. 

        

 
Figure 69: Chemical structure of the complex of a diaryliodonium 
initiator and a crown ether as reported by Crivello and Aldersley 
(reproduced after (372) with permission from Wiley). 
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4. Control of the chain growth during the crosslinking process  

The possibility to delay the occurrence of the gel point by controlling the value of the critical 

conversion, xgel, was briefly discussed in section 2.3.3. Differences between step and chain 

ring-opening polymerizations were emphasized and the possibility to tailor the gelation in the 

case of the ring-opening polymerization by using chain transfer agents (CTAs) was 

mentioned. A schematic representation of the effect of CTA on the crosslinking process is 

depicted in Figure 70. In the absence of CTAs (Figure 70A), the polymer chains grow linearly 

and are weakly branched so that gelation occurs in the early stages of polymerization. In 

contrast, in the presence of CTAs (Figure 70B), transfers promote branching and growth of 

many short chains. Gelation is observed for longer times and higher monomer conversions. In 

this section, an overview of the typical CTAs used in anionic and cationic chain 

polymerizations of epoxy is proposed. The main results reported in the literature regarding the 

use of this strategy in thermoset technology are described. Special attention is paid to cationic 

polymerization. 

  
Figure 70: Schematic representation of a growing network at the gel point in the presence (A) and in the absence (B) of 
CTAs. Free unreacted monomers are depicted as open circles, whereas the chains involved in the gel macromolecule are 
represented in blue (reproduced after (373) with permission from the American Chemical Society) 

 

4.1. Anionic homopolymerization 

Protic substances such as water or alcohol are the main CTAs considered in ring opening 

anionic polymerization of epoxy. In the field of thermosetting chemistry, they can be present 

in commercial resins in trace amounts but they may also be added to the curing mixture for 

various purposes (such as shrinkage or toughness control agents). Their presence results in the 

transfer of alkoxide active moieties between propagation chains and alcohols as depicted in 

Figure 71A. In a first approach, these transfers are equivalent to classical chain-transfer 
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reactions. However, they result in the formation of polymeric alcohols that are not dead but 

simply dormant. For this reason, these chain transfers are often called exchange reactions 

[98]. 

 
 

Figure 71: Exchange reaction in anionic polymerization of epoxides. (A) Exchange reaction 
between a propagation chain and an alcohol. (B) Exchange reaction between the newly formed 
polymeric alcohol and other propagating chains (remark: for simplicity’s sake, the alkoxide's 
counterion is not represented).  

Indeed, all alcohol and alkoxide molecules in the reaction system are in dynamic equilibrium. 

Each polymer chain alternates between the active propagating alkoxide and the dormant 

alcohol forms. The situation is illustrated in Figure 71B. These exchange reactions lower the 

polymer’s molecular weight and the number-average degree of polymerization can be 

estimated by Eq. (6). 

  Eq. (6) 

 and  are the monomer concentrations at times zero and t,  is the initiator 

concentration and  the alcohol concentration. This formula illustrates that each alcohol 

molecule contributes equally with an initiator species to determining the number of 

propagating chains. One can estimate the amount of added alcohol required to achieve some 

desired value of the number average degree of polymerization and thus of the conversion at 

the gel point according to Eq. (3) (see section 2.3.3.2). 

As a result, for a crosslinking process, critical conversion at the gel point considerably 

increases in the presence of hydroxyl groups and the occurrence of gelation is delayed to the 

same extent. Early works were performed by Rozenberg and coworkers and are reported in a 

detailed review [48]. Recently, in a series of papers, Serra and coworkers described studies of 

the curing of DGEBA initiated by 1-methylimidazole (see section 3.2.1) in the presence of 

various hydroxyl-ended multiarm polymers [114, 374-377]. For instance, they used a star 

polymer based on a poly(styrene) core and poly(ε-caprolactone) arms as a reactive modifier to 

improve the toughness of final materials [374]. The structure of this additive is depicted in 

Figure 72. When the star modifier was added to the formulation, they observed an increase of 
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both the gel time and the critical conversion. The critical conversion was doubled from 34% 

to 68%. They showed that this large increase could be beneficial from the processing 

standpoint by reducing the formation of internal stress as curing proceeds. The same group 

also reported the influence of hydroxyl moieties on the anionic chain copolymerization of 

DGEBA (oligomeric DGEBA, with different n numbers, see Figure 1, section 2.1.1) with 

bislactone [62, 378] or anhydride [379] comonomers. As in the case of homopolymerization, 

it was observed that an increase of the concentration of OH group is accompanied by an 

increase of the conversion at the gel point. Reported values of xgel range from 22 to 48% 

depending on the OH content.  Following these works, Fernàndez-Francos proposed a 

theoretical modeling of the effect of proton donors in the network build-up of epoxy 

thermosets using tertiary amines as initiators [121].  This recent study provides a flexible 

model with the potential to describe the curing behavior of different epoxy formulations from 

homo- to copolymerization. Figure 73 illustrates the theoretical variation of the critical 

conversion according to Fernandez-Francos’ model for the anionic polymerization of DGEBA 

as a function of the initiator concentration in the absence or in the presence of transfers. As 

expected, formulations with added monoalcohols exhibit higher conversion at the gel point 

than the formulation free of CTAs whatever the molar fraction of initiator one considers. 

