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It is shown that by the use of flatness the problem of pole placement, which consists in imposing closed-loop system dynamics,
can be related to track desired trajectories in the finite-dimensional linear time-invariant case. Polynomial two-degree-of-
freedom controller can then be designed with the use of an exact observer and without resolving the Bézout’s equation. In this
paper, an extension of these developments is proposed in the linear time-varying (LTV) framework. The proposed approach
is illustrated with the control of nonlinear model of an anti-lock brake system. The time-varying controller obtained from the
LTV model ensures the trajectory tracking of the nonlinear model.
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1. Introduction
In control theory, the study of linear time-varying (LTV)
systems has been important since this situation is encoun-
tered not only when some parameters of the system vary
with time, but also when the system to be controlled is non-
linear and the problem is approached by linearizing this
system around a desired trajectory which leads to an LTV
model.

For finite-dimensional and time-invariant linear sys-
tems, a well-known control design technique, named
polynomial two-degree-of-freedom (2DOF) controllers
(Aström & Wittenmark, 1997; Franklin, Powell, & Work-
man, 1998; Kučera, 1991), was introduced 50 years ago by
Horowitz (1963). More details are given in the reference
therein. This powerful method is based on pole placement
and presents one drawback: it needs to know where to place
all the poles of the closed-loop system at the outset.

Following Rotella, Carrillo, and Ayadi (2002), by the
use of flatness design control principles, the problem of pole
placement which consists in imposing closed-loop system
dynamics can be related to track desired trajectories and a
2DOF controller is designed with very natural choices for
high-level parameters design. In this design, we are led to
a solution for the Bézout’s equation which is independent
of the closed-loop dynamics but depends only on the sys-
tem model, and this solution is obtained without resolving
Bézout’s equation.

The 2DOF design controller problem is not easy to tran-
scribe in the case of LTV systems due to the fact that
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the coefficients do not commute with the time derivative
operator. Besides, the structure of the set of the poles of the
closed-loop system is more complex. For this, the notions
of poles of an LTV system, newly introduced in Marinescu
and Bourlés (2009) along with a necessary and sufficient
condition for exponential stability, are required to study the
internal stability of the output closed-loop system.

In this case, the pole placement problem was solved
recently by Marinescu (2010), who proposes some techni-
cal methods for the factorization of LTV transfer matrices.
These key points lead to solve Bézout’s equation written in
the time-varying framework.

In order to overcome these two points, namely the choice
of desired poles at the outset and the determination of solu-
tion for the Bézout’s equation, we propose in this paper
to extend the flatness-based control strategy developed in
Rotella et al. (2002) to the case of time-varying systems.
It will be seen that applying the guideline induced by a
flatness-based control to an LTV system leads to express it
in a natural 2DOF controller form.

The paper is organized as follows: Section 2 is devoted
to showing a short survey on flatness. In Section 3,
some background notions about single-input single-output
(SISO) LTV systems are presented. In Section 4, we pro-
pose to design a polynomial controller based on flatness
and exact observer of a state vector which is constituted
by the flat output and its derivatives. In Section 5, the pro-
posed strategy is illustrated with the control of the nonlinear
anti-lock brake system (ABS).
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2. Short survey on flatness
Flatness property, which was introduced by Fliess, Lévine,
Martin, and Rouchon (1992), for continuous-time nonlinear
systems, leads to interesting results for control design. The
existence of a variable called a flat output permits to define
all other system variables. The dynamic of such process
can be then deduced without solving differential equations.
Therefore, it is possible to express the state, as well as the
input and the output of the system, as differential functions
of the flat output (Fliess et al., 1992; Rotella & Zambettakis,
2007). Let us consider the nonlinear system described by
the following differential equation:

ẋ(t) = f (x(t), u(t)), (1)

where x(t) ∈ �n is the state vector and u(t) ∈ �m is the input
vector. Roughly speaking, this system is called differentially
flat if there exists a variable z(t) ∈ �m of the form:

z(t) = h(x(t), u(t), u̇(t), . . . , u(r)(t)) (2)

such that the state and the input of the system are given by

x(t) = A(z(t), ż(t), . . . , z(α)(t)), (3)

u(t) = B(z(t), ż(t), . . . , z(α+1)(t)), (4)

where α is an integer. The variable z(t) is called the flat
output of the system or the endogenous variable. It makes
possible to parameterize any variable of the system (Rotella
& Zambettakis, 2007). The components of z(t) must be
differentially independent. The real output of the process is
written as

y(t) = g(x(t), u(t)) (5)

and from Equations (3) and (4), this output is written in
function of the flat output as

y(t) = C(z(t), ż(t), . . . , z(σ )(t)), (6)

where σ is an integer. In the linear case, the explicit expres-
sions of the output y(t) and the control u(t) allow to relate
the flat output to the partial state which was defined by
Kailath (1980). The trajectories of the system are deduced
from the definition of the flat output trajectory without inte-
grating any differential equations. All these points, which
have been formalized through the Lie–Bäcklund equiva-
lence of systems in Fliess, Lévine, Martin, and Rouchon
(1993, 1999), lead to propose a nonlinear feedback which
ensures a stabilized tracking of a desired motion for the
flat output. This methodology has been applied in many
industrial processes as it was shown previously, for instance,
on magnetics bearings (Lévine, Lottin, & Ponsart, 1996),
chemical reactors (Rothfuss, Rudolph, & Zeitz, 1996),
cranes or flight control (Lévine, 1999) or turning process
(Rotella & Carrillo, 1998), among many other examples.