 
 

Figure 72: The multiarm star polymer (poly(styrene) 
core and poly(ε-caprolactone) arms) used as a reactive 
modifier  by Serra et al. in the anionic polymerization of 
DGEBA initiated by 1-methyl imidazole. The modifier is 
covalently incorporated in the network thanks to 
exchange reactions. 

Figure 71: Theoretical variation of the critical conversion, xgel, 
for the anionic polymerization of DGEBA in the presence of 
alcohol chain transfer agents as a function of the initiator mol 
fraction, i0, according to Fernandez-Francos’ model. Alcohols 
are considered as added monoalcohol (empty circles) or as 
substituents of oligomeric DGEBA with higher molecular 
weight (i.e. higher OH content, empty triangle) (reproduced after 
(121) with permission from Elsevier). 
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4.2. Cationic homopolymerization 

4.2.1 Chain transfer and Activated Monomer (AM) mechanism 

As depicted in Figure 74A, cationic ring-opening polymerization of epoxides can undergo 

transfer reactions through nucleophilic attacks of the oxonium ion propagating center. Among 

potential nucleophilic groups, etheral groups present in the growing chain may compete with 

the cyclic monomers for the attack of the propagating center (see section 2.1.3.2 for a 

reminder of the cationic polymerization mechanism). A schematic illustration of this 

mechanism, named back-biting is proposed in Figure 74B. It results in the formation of cyclic 

oligomers. The formation of 1,4-dioxane is extremely favored due to the high stability of this 

size of ring. For polymerization of the simplest epoxy monomer, ethylene oxide, 1,4-dioxane 

can be formed in yield as high as 80% due to the absence of any steric hindrance on the 

growing chains [380]. Thus, in some extreme circumstances, back-biting may completely 

preclude the polymerization. 

 

 

 

 

 

Figure 74: Typical chain transfers involved in cationic 
polymerization of epoxy. (A) Intramolecular and intermolecular 
attack of a chain end propagating center. (B) Intramolecular 
attack of the propagating center and formation of 1,4-dioxane. 
(C) Attack of a chain end propagating center by a monoalcohol 
and formation of a dead end. (D) Attack of an activated 
monomer and formation of an alcohol extended by one 
monomeric unit. Successive attacks of activated monomer 
result in the growth of a polymer chain.     

Figure 72: The two mechanisms of the ring opening cationic 
polymerization of epoxy in the presence of alcohol: the AM 
(Activated Monomer) and the ACE (Activated Chain End) 
mechanisms (reproduced after (373) with permission from the 
American chemical Society). 

 



66 
 

Apart from etheral groups that promote intramolecular transfers, the most common transfer 

agents encountered in cationic polymerization are hydroxyl groups. Hydroxyl groups may 

attack both (i) propagating centers (tertiary oxonium ion, Figure 74C) and (ii) activated 

monomers (secondary oxonium ion, Figure 74D). 

(i) In the former case, if the alcohol is monofunctional, this results in a true transfer 

reaction with the formation of a dead end. If the alcohol is polyfunctional, then a 

macroalcohol is obtained which may be involved in another transfer reaction or in the 

mechanism presented in (ii).   

(ii) In the latter case, the addition of the alcohol to an activated monomer results in the 

formation of a new hydroxyl-terminated molecule extended by one monomeric unit. Thus, 

each time an OH group is consumed another OH group is produced. In this condition, the 

process is not called a chain transfer anymore. Instead, it could be seen as an effective 

polymerization mechanism proceeding through successive addition of activated 

monomers to macromolecular alcohols’ end. 

  
Penczek and coworkers first described this polymerization mode [125]. It was called an 

Activated Monomer (AM) mechanism in opposition to the classical mechanism for which the 

term Activated Chain End (ACE) mechanism is used [381]. Thus, for the cationic 

polymerization of epoxides (and by extension for all cyclic ethers), two propagation 

mechanisms are expected in the presence of alcohols. The situation is summarized in Figure 

75. The remarkable characteristic feature of the AM mechanism is that it proceeds without a 

tertiary oxonium ion at the end of the growing chain. Back-biting is prevented and there is no 

way to produce 1,4-dioxane. Thus, in order to suppress formation of cycles one has to 

eliminate or at least to decrease the relative contribution of the ACE mechanism in favor of 

the AM propagation route. The rate of the ACE mechanism is proportional to the 

concentration of monomer and of activated monomer. It is given by Eq. (7). Concurrently, the 

rate of the AM mechanism is proportional to the concentrations of alcohol and of activated 

monomer as indicated by Eq. (8). In this condition, the relative rate of the AM mechanism, 

, is given by Eq. (9) which, after simplification, yields Eq. (10) where 

 appears as an increasing function of the alcohol to monomer ratio. Since 

the alcohol concentration is constant, Penczek et al. concluded that one has to decrease the 

instantaneous monomer concentration to prevent the ACE route, i.e to observe 
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. To this end, monomers can be added to an initiator and alcohol 

mixture in a continuous manner at a rate equal to its rate of consumption. By doing so, the 

group of Penczek reported several examples where they considerably reduce the formation of 

cyclic oligomers [382-384]. This new synthesis strategy significantly contributed to the 

popularization of the AM mechanism.  

 

 

 

 

 

 

 

 
Eq. (7) 

 

 

Eq. (8) 

 

 

 

Eq. (9) 

 

 

 

Eq. (10) 

 
4.2.2. Control of the critical conversion 

Following the seminal works of Penczek and coworkers, the notion of AM mechanism has 

been used to explain the curing behavior of three-dimensional epoxy networks in the presence 

of alcohols. In this one-pot condition (in opposition to the starved monomer conditions 

proposed by Penczek et al.), alcohols will both act as (1) chain transfer agents and (2) 

promoters of the AM mechanism: 

(1) As depicted in Figure 76A, if one considers a monoalcohol, the nucleophilic attack of 

activated chain ends results in true transfers. This is accompanied by an increase of the 

number of growing chains and thus a decrease of their molecular weight. Therefore, the 

conversion at the gel point is increased. 

(2) Concurrently, if alcohols attack activated monomers then hydroxyl terminated chains can 

grow through the AM mechanism. Thus, as illustrated in Figure 76B, each hydroxyl group 

may be seen as a possible initiator of a new growing chain. In other words, the higher [OH] is, 
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the higher the number of growing chains is and the higher the conversion at the gel point is. In 

that case, the role of alcohols is similar to the role they play in anionic polymerization. 

Obviously, if [OH] > [Initiator] then the critical conversion will be higher than in the case of 

the neat system (Figure 76B, first arrow). Moreover, since alcohol and epoxy coexist, the 

activated monomers liberated by the AM mechanism may be attacked by epoxy monomers 

and result in the formation of new chains growing through the ACE mechanism (Figure 76B, 

second arrow). This way, the number of growing chains is further increased.  

Thus, from the viewpoint of the formation of three-dimensional networks, alcohols represent 

a suitable tool to control the value of the critical conversion at the gel point by increasing the 

branching degree. Furthermore, as depicted in Figure 77, they are incorporated into the 

network and the usual safety problems related to volatile additives are prevented. It is also an 

additional lever to tune the properties of the network such as the crosslink density, the Tg or 

the mechanical properties. Indeed, by playing with the nature of the alcohol (functionality, 

size and nature of the skeleton), a number of options can be explored to tune the properties of 

the native resin. 

 
 
Figure 73: Illustration of various situations where alcohol are involved in chain transfers or the AM mechanism, resulting in 
the increase of the number of growing chains and thus of the branching degree of the growing network. (A) Illustration of the 
effect of chain transfer when starting from activated chains. (B) Illustration of the effect of an alcohol concentration larger 
than the initiator concentration and of the superposition of the ACE and AM mechanisms. 
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Several authors studied the influence of alcohols in bulk polymerization of epoxy resins. 

Pascault and coworkers described the homopolymerization of DGEBA initiated by the 

BF3-amine complex of 4-chloroaniline. They used a short poly(ethylene oxide) (PEO = 

300) to solubilize the initiator [262]. In these conditions, they observed high conversion at the 

gel point (40%). It was attributed to the promotion of chain transfers and of the AM 

mechanism by the hydroxyl moieties of PEO. The resulting system is thought to be suitable 

for the reaction-injection-molding (RIM) process. Li and coworkers demonstrated that the 

cationic polymerization of oligomeric DGEBA initiated by BF3-ethylamine was greatly 

influenced by the hydroxyl content of the oligomeric resin [385]. Their results show that the 

evolution of the molecular weight of the polymer chains during the curing reaction is much 

slower in the case of a hydroxyl rich oligomer due to the chain transfers resulting from the 

presence of alcohol. For instance, Figure 78 illustrates the evolution of the molecular weight 

for two oligomeric DGEBA: DER331 and DER332. DER331 contains more hydroxyl groups 

than DER332. As a result, the increase of the molecular weight is much slower for DER331. 

 
Figure 77: Schematic representation of one 
possible route resulting in the incorporation of a 
diol in a network growing through ring opening 
cationic polymerization. 

Figure 78: Molecular weight vs. reaction time for the cure of two 
oligomeric DGEBA in the presence of MEA-BF3 (see section 
3.3.1) at 130°C. The experimental results are fitted with a 
theoretical model proposed by Li et al. The temperature deviation 
is attributed to the experimental difficulty to control this parameter. 
DER 331 contains more hydroxyl groups than DER332 due to 
higher oligomerization degree  (reproduced after (385) with 
permission from Wiley). 

 

More recently, in a series of papers, Serra, Ramis and their coworkers described new 

thermosets obtained from the cationic curing of DGEBA in the presence of hydroxyl-ended 

hyperbranched polymers (HBP) [386-393]. The promotion of chain transfers and of the AM 

mechanism allows the covalent incorporation of the HBP into the network. It is accompanied 

by an expansion of the HBP resulting in the production of an excess of free volume that 

compensate for the contraction normally associated with the homopolymerization of epoxy. 
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Concurrently, they observed a large increase of the critical conversion as the weight 

percentage of incorporated HBP is raised, a proof of the involvement of the alcohol moieties 

in the polymerization mechanism [390, 392, 393]. This last point represents an additional 

benefit as it contributes to the reduction of internal stresses developed during the curing 

process. Moreover, materials with improved flexibility were obtained by increasing the 

proportion of HBP and a progressive decrease of Tg and storage modulus was observed [392]. 