3. SISO LTV systems
Following Marinescu (2010), in the algebraic framework
initiated by Malgrange (1962–1963) and popularized in
systems theory by Fliess (1990) and related references, a
linear system is a finitely presented module M over the
ring R = K[s] of differential operators in s = d/dt with
coefficients in an ordinary differential field K (i.e. a com-
mutative field equipped with a unique derivative). If K does
not exclusively contain constants (i.e. elements of deriva-
tive zero), M is an LTV system. In this paper, the following
notations will be used: u(n)(t) = dnu(t)/dtn = snu(t).

When dealing with LTV systems, polynomials as func-
tion of s is skew, i.e. belong to the noncommutative ring
R = K[s] equipped with the commutation rule: sa = as + ȧ
(a is a time-varying function), which is the Leibniz rule of
derivation of a product. Noting the integration operator by
s−1 where:

s−1h(t) =
∫ t

−∞
h(τ ) dτ , (7)

where h(τ ) = 0 for (τ ≤ τ̄ ). This last hypothesis ensures
commutativity between s and s−1.

For finite-dimensional, several input–output descrip-
tions have been introduced for LTV systems. Here, a
time-varying linear system is described by the following
state space model of dimension n:

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t).
(8)

The matrices A(t), B(t) and C(t) whose coefficients depend
on the time are of dimensions (n × n), (n × 1) and (1 × n),
respectively. Following Silverman (1966) and Silverman
and Meadows (1967), the system (8) is uniformly control-
lable if there is a time interval T = [t1, t2] such that the
matrix:

K = (K0(t) K1(t) · · · Kn−1(t))

has rank n for every t in T , with:

• K0(t) = B(t),
• for i = 1 to n: Ki(t) = K̇i−1(t) − A(t)Ki−1(t).

If this condition is satisfied, the controllable form of (8) is
given by

Ż(t) = Ā(t)Z(t) + B̄(t)u(t),

y(t) = C̄(t)Z(t),
(9)

with

Ā(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−ψ0(t) −ψ1(t) · · · −ψn−2(t) −ψn−1(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B̄ = (0 · · · 0 1)T, C̄ = (γ0(t) · · · γn−1(t)).
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To calculate the coefficients ψi(t), η(t) is first calculated
using the following expression:

η(t) = (−1)n−1K −1(t)Kn(t)

so we can deduce:

�(t) = (ψ0(t) ψ1(t) · · · ψn−1(t))T

= Jn[Fn(s)]−1Jnη(t)

such that Jn is the (n × n) matrix which is given by

Jn =

⎛
⎜⎜⎜⎜⎜⎝

1
−1

1
. . .

(−1)n−1

⎞
⎟⎟⎟⎟⎟⎠

with (Jn)
2 = In.

The matrix Fn(s) is given as follows:

Fn(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 s · · · sn−3 sn−1

0 1 · · · · · · (n − 1)sn−2

...
. . . . . . . . .

...

0
. . . 1 (n − 1)s

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

Finally, this leads to:

�(t) = Jn[Fn(s)]−1Jn(−1)n−1K −1(t)Kn(t).

To calculate C̄(t), we need to determine the change of
variable P(t), such that

Z(t) = P(t)x(t), Ā(t) = P(t)A(t)P−1(t) + Ṗ(t)P−1(t),

C̄(t) = C(t)P−1(t) and B̄ = P(t)B.

This change of variable is given by

P(t) = K̄ (t)K −1(t),

where K̄ (t) is the controllability matrix of the pair (Ā, B̄).

4. Controller flatness-based design for SISO LTV
systems

4.1. Flatness of SISO LTV systems
Following Fliess, Lévine, Martin, and Rouchon (1995), a
necessary and sufficient condition for the flatness of a linear
system is its controllability. In this case, the first component
of the Brunovsky-state from the controllable canonical form
is considered as flat output. Let us consider the controllable

state space equation (9) and let us denote by zi(t) the ith
component of Z(t):

ż1(t) = z2(t)

...

żn−1(t) = zn(t),

żn(t) = u(t) −
n−1∑
i=0

ψi(t)zi+1(t),

y(t) =
n−1∑
i=0

γi(t)zi+1(t),

(11)

which leads to:

u(t) = z(n)
1 (t) +

n−1∑
i=0

ψi(t)z
(i)
1 (t),

y(t) =
n−1∑
i=0

γi(t)z
(i)
1 (t).

(12)

The variable z1(t), denoted as z(t), can be considered for
this system as a flat output (Fliess et al., 1995; Kailath,
1980). Then, the state vector of the controllable form Z(t)
is composed by the flat output and its derivatives.

4.2. Tracking control and pole placement
For a given planned trajectory of the flat output, zd(t), the
control law based on flatness is as follows:

u(t) = z(n)

d (t) +
n−1∑
i=0

ki(z
(i)
d (t) − z(i)(t)) + ψi(t)z(i)(t)

= z(n)

d (t) +
n−1∑
i=0

kiz
(i)
d (t) +

n−1∑
i=0

(ψi(t) − ki)z(i)(t)

(13)

and by introducing the polynomials:

K(s) = sn +
n−1∑
i=0

kisi (14)

where the ki are chosen such that K(s) is a Hurwitz
polynomial. The control u(t) can be written as

u(t) = K(s)zd(t) +
n−1∑
i=0

(ψi(t) − ki)z(i)(t). (15)

When this control is applied, the tracking error is verifying:

lim
t→∞(zd(t) − z(t)) = 0 (16)

and the closed-loop dynamics are given by the roots of K(s).
This strategy differs from the usual pole placement for LTV
systems obtained by a time-varying state feedback.
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By denoting

ψ − k =
⎛
⎜⎝

ψ0(t) − k0
...

ψn−1(t) − kn−1

⎞
⎟⎠ (17)

the previous control can be written as

u(t) = K(s)zd(t) + (ψ − k)TZ(t), (18)

where

Z(t) =

⎛
⎜⎜⎜⎝

z(t)
ż(t)

...
z(n−1)(t)

⎞
⎟⎟⎟⎠ (19)

is the state vector of the controllable form.
To implement the control (18), we need to estimate the

vector Z(t) with an observer. A full-order observer can be
used, but in this solution, the difficulty appears in the choice
of the observers’ poles in the LTV framework. To overcome
this point, an enlightening idea suggested in Fliess (2000)
and applied in Marquez, Delaleau, and Fliess (2000) and
Rotella et al. (2002) can be used. The realization of this
controller, using the exact observer, will be the subject of
the next part.

4.3. The two-degree-of-freedom controller form
Let us consider the model (9) where the first component of
the state vector Z(t) is the system flat output. By successive
derivations of the output plant y(t) until the order (n − 1),
we obtain:

Y (t) = O(t)Z(t) + M (t)U (t), (20)

where

• Y (t) = (y(t) · · · y(n−1)(t))T,
• U (t) = (u(t) · · · u(n−2)(t))T,
• O(t) is the observability matrix of the pair

(Ā(t), C̄(t)) and it is given by

O(t) = (C̄0(t) C̄1(t) · · · C̄n−1(t))T (21)

such that:

C̄0(t) = C̄(t),

C̄i(t) = ˙̄Ci−1(t) + C̄i−1(t)Ā(t) for i = 1 to n − 1.

• The matrix M (t) has the following expression:

M (t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

M1
. . . . . .

...
...

. . . 0 0
Mn−2 · · · M1 0
Mn−1 Mn−1,2 · · · M1

⎞
⎟⎟⎟⎟⎟⎟⎠

(22)

with:
(1) M1(t) = C̄0(t)B̄,
(2) Mi(t) = Ṁi−1(t) + C̄i−1(t)B̄, for i = 2 to n − 1,
(3) Mn−1,2(t) = Mn−2(t) + ∑n−3

i=1 M (n−2−i)
i (t),

(4) Mn−1,3(t) = Mn−3(t) + ∑n−4
i=1 (n − i − 2)M (n−3−i)

i ,
(5) for k > 3, Mn−1,k can be deducted by observing

Equations (20) and (21).

As the pair (Ā(t), C̄(t)) is observable, the matrix O(t) is of
rank n and the state vector can be written as

Z(t) = O−1(t)Y (t) − O−1(t)M (t)U (t). (23)

Taking into account the state-space equation (9) and avoid-
ing variable derivations, we obtain

Z(t) = s−1(Ā(t)Z(t)) + s−1(B̄u(t)). (24)

By rewriting this equation to the order (n − 1), Equation
(24) becomes:

Z(t) = s−1(Ā(t)s−1(Ā(t) · · · s−1(Ā(t)Z(t)))

+ s−1(Ā(t) · · · s−1(Ā(t)B̄s−1u(t)))

+ s−1(Ā(t)B̄s−1u(t)) + B̄s−1u(t). (25)

If the term Z(t) is replaced in this equation by the one given
in Equation (23), we obtain:

Z(t) = s−1(Ā(t) · · · s−1(Ā(t)O−1(t)Y (t)

− Ā(t)O−1(t)M (t)U (t)))

+ s−1(Ā(t) · · · s−1(Ā(t)B̄s−1u(t)))

+ s−1(Ā(t)B̄s−1u(t)) + B̄s−1u(t). (26)