In the same vein, Hartwig and coworkers conducted a series of works showing that the 

incorporation of polyols in cationically polymerized epoxy resins was an effective toughening 

method [394-399]. Interestingly, in that case, they reported that a partial inhibition of the AM 

mechanism may also be advantageous to limit the covalent incorporation of the polyols into 

the thermosetting matrix and promote phase separation by reaction induced phase separation 

(RIPS) [394]. Indeed, heterogeneous morphologies minimize the decrease of the Tg and the 

storage moduli that is usually observed with classical toughening strategies. Figure 79 

represents the scanning transmission electron microscopy (STEM) images of the morphology 

observed by Hartwig et al. for diepoxide cured in the presence of various poly(ε-caprolactone) 

(PCL). Figure 79A is the STEM image of the material cured with a PCL terminated with 

hydroxyl end group (PCL-diol), while Figure 79B is the STEM image of the equivalent resin 

cured with the same PCL whose hydroxyl end groups have been blocked by esterification 

(PCL-diester) so that the AM mechanism as well as potential covalent linkage with the epoxy 

network is prevented. Clearly, the prevention of the AM propagation route results in the phase 

separation of the PCL-diester with a sphere like nanostructure. Ramis and coworkers reported 

similar observations by using HBPs partially blocked with trimethylsilyl or benzoyl moieties 

[392].  

 

Figure 74: STEM images of a cured diepoxide with the thermolatent initiator benzyl tetrahydrothiophenium 
hexafluoroantimonate in the presence of (A) 10wt% of PCL-diol and (B) 10wt% of PCL-diester. For the nanostructured 
material of image B, the domain size is 10-20 nm. Scale bar for image (A) is 200 nm and for image (B) 100 nm (reproduced 
after (394) with permission from the Royal Society of Chemistry) 
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Thus, incorporation of alcohols as promoters of the AM mechanism and transfer agents 

provides an effective lever to control the occurrence of the gel point by involving the 

initiation of many short chains and decreasing the average molecular weight. As an additional 

advantage, playing with the competition between the AM and the ACE mechanisms enables 

an adjustment of the morphological properties of the cationically polymerized epoxy resins 

and of their resulting thermo-mechanical properties.   

 
4.2.3. Control of the polymerization rate. 

From the stand point of the temporal-programming of the curing process, the competition 

between the AM and ACE mechanism is also an alternative to control the curing rate of 

thermoset materials. 

Early work performed by Penczek and coworkers studied the polymerization’s kinetics 

according to the two mechanisms [383, 400]. They discussed the values of the initiation and 

propagation rate constants: kiAM, kiACE, kpAM and kpACE as reported in scheme of Figure 80.  In 

particular [400], they determined the ratio of kiAM and kiACE in the systems where both 

alcohols and monomers are simultaneously present, and they found that, for epichlorohydrin, 

the ratio of rate constant was approximately 5:1, i.e:  

  Eq. (11) 

This result is in accordance with the greater nucleophilicity of hydroxyl groups toward 

protonated monomers in comparison with that of the oxirane ring oxygen atom.  

 

Figure 80: Schematic representation of the activated monomer (AM) and the activated chain end (ACE) mechanism routes 
for the cationic polymerization of epoxides. The initiation and propagation rate constants are reported. 

As for the propagation rates, in the idealized case, the AM propagation mode can be reduced 

to one reaction and one can write:  

kiAM = kpAM                   Eq. (12) 
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Furthermore, by considering the respective nucleophilicity of the hydroxyl groups and the 

monomers once again, it comes:  

kiAM > kpACE                   Eq. (13) 

Thus, from Eq. (12) and Eq. (13), it is expected that: 

kpAM > kpACE                    Eq. (14) 

However, as first suggested by Penczek and coworkers [400], in the case of the AM 

mechanism, the proton released after each activated monomer addition can combine with the 

nucleophilic sites present in the curing system, including those distributed along the polymer 

chains (polyether patterns). Thus, the real set of elementary reactions involved in the AM 

mechanism is much more complicated and the rate constant of this propagation mode can be 

slower than expected. On the contrary, the ACE propagation mode relies on a single initiation 

step followed by consecutive addition of monomers to the growing chain end without 

recirculating protons. In these conditions, it is possible to observe propagation rates values 

ranked in reverse order compared to Eq. (14), i.e.: 

kpAM < kpACE                 Eq. (15) 

This was confirmed by Matejka and coworkers for the polymerization of DGEBA initiated by 

a BF3-amine complex. They determined the respective rate constants of propagation for the 

AM and the ACE mechanisms by comparing experimental and theoretical results [69, 119, 

120]. They found kpAM = 0.12 mol-1.min-1 and kpACE = 0.25 mol-1.min-1. Thus, in this 

polymerization system, the promotion of the AM mechanism results in a decrease of the 

observed propagation rate, Rp.  

This was also confirmed in several studies using BF3-amine complexes as the initiator of the 

curing reaction. Pascault, Chabanne and coworkers have shown that water and small hydroxyl 

byproducts (i.e. alcohols resulting from the opening of the first epoxy monomers), orient the 

propagation towards the AM route for the polymerization of PGE initiated by the BF3-4-

methoxyaniline complex [105]. The chemical structures of the hydroxyl byproducts they 

identified are depicted in Figure 81. These molecules can act as effective AM promoters.  