To eliminate the terms containing the derivatives of the
plant output y(t) in Y (t), we proceed by using successive
integrations by parts leading to the following expression of
the state vector:

Z(t) = s−n+1(	1(t)y(t)) + · · · + s−1(	n−1(t)y(t))

+ (	n(t)y(t)) + s−n+1(
1(t)u(t)) + · · ·
+ s−1(
n−1(t)u(t)) + s−1(Ā(t) · · ·
× s−1(Ā(t)B̄s−1u(t)))

+ · · · + s−1(Ā(t)B̄s−1u(t)) + B̄s−1u(t), (27)

where 	j(t) = (θ1j(t) · · · θnj(t))T and 
j(t) = (δ1j(t) · · ·
δnj(t))T. The components θij(t) and δij(t) are function of the
parameters ψi(t) and their derivatives. The control law (18)
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becomes

u(t) = K(s)zd(t) − S(s−1, y(t)) − R∗(s−1, u(t)), (28)

where:

S(s−1, y(t)) = (k − ψ)(s−n+1(	1(t)y(t))

+ · · · + 	n(t)y(t), (29)

R∗(s−1, u(t)) = (k − ψ)(s−n+1(
1(t)u(t)) + · · ·
+ s−1(
n−1(t)u(t))

+ (k − ψ)(s−1Ā(t) · · · s−1(Ā(t)B̄s−1u(t))

+ · · · + B̄s−1u(t)). (30)

By denoting R(s−1, u(t)) = u(t) + R∗(s−1, u(t)), this
control can be written in the 2DOF controller form as
follows:

R(s−1, u(t)) = K(s)zd(t) − S(s−1, y(t)). (31)

The proposed control design can be seen as a 2DOF con-
troller without resolving Bézout’s equation. Now the design
is focused on the choice of the trajectory of zd(t) to follow
and the tracking dynamics with K(s).

This regulator-observer permits to the system output to
track a desired trajectory without using observer dynam-
ics then the problem of pole placement, which consists in
imposing closed-loop system dynamics, can be related to
track desired trajectories. This design leads to a solution of
Bézout’s equation which is independent of the closed-loop
dynamics but depends only on the system model.

Some remarks for the design:

(i) The obtained form of the control cannot be seen
as a classical polynomial controller as in the case
of linear-invariant parameter system (Rotella et al.,
2002). The obtained result recovers the one in
Rotella et al. (2002) when time-varying system is
reduced to a time-invariant one.

(ii) In this design, it is difficult to give the expression of
R(s−1, u(t)) and S(s−1, y(t)) in terms of the proper
operator s−1, then we need a numerical algorithm
to determine these expressions for every t in T .

(iii) In order to reject a static perturbation, an integral
action must be added to the model.

(iv) Here, we propose the case where we can calcu-
late the controls and the states, which correspond
with a trajectory for the flat output, only by using a
numerical algorithm for local resolution of nonlin-
ear equations. In this case, it is necessary to linearize
the nonlinear model around the desired trajectory.

(v) The flatness-based nonlinear control has the advan-
tage to overcome the problems generated by non-
stable-zero dynamics (Isidori, 1989; Nijmeijer &
Schaft, 1990). However, the information needed

to determine this control may be obtained through
nonlinear observers; this problem is avoided by the
proposed 2DOF time-varying controller using the
linearization around desired trajectories obtained
from the flat output.

5. Application to ABS in vehicle
As an illustrative example of the proposed strategy, the con-
trol of the wheel slip in an ABS is studied. The considered
process is an ABS, used to control the slip of each wheel
of a vehicle to prevent it from locking so that a high fric-
tion is achieved and steerability is maintained (Johansen,
Petersen, Kalkkuhl, & Ludemann, 2003).

5.1. Literature review
Several solutions for ABS based on different control algo-
rithms have been proposed. A sliding mode approach
in Drakunov, Özgun̈er, Dix, and Ashrafi (1995) applies
a search for the optimum brake torque. This approach
requires the tyre force; hence, a sliding observer is used
to estimate it. The approach is tested in a simplified sim-
ulation environment. Another sliding mode approach is
proposed in Unsal and Kachroo (1999). In this approach,
the observability of the system is investigated. An extended
Kalman filter and a sliding mode observer are compared via
simulations. Another theoretical approach is presented by
Freeman (1995). Freeman designs an adaptive Lyapunov-
based nonlinear wheel slip controller, this controller has
been extended in Yu (1997) by introducing speed depen-
dence of the Lyapunov function. Neither of these two latter
approaches has been tested in simulation or in an ABS
equipment used in the experimental laboratory (Precup
et al., 2011). The design of linear proportional-integral,
gain-scheduling, and fuzzy control based on linearized
ABS models is discussed in Precup et al. (2011). A robust
proportional-integral-derivative (PID) controller based on
loop-shaping and a nonlinear PID, where the nonlinear
function gives a low/high gain for large/small errors
respectively, is proposed in Jiang (2000). Other PID-type
approaches to wheel slip control are considered in Jun
(1998) and Solyom and Rantzer (2002). Also, there are
several intelligent control schemes including fuzzy logic
control, adaptive control, and neural network approach
(Layne, Passino, & Urkovich, 1993; Lee & Zak, 2001;
Mauer, 1995; Will, Hui, & Zak, 1998).

The main objective of this work is to design a control
system which ensures the prevention of wheel-lock while
braking and maintaining of the wheel slip the nearest pos-
sible to 0. In the literature, sliding mode control (SMC)
is a preferable option to regulate wheel slip (Mitić et al.,
2013), as it guarantees the robustness of system for chang-
ing working conditions. The main idea behind this control
scheme is to restrict the motion of the system in a plane
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Figure 1. Quarter car forces and torques.

referred to as “sliding surface,” where the predefined func-
tion of error is zero. Sliding mode control is a nonlinear
control method that alters the dynamics of a nonlinear sys-
tem by the application of a discontinuous control signal that
forces the system to “slide” along a cross-section of the sys-
tem’s normal behaviour. In the case of SMC strategy, the
controller lets to reach the desired slip and to continue to
stay on the sliding surface. The wheel is not locked and
we have a robust tracking of the desired wheel slip. The
combination of SMC and fuzzy control (FC) is elaborated
in Mitić, Antić, Perić, Milojković, and Nikolić (2012). A
comparative analysis of several continuous-time SMCs of
ABS is presented in Antić, Nikolić, Mitić, Milojković, and
Perić (2010), both with a brief overview of existing SMC
concepts in continuous-time domain.

5.2. ABS model
The problem of wheel slip control is better explained by
looking at a quarter car model (see Figure 1). A mathemat-
ical model of the wheel slip dynamics is given by Freeman
(1995), Drakunov et al. (1995) and Johansen et al. (2003):

λ̇(t) = − 1
v(t)

[
1
m

(1 − λ(t)) + r2

J

]
F(λ) + 1

v(t)
r
J

T (t),

v̇(t) = − 1
m

F(λ),
(32)

where ω(t) is the angular speed of the wheel (rad/s), v(t) the
horizontal speed (m/s), T (t) the brake-acceleration torque
(N m), m the mass of the quarter car (450 kg), r the wheel
radius (0.32 m), J the wheel inertia (1 kg m2) and g the
acceleration of gravity (9.81 m/s2) and λ(t) is the wheel
slip given by

λ(t) = v(t) − rω(t)
v(t)

. (33)

The input signal T (t) is a brake-acceleration torque
applied to the wheel, it is expressed in (N m), and the out-
put is the vehicle speed v(t). The longitudinal slip λ(t) is
defined by the normalized difference between v(t) and the
speed of the wheel perimeter ω(t)r. F(λ) is the friction
force, which depends on the normal force, steering angle,
road surface, tyre characteristics and velocity of the car. The

Table 1. Parameter sets for friction coefficient char-
acteristics (Kiencke & Nielsen, 2005).

c1 c2 c3

Asphalt, dry 1.2801 23.99 0.52
Asphalt, wet 0.857 33.822 0.347
Concrete, dry 1.1973 25.168 0.5373
Cobblestones, dry 1.3713 6.4565 0.6691
Concrete, wet 0.4004 33.7080 0.1204
Snow 0.1946 94.129 0.0646
Ice 0.05 306.39 0

friction or adhesion coefficient μ(λ) is defined as the ratio
of the frictional force acting in the wheel plane F(λ) and
the wheel ground contact force FZ :

μ(λ) = F(λ)

FZ
. (34)

The calculation of friction force can be carried out using
the Burckhardt method (Kiencke & Nielsen, 2005):

μ(λ) = c1 · (1 − e−c2·λ(t)) − c3λ(t). (35)

The parameters c1, c2 and c3 are given for various types of
road surfaces in Table 1.

In the case of asphalt and dry road, the friction force is
given by

F(λ) = mg[1.28 × (1 − exp(−24λ(t))) − 0.52λ(t)].
(36)

Figure 2 shows the friction force as a function of the wheel
slip.

From the second equation of (32), we obtain:

ω(t) =
(

v(t)
r

)
(1 + F−1(mv̇(t))), (37)

where F−1() is the functional inverse of the friction force.
Then, the first equation of (32) yields T as a function of v(t),
v̇(t) and v̈(t). So the system (32) is flat with v(t) which is
a flat output of the nonlinear system. To design a control
law which maintains the wheel slip the nearest possible to
0, we perform, in the next development, an approximation
to a friction force F(λ) by applying the Taylor series for
this function at λ = 0 to obtain:

F(λ) = mg
(

1.28 ×
(

24λ

1! − (24λ)2

2! − (−24λ)3

3! + · · ·
)

−0.52λ

)
. (38)

With a third-order approximation at 0 and due to the
odd function of λ(t), the expression of the friction force
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Figure 2. Friction force.

becomes:

F(λ) = a1λ(t) + a3λ
3(t), (39)

where a1 = 30.2 × mg and a3 = 2949.1 × mg. The
equation of the system (32) becomes

λ̇(t) = − 1
v(t)

[
1
m

(1 − λ(t)) + r2

J

]
(a1λ(t) + a3λ

3(t))

+ 1
v(t)

r
J

T (t),

v̇(t) = −a1λ(t) + a3λ
3(t)

m
.