Figure 82 represents the conversion profiles obtained for the neat system and with addition of 

the hydroxylated compounds 1 and 2 (Figure 81). Clearly, the propagation rate is significantly 

decreased by increasing the amount of these impurities. Similarly, Pascault, Bouillon and 
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coworkers reported a strong decrease of the polymerization rate for the curing of DGEBA 

initiated by the BF3-4-chloroaniline complex in the presence of a low molar mass 

poly(ethylene oxide) additive (PEO, Mn = 300 g.mol-1). By using PEO as a diluting agent of 

the BF3-amine initiator, they observed that the propagation rate, Rp, decreases with the PEO 

concentration, [PEO] [63, 261, 262]. They found a negative order of -0.55 with respect to 

[PEO] [261]. This was attributed to the promotion of the AM mechanism by the terminal 

hydroxyl groups of PEO. More recently, Vidil and coworkers investigated HO-terminated and 

alkyl-terminated PEO and confirmed that the presence of OH groups result in a decrease of 

the polymerization rate [373]. 

 

 
Figure 81: Chemical structures of typical byproducts for the 
cationic polymerization of PGE initiated by the 4-
methoxyaniline-BF3 complex. 

Figure 82: Influence of byproducts 1 and 2 on the cationic 
polymerization of PGE initiated by the 4-methoxyaniline-
BF3 complex: empty squares = standard system, empty 
triangles = with addition of 1 (0.10 mol/mol of PGE) in the 
standard system, empty circles = with addition of 2 (0.10 
mol/mol of PGE) in the standard system (reproduced after 
(105) with permission from Wiley):  

A slower AM mechanism was also reported by Anderson for the curing kinetics of a 

polyoxometalate (POM) loaded epoxy [401]. POMs behave as Lewis acids and readily 

dissociate in polar solvents to give a very strong Brønsted acid. Thus, they act as catalysts 

promoting cationic homopolymerization of the epoxy resin. Calorimetric studies of the curing 

of DGEBA initiated by POMs result in similar experimental observations as Chabanne et al. 

[105], i.e. the decrease of the polymerization rate due to the formation of hydroxylated 

byproducts.  

From this set of examples, the use of alcohols as AM mechanism promoters appears as an 

efficient option to slow down and control the curing process for epoxy resins cured in the 

cationic mode. 
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However, it is worth noting that, in the case of polymerization initiated with onium salts, 

several studies report an acceleration of the polymerization rate in the presence of alcohols. 

This was first reported by Crivello and coworkers for the photochemically induced 

polymerization of 3,4-epoxycyclohexylmethyl-3’,4’-epoxycyclohexane carboxylate [402]. 

They observed an increase of the curing rate in the presence of ethylene glycol or 1,4-

butanediol. Later, they reported the synthesis of epoxy monomers that contain both epoxy and 

hydroxyl groups in the same molecule [285]. Again, the photopolymerization of these 

monomers initiated by diaryliodonium salt was markedly accelerated in comparison to their 

alcohol-free counterparts. Ramis, Serra and their coworkers made similar observations when 

incorporating hydroxyl terminated HBP in epoxy networks [386-393]. 

These observations are classically explained by invoking the faster polymerization rate of the 

AM mechanism in accordance with the rate constants published by Penczek and coworkers 

(Eq. (11) and Eq. (14)). However, some authors proposed different explanations. They 

suggested that alcohol may play the role of a co-catalyst. This would result in a more efficient 

production of initiating species and thus in an acceleration of the overall rate of 

polymerization, Rp.  

As for thermolatent onium salts, Park et al. suggested that alcohols may facilitate the 

liberation of strong Brønsted acids through the nucleophilic attack of the carbon in -

position of the positively charged metalloid center of the initiator [109]. The mechanism is 

illustrated in Figure 83 for a thermolatent phosphonium salt. 

In the case of photolatent onium salts, several authors demonstrated that alcohols are actually 

involved in the free-radical-induced chain decomposition of iodonium salts [403-405]. Pappas 

et al. measured that the quantum yield of the photosensitized decomposition of iodonium salts 

increased from 0.01 in neat acetonitril to 2.4 in the presence of 2-propanol (acetonitril, 5 

mol.L-1) [404]. Crivello et al. reported a pronounced acceleration of the polymerization rate in 

the presence of benzyl alcohols [406, 407] and some hydroxymethylated polynuclear aromatic 

hydrocarbons [408]. Besides the promotion of the AM mechanism, they invoked the 

involvement of these additives in the free-radical induced chain decomposition of the 

initiators, namely iodonium salts. 

Thus, from aforementioned results, there is no certainty on whether the promotion of the AM 

mechanism increases or decreases the curing rate of the cationic polymerization of epoxy 

resins. 
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In any case, alcohols appear as valuable additives as they permit to enlarge the variety of 

initiating systems. When combined with BF3-amine initiators, they promote a decrease of the 

polymerization rate. On the other hand, in combination with onium salts, they normally 

involve an increase of the curing rate. Though, it is not always true. For instance, Crivello et 

al. reported an acceleration of the curing process for the cationic polymerization of aliphatic 

epoxy resins initiated by an iodonium salt in the presence of ethylene glycol and 1,4-

butanediol [402]. On the opposite, Wang et al. reported a decrease of the polymerization rate 

when using a sulfonium salt in the presence of the same alcohols [409]. Similarly, Wang et al. 

observed opposite variations of the curing rate when using different alcohols with the same 

initiator [409]. In their study, the use of 1,4-butanediol is accompanied by a decrease of the 

polymerization rate while pinacol promote the inverse. 