(40)
By analysing Equation (40), we remark that the input and
the output of the system are function of a finite number
of derivatives of the horizontal speed v(t). By denoting
z(t) = v(t), we obtain:

λ(t) = F−1(mv̇),

T (t) = J
r

(
λ̇(t)v(t) +

[
1
m

(1 − λ(t)) + r2

J

]

×(a1λ(t) + a3λ
3(t)

)
,

(41)

where

F−1(mv̇)

=
((

25m2v̇2

869719081g2 + 27543608
692519906279817

)1/2

− 5mv̇

29491g

)1/3

− 302
/ (

88473
((

25m2v̇2

869719081g2

+ 27543608
692519906279817

)1/2

− 5mv̇

29491g

)1/3
)

. (42)

Generally, for the nonlinear model (32) we must have
λ(t) < λmax, then the vehicle speed is a flat output of the
considered nonlinear model. In the case of an asphalt and
dry road, λmax is equal to 0.17.

For the considered system, a desired trajectory
(Td(t), λd(t), vd(t)) is defined and the following variables
are given:

δT (t) = Td(t) − T (t),

δλ(t) = λd(t) − λ(t),

δv(t) = vd(t) − v(t),

δλ̇(t) = λ̇d(t) − λ̇(t),

δv̇(t) = v̇d(t) − v̇(t).

For the vehicle speed, let us define a desired trajectory suffi-
ciently differentiable which takes the system from an initial
state to an equilibrium final state:

vd(t) = −11.8505 ·
(− sin(π t)

π
+ t

)
+ vd0, (43)

where vd0 = 23.74 m/s is the initial condition for the hor-
izontal speed. The trajectories for the brake-acceleration
torque Td(t) and the tyre slip λd(t) are deduced from
Equation (41).
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Figure 3. Desired trajectories for the input, the slip and the flat output of the nonlinear system.

Figure 3 shows the desired trajectories for the flat
output, the input and tyre slip of the nonlinear system.
The linearized model of Equation (40) around this desired
trajectory is given by

δλ̇ = −λ̇d

vd
δv −

(
(a1 + 3a3λ

2
d)

(
1 − λd

m
+ r2

J

)

−a1λd + a3λ
3
d

m

)
δλ

vd
+ r

Jvd
δT ,

δv̇ = −
(

(a1 + 3a3λ
2
d)

δλ

m

)
.

(44)

To design the closed-loop control which allows to track
variable reference trajectories, the following state space
representation of the system is considered:

ẋ(t) = A(t)x(t) + B(t)δT (t),

δλ = C(t)x(t),
(45)

with x(t) = (δλ δv)T is the state vector such that

A(t) =
(

A11(t) A12(t)
A21(t) A22(t)

)
,

B(t) =
( r

Jvd
0

)
,

C(t) = (0 1),

(46)

where

A11(t) = − 1
vd

(
(a1 + 3a3λ

2
d)

(
1 − λd

m
+ r2

J

)

−a1λd + a3λ
3
d

m

)
,

A12(t) = −λ̇d

vd
,

A21(t) = −(a1 + 3a3λ
2
d)

m
,

A22(t) = 0.

5.3. Controller design
For the model equation (44), it can be seen that δv is a flat
output of the linearized system.

The linearization around a reference trajectory leads to
an LTV system and its controllability matrix is given by

K (t) =
(

K11(t) K12(t)
K21(t) 0 K22(t)

)
, (47)

where

K11(t) = r
Jvd

,

K12(t) = r
Jv2

d

(
(a1 + 3a3λ

2
d)

(
1 − λd

m
+ r2

J

)

−a1λd + a3λ
3
d

m
− v̇d

)
,
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K21(t) = 0,

K22(t) = r(a1 + 3a3λ
2
d)

mJvd
.

The controllability matrix K (t) has rank 2 because

r2(a1 + 3a3λ
2
d)

m(Jvd)2 �= 0 ∀t ≥ 0.

Then, the system (45) is controllable and following Rotella
and Zambettakis (2007), the time-varying linearized system
(45) is flat. The observability matrix of the pair (A(t), C(t))
is given by

O(A(t),C(t)) =
⎛
⎝ 0 1

−(a1 + 3a3λ
2
d)

m
0

⎞
⎠ ,

which has rank 2 ∀t ≥ 0. The system is then observable and
its controllable canonical form is obtained by applying the
algorithm presented in Section 2:

δŻ(t) = Ā(t)δZ(t) + B̄δT (t),

δλ(t) = C̄δZ(t),
(48)

with

Ā(t) =
(

0 1
−ψ0(t) −ψ1(t)

)
, B̄ =

(
0
1

)
.