These observations demonstrate that the influence of alcohols on cationic polymerization is a 

rather complex phenomenon that depends on a number of parameters besides the promotion 

of the AM mechanism. They include the structure of the alcohol [287, 409] as well as the 

properties of the initiator (e.g. the reduction potential of the onium salt [404-406]). 

Eventually, it is important to note that alcohol can play on two different parameters: the 

curing rate and the conversion at the gel point. If both options may be attractive to program 

the curing process, it may also be desirable to play with the former while keeping the latter 

constant. Here lies the limit of the use of alcohol to control the curing kinetics in the cationic 

mode. 

 
Figure 75: Postulated mechanism for the cocatalytic effect of alcohol with 
a thermolatent phosphonium salt.  
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4.2.4. Combination of transfers and supramolecular complexation. 

An alternative to the use of diol as retardant are selective chelating ligands. They can complex 

cationic species and keep under control a reaction which is normally prone to runaway. In 

section 3.3.3, it was shown that this strategy permits to control the initiation stage when the 

chelating ligand is the selective 18-crown-6 ether [283, 366, 372]. 

Concurrently, several authors have shown that less selective ligands may induce a decrease of 

the polymerization rate with similar amplitude as alcohols. For instance, Crivello and 

coworkers suggested the use of multidentate monomers in combination with photoresponsive 

initiators and showed that stabilization of the photogenerated hydronium ion leads to a better 

control of the initiation stage [281, 282, 410]. Typical structures of complexes of hydronium 

and multidentate monomers are illustrated in Figure 84. 

 
 

Figure 84: Schematic representation of the tetradentate 
coordination of a hydronium cation by 1,2-ethanediol 
diglycidyl ether and of the cage-like complex resulting from 
the hexadentate coordination of a hydronium cation by the  
trimethylolpropane triglycidyl ether.  

 

Vidil and Tournilhac used a series of molecules containing hydroxyl and/or ethylene oxide 

moieties as additives in the cationic polymerization of a standard epoxy resin (DGEBA) 

initiated by a thermal initiator, the BF3-aromatic amine complex, BF3−4CANH2 (see section 

3.3.1.2 and 3.3.3) [373]. The additives were judiciously selected to distinguish the 

contribution of protic groups (alcohols) from the contribution of aprotic groups (ethers). They 

are depicted in Figure 85. Aprotic polyethers with more than five ethylene oxide patterns in 

their backbone (Bz-PEO-Bz, Pr-PEO-Pr, Ox-PEO-Ox) induce a significant retardation of the 

cationic polymerization of DGEBA at 40°C. Interestingly, the conversion at the gel point is 

unchanged when compared to the value measured for the additive-free system (about 10-

15%). These results were rationalized by considering the ability of PEO to complex the 

anilinium cation resulting from the decomposition of the initiator. The structure of the 

complex is illustrated in Figure 86. Under this protected form, the releasing rate of the 

Bronsted acid HBF4 is considerably decreased as previously mentioned in Section 3.3.3. 
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Thus, unlike alcohols that promote transfers, these additives can be used to control the curing 

rate without any impact on the conversion at the gel point. 

 
 

 
 

Figure 76: The various polyethers and alcohols additives 
used by Vidil and Tournilhac (6 < n < 8) for the curing of 
DGEBA initiated by BF3–4CANH2 (0.026 equiv./epoxy) at 
40 ◦C [373]. 

Figure 77: Schematic representation of the complexation of 
the 4-chloroanilinium cation stemming from the initiator 
4CA-BF3 with low molecular weight PEO endowed with 
various chain ends, E. 

 

Non-chelating alcohols like butanediol (HO-Bu-OH), polypropylene glycol (HO-PPO-OH) or 

polyethylene glycol with less than five ethylene oxide units in their backbone (HO-TEO-OH) 

also induce a retardation of the cationic polymerization of DGEBA initiated by 

BF3−4CANH2. As expected, the conversions at the gel point are shifted to much higher values 

(30-50%) proving that, in these cases, the retarding mechanism is the promotion of the AM 

propagation mode. 

Ultimately, Vidil and Tournilhac studied systems combining both hydroxyl groups and 

complexing polyethers. This situation is illustrated in Figure 87 were the additive-free system 

is compared with reactive systems containing HO-PEO-OH or a combination of Pr-PEO-Pr 

and butanediol. In both case, they observed the most pronounced retarding effect of all tested 

additives with a gel time, tgel ≈ 70 min and a high conversion at the gel point, xgel ≈ 40%. 

These observations suggest a superposition of the effects of transfers and of supramolecular 

complexation, the former being promoted by the hydroxyl groups and the latter resulting from 

the presence of the polyethylene oxide chains. 

Interestingly, almost the same conversion profiles are obtained whether the hydroxyl and 

chelating polyether functions are carried out by the same molecule (HO-PEO-OH) or by two 

different molecules (Pr-PEO-Pr + butanediol). 
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On this basis, Vidil and Tournilhac proposed a general approach to control the two 

fundamental parameters of the gelation process for the curing of epoxy resins in the cationic 

mode, i.e. tgel and xgel. They demonstrated that it is possible to explore a wide range of tgel and 

xgel values by adequately adapting the amount of protic (alcohols) and chelating (polyethers) 

additives. This is well illustrated under the form of a two- dimensional chart, tgel vs. xgel, as 

depicted in Figure 88.  

Interestingly, a similar approach has been recently proposed for the polymerization of 

benzoxadine [411]. Wang et al. demonstrated that the gelation parameters, tgel and xgel, for the 

thermal curing of Bisphenol A-aniline benzoxazine can be control by using a series of various 

additives such as phenols, carboxylic acids and imidazoles. 

 

 
Figure 87: Epoxy conversion profiles obtained for the 
curing of DGEBA initiated by 4CA-BF3 (0.026 
eq./epoxy) in the presence of  HO-PEO-OH, HO-Bu-OH 
and HO-PPO-OH used at 0.061 eq./epoxy at 40°C 
(reproduced after (373) with permission from the 
American Chemical Society). 

 
Figure 78: (xgel, tgel) coordinates obtained for additives of 
various protic and chelating properties (reproduced after (373) 
with permission from the American Chemical Society). 

 
4.2.5. Toward clock like curing systems 

This last section exemplifies the possibility to initiate curing after a predictable and 

controllable induction period in isothermal conditions. It is based on a few unpublished results 

from Vidil and Tournilhac studies. The strategy is to maintained the reactive centers into a 

dormant state and to suddenly released them after completion of a reaction that plays the role 

of an internal timer. In this respect, parallels can be drawn with self-regulated clock-reactions 

that are characterized by an abrupt increase in the concentration of a chemical after an 

induction period resulting from the consumption of an inhibiting reagent. 

The initiating system studied by Vidil and Tournilhac [373] is based on the combination of 4 

chemicals: (i) the Bronsted acid HBF4, (ii) the primary aniline 4CANH2, (iii) a mutidentate 
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ligand (linear PEO or crown ether) and (iv) an alcohol. As mentioned in Section 3.3.3, the 

association of (i) HBF4, (ii) 4CANH2 and (iii) a multidentate ligand results in the formation of 

a tetrafluoroborate ammonium complexed by the multidentate ligand. As long as the proton is 

involved in this supramolecular complex, the initiation of the cationic polymerization of the 

epoxy resin is prevented. 

The likelihood to form this complex, and thus to preclude the initiation, is dependent on many 

parameters including the temperature (see Section 3.3.3), the chelating ability of the ligand 

(see Section 4.2.4) but also the probability to form the tetrafluoroborate ammonium. 

Interestingly, when an alcohol is added to this system, the AM mechanism is at work and a 

proton is transferred after each monomer addition to the growing chains. In these conditions, 

the probability to observe an acid-base equilibrium involving the Bronsted acid HBF4 and the 

primary amine 4CANH2 is much larger and so is the probability to form the supramolecular 

complex with the multidentate ligand.  

Thus, curing systems combining the four chemicals proposed by Vidil and Tournilhac 

(namely HBF4, 4CANH2, a mutidentate ligand and an alcohol) are expected to be extensively 

inhibited. This was already illustrated in section 4.2.4 with the use of hydroxyl terminated 

PEO or a combination of alkylated PEO and small non-chelating alcohols (e.g. 1,4-

butanediol). When using 18-crown-6 instead of a linear polyether, Vidil and Tournilhac 

observed induction periods as long as 3 days for temperatures as high as 60°C. The 

mechanism responsible for this tremendous delay of the cationic polymerization is illustrated 

in Figure 89. Here, the formation of the very stable BF4
-−4CANH3

+•18-crown-6 complex is 

in competition with the polymerization propagation after each monomer addition. 

 

Figure 89: Proposed interpretation for the prolonged 
retardation period in systems combining 18-crown-6 and 
HO-Bu-OH. Proton exchanged between the linear 
secondary oxonium ion and the monomer during the 
activated monomer mechanism can be intercepted by 
aniline. In the presence of 18-crown-6, the resulting 
anilinium cation is complexed and protons are trapped in 
the supramolecular complex. Polymerization is turned off. 
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Despite this drastic inhibiting mechanism, Vidil and Tournilhac observed that polymerization 

restarts after a period dependent on the proportion of the 4 chemicals involved in the initiating 

system. The conversion profiles of the curing systems are strongly non-linear and the 

polymerization rate suddenly jump from nearly 0 to values classically measured for the 

additive-free system. Similar conversion profiles are observed for clock-reactions. In this 

case, the abrupt jump of the conversion rate is usually obtained after exhaustion of an 

inhibiting reagent that is consumed through a side reaction. This parallel suggests that a side 

reaction may be responsible for the exhaustion of one of the 4 chemicals involved in the 

initiating system proposed by Vidil and Tournilhac.  