δZ(t) = P(t)x(t) and δZ(t) = (δz(t) δż(t))T. The previous
control law (18) can be written as

T (t) = z̈d(t) + k1(żd(t) − ż(t)) + k0(zd(t) − z(t))

+ �1(t)ż(t) + �0(t)z(t). (49)

This equation is transformed as follows:

T (t) = Td(t) + (k1 − �1(t))δż(t) + (k0 − �0(t))δz(t),

which leads to:

δT (t) = �(t)δZ(t), (50)

with �(t) = [(�0(t) − k0) (�1(t) − k1)].
From Equation (20), we deduce:(

δv(t)
δv̇(t)

)
=

(
C̄(t)

˙̄C(t) + C̄(t)Ā(t)

)
δZ(t) +

(
0

C̄(t)B̄

)
δT (t),

(51)
which can be transformed in the following form:

δY (t) = O(t)δZ(t) + M (t)δT (t), (52)

with:

δY (t) = (δv(t) δv̇(t))T,

O(t) =
(

C̄(t)
˙̄C(t) + C̄(t)Ā(t)

)
,

M (t) =
(

0
C̄(t)B̄

)
.

Equation (48) can be written as

δZ(t) = s−1[Ā(t)δZ(t) + B̄δT (t)]. (53)

By replacing the expression of δZ(t), deduced from
Equation (52), in the right side of Equation (53), we obtain

δZ(t) = s−1[Ā(t)O−1(t)δY (t)]
− s−1[Ā(t)O−1(t)M (t)δT (t)] + B̄s−1δT (t),

(54)

with:

Ā(t)O−1(t) =
(

α1(t) α2(t)
α3(t) α4(t)

)
, (55)

Ā(t)O−1(t)M (t) =
(

β1(t)
β2(t)

)
. (56)

By using integration by parts, it leads to the following
expression of the state vector:

δZ(t) =
(

α2(t)
α4(t)

)
δv(t) + s−1

[(
α1(t) − α̇2(t)
α3(t) − α̇4(t)

)
δv(t)

]

+ s−1
[( −β1

1 − β2

)
δT (t)

]
. (57)

By rewriting the expression (50), the following form is
obtained:

δT (t)

= �(t) ×
[(

α2(t)
α4(t)

)
δv(t)

+s−1
[(

α1(t) − α̇2(t)
α3(t) − α̇4(t)

)
δv(t)

]

+s−1
[( −β1

1 − β2

)
δT (t)

]]
(58)

and then:

δT (t) = S(s−1, δv(t)) + R(s−1, δT (t)) (59)

with:

S(s−1, δv(t)) = �(t) ×
[(

α2(t)
α4(t)

)
δv(t)

+s−1
[(

α1(t) − α̇2(t)
α3(t) − α̇4(t)

)
δv(t)

]]
, (60)

R(s−1, δT (t)) = �(t) × s−1
[( −β1

1 − β2

)
δT (t)

]
. (61)

Figure 4 illustrates the structure of the proposed method
based on the flatness property with the use of an exact
observer. The approach is tested in a simplified simulation
environment. For the numerical simulations, the tracking
model is set to be a second-order model with a time response
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Figure 4. Tracking trajectories via state feedback controller
using an exact observer.

of 0.005 s. Then, the polynomial K(s) in Equation (14) is
given by

K(s) = s2 + 840s + 360000
Figure 5 shows that the trajectories of the nonlinear sys-

tem follow the desired trajectories with good performances.
The results show also that the control law obtained by the
application of the flatness-based controller, allows to obtain
high performances in terms of path tracking with an error
which tends asymptotically to zero. These results point out
the effectiveness of the use of the flatness-based approach
for the LTV systems in a path tracking context.

This method with a direct calculation of the state
vector which contains the flat output and its derivatives
leads to a control law which can be seen as a 2DOF

controller but without resolving Bézout’s equation. This
regulator-observer permits the output of the system to track
a desired trajectory without using observer dynamics.

The robustness of the control scheme is investigated for
different surface conditions. The parameters in Equation
(35) are modified in accordance with surfaces, so that the
parameters are changed in the model but not in the con-
troller, the performances in tracking of speed still being
correct (see Figure 6). We remark bad performances in terms
of tracking of the wheel slip (see Figure 7) because in this
design strategy, following Equation (13), the flat output of
the system (speed) tracks the desired flat output (desired
speed). Figure 8 shows simulation results when there is a
very quick change from dry asphalt to wet road at a time
of 1 s. Regarding the simulation results, it can be inferred
that the speed can track the reference speed satisfactorily.
Hence, a perfect tracking of the reference trajectory has
been achieved. Furthermore, the control proposed in this
paper leads to a robust tracking of the speed, which is the
flat output, but not of the wheel slip. In addition, for various
surface conditions, we remark an error on the behaviour of
the wheel slip (see Figure 7) due to the bonded parametric
variation.