In their study of the cationic polymerization of epoxides initiated by BF3-amine complexes, 

Chabanne and coworkers demonstrated that the amine stemming from the initiator readily 

reacts with the activated monomer [105]. This addition process is not reversible; it produces a 

secondary amine whose conjugated ammonium is bulkier and less symmetrical than its 

primary analogue. Under this form, it can no longer form a complex with the crown ether. 

The situation is summarized in Figure 90. After exhaustion of the primary amine, one of the 

compulsory chemicals for the sequestration of the proton is missing and HBF4 is free to 

participate in polymerization initiation and transfers. 

  
Figure 79: Alkylation of aniline by nucleophilic attack of 
the activated monomer. The resulting secondary aniline 
cannot bind to 18-crown-6 after protonation. Protons are no 
longer trapped in supramolecular complexes and the 
polymerization rate increases. 

Figure 91: Epoxy conversion profiles obtained for the 
curing of DGEBA initiated by BF3–4CANH2 (0.026 
equiv./epoxy) in the presence of a combination of 18-crown-
6 and HO–Bu–OH both used at 0.061 equiv./epoxy at 40 ◦C 
and with the addition of small portions of 4CANH2. 

 

Vidil and Tournilhac demonstrated that this system may be used to control the duration of the 

induction period by varying the initial concentration of primary amine in the curing system. 

Figure 91 illustrates the evolution of the conversion profiles for the curing of DGEBA at 
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60°C, initiated by BF3−4CANH2 (0.026 equiv./epoxy) in the presence of 1,4-butanediol 

(0.061 equiv./epoxy) and 18-crown-6 (0.061 equiv./epoxy) and with increasing amounts of 

the aniline 4CANH2. It is based on results published in [45]. Results show that the induction 

period can be controlled to a great extent with duration varying from 200 to more than 700 

min (=11h) by adding small portions of 4CANH2 comprised between 0 and 2% (where 1% 

means 0.01 eq./epoxy). Thus, the gradual consumption of aniline permits the design of self 

regulated systems that polymerize after a predictable and controllable period of time in 

isothermal condition.  

This clock-like behavior may be useful to control the pot life of curing formulations in 

injection, molding or coating applications. Advantageously, it could be used to program the 

cure of epoxy resins placed in remote areas where it is not possible to trigger the reaction with 

an exogenous stimulus like light or temperature. 

5. Conclusions and perspectives 

The versatility of epoxy resins and their remarkable mechanical performances are 

commensurate with the richness of the chemistry described in this review. In polymer 

chemistry, apart from olefins, very few chemical functions have such a vast range of options 

at disposal to control the initiation and the growth of macromolecules. In the case of epoxy 

resins, an arsenal of latent, inhibited or delayed curing systems has been developed to address 

the technical challenges related to processing and shaping. 

First of all, the chemistry of epoxy thermosets is rich of a number of latent polymerization 

systems. Today, chemists have at their disposal not only the first generation of latent systems 

based on biphasic reactive mixtures (e.g. high melting point hardeners) but also new 

approaches based on the controlled release of reactive molecules following the breaking of 

covalent bonds. Hydrolyzable, photo- or thermo-cleavable molecules are used to initiate 

curing reactions upon exposure to a stimulus. Concurrently, triggerable systems based on the 

stabilization of reactive molecules within supramolecular scaffolds have been investigated. 

Advantageously, this strategy — based on non-covalent bonds — offers thermo-activated 

systems working in much lower temperature ranges than conventional thermolatent initiators 

that rely on cleavable covalent bonds. 

Meanwhile, the need to control the hardening of the resin once the reaction is initiated led to 

the development of chemical strategies dedicated to the control of the propagation stage. 



82 
 

Indeed, chain transfer agents are conventionally added to the reactive mixtures in order to 

prevent the runaway conditions of cationic and anionic ROP. These are usually alcohols that 

strongly interfere in the propagation mechanism by promoting transfers. In Brønsted acid 

initiated systems, alcohols delay the onset of the gel point by slowing down the rate of 

polymerization and reducing the size of the growing chains. Thus, aside from the control of 

the curing kinetics, alcohols enable the control of the growing network’s structure. Recently, 

in cationic polymerization, it was demonstrated that transfers can be intercepted by the 

stabilization of protons in supramolecular structures. This new approach allows for the 

development of clock-like curing systems, i.e. whose curing is inhibited and restart after a 

known induction period. Moreover, it provides epoxide’s polymerization with a counterpart to 

the strategies used in controlled polymerization of olefins where free radicals are stabilized in 

dormant states. In this sense, this approach is likely to be the premise of the development of 

new controlled polymerization methods for epoxides and other cyclic ethers. 

Overall, the chemistry of epoxy thermosets is moving on with modern chemistry of polymers. 

It is part of a broader movement dedicated to stimuli-responsive polymeric systems. As an 

illustration, the recent discovery of vitrimers supports well the idea that a simple but robust 

chemistry may feed the forefront of technological innovations in material science. In this 

review, it appears that the oldest and most challenging technical issues associated with the use 

of thermosets — i.e. the control of both the initiation and the crosslinking kinetics — remains 

a field of active researches to meet the needs of emerging technologies (e.g. self-repairing 

materials, 3D printing...) and the new environmental requirements (energy saving curing 

systems). It led to the development of a rich and diverse chemistry that can be a source of 

inspiration in other areas of macromolecular engineering.  
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