In the following, the proposed strategy is compared with
a classical observer-controller approach. The flatness-based
control is designed by using a reduced order observer with
a constant estimator error gain. The realization of this con-
troller will be done with the calculation of the observable

Figure 5. Input T (t), slip λ(t) and output v(t) trajectories of the nonlinear system and the desired trajectories.
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Figure 6. Output v(t) trajectories of the nonlinear system on various surfaces and the desired trajectories.

Figure 7. Slip λ(t) trajectories of the nonlinear system on various surfaces and the desired trajectories.

form of the state equation (45), which is given by

ẋo(t) =
(

0 −τ0(t)
1 −τ1(t)

)
xo(t) +

⎛
⎝− r(a1 + 3a3λ

2
d)

Jmvd
0

⎞
⎠ δT (t),

δv(t) = (0 1)xo(t),
(62)

where

τ0(t) = (a1 + 3a3λ
2
d)

mv2
d

(
λ̇dvd +

(
1 − λd + mr2

J

−
(

a1λd + a3λ
3
d

a1 + 3a3λ
2
d

))
v̇d

)
, (63)
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Figure 8. Tracking error for the speed, input T (t) and slip λ(t) trajectories of the nonlinear system and the desired trajectories when there
is a change from dry asphalt to wet road at the time 1 s.

τ1(t) = (a1 + 3a3λ
2
d)

mvd

(
1 − λd + mr2

J
− a1λd + a3λ

3
d

a1 + 3a3λ
2
d

)
.

(64)

Following Rotella (2003), the estimated state vector of the
observable form is given by

x̂o(t) =
(

ζ(t) + λ0δv(t)
δv(t)

)
, (65)

ζ̇ (t) = λ0ζ(t) +
(

− r(a1 + 3a3λ
2
d)

Jmvd

)
δT (t)

+ (τ1(t) − λ0)λ0. (66)

By replacing δx̂o(t) into the control law (50), we obtain

δT (t) = �(t)P(t)xo(t), (67)

where P(t) is the change of variable from the observable
form to the controllable form. With a constant dynamic
observer λ0 = 10 and by considering the tracking model set
to be a second-order model with a time response of 0.005 s,
the results are obtained in Figure 9.

These results point out the effectiveness of the use of
the flatness-based approach for the LTV systems in a path
tracking context. We have underlined the advantage of the
use of a reduced order observer in order to design a flatness-
based control for tracking a desired trajectory in the case of
LTV systems. This advantage consists in the calculation of
the estimator error gain which is found constant.

By observing the tracking errors of the various designs,
the controller with a direct calculation of the state vector

which contains the flat output and its derivatives was supe-
rior to the others in terms of path tracking. This design leads
to a control law which can be seen as a 2DOF controller
but without resolving Bézout’s equation in a time-varying
framework. This regulator-observer permits to the output
of the system to track a desired trajectory without using
observer dynamics. The error on the vehicle speed result-
ing from its inaccurate measurements perturbations used in
the simulations is 0.11 m/s (the initial condition due to the
inaccurate measurement). With this value, the tracking error
of various designs tends asymptotically to zero. If this inac-
curate measurement is important, the vehicle speeds will
not track the desired trajectory in the case of the use of an
exact observer. In fact, it should be clear from the previous
developments that the relation linking the exact observer
(integral reconstructor), δẐ(t), and the actual value of the
state, is given by

δZ(t) = δẐ(t) +
n−2∑
i=1

(∫ t

0
Āi−1(t)δZ0(t) dt

)(i−1)

, (68)

where δZ0(t) is the initial condition due to the inaccurate
measurement. In a further development within the context
of flatness and exact observer, our main concern is how to
appropriately compensate the effects of the unknown initial
conditions when the actual value of the state is replaced
by its integral reconstructor in a given state-based feedback
controller design.

6000 -- Brake-acceleration torque 

E 4000 
- - , Desired brake-acceleration torque 

z 
~ 2000 

0 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Time (s) 

0.1 

- - Desired slip 

0.05 

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

0.2 
Time (s) 

-- Traking error for the speed 

~ 0.1 
~ .s 

0 

-0.1 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Time (m/s) 



Systems Science & Control Engineering: An Open Access Journal 103

Figure 9. The output v(t) and the slip λ(t) trajectories of the nonlinear system and the tracking error for the speed by the use of a reduced
order observer.

6. Conclusion
In this paper, a flatness-based control for tracking a desired
trajectory in the case of LTV systems is proposed and devel-
oped. The proposed controller is based on an exact observer
with a direct calculation of the state vector which contains
the flat output and its derivatives. This regulator-observer
permits to the system output to track a desired trajectory
without using observer dynamics. The proposed method
leads to a control design which can be seen as a 2DOF con-
troller but without resolving Bézout’s equation. The control
law applied on an ABS gives a high level of performances
in terms of the tracking of the wheel slip.

Beyond the framework of LTV systems, the result pre-
sented here opens the way to the control of nonlinear
systems using their linearizations around a given trajectory.
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