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Abstract
In this paper we define a priori what is a natural two-dimensional model for a time-
dependent flexural shell. As expected, this model takes the form of a set of hyperbolic
variational equations posed over the space of admissible linearized inextensional
displacements, and a set of initial conditions. Using a classical argument, we prove
that the model under consideration admits a unique strong solution. However, the
latter strategy makes use of function spaces which are not amenable for numerically
approximating the solution. We thus provide an alternate formulation of the studied
problem using a suitable penalty scheme, which is more suitable in the context of
numerical approximations. For sake of completeness, in the final part of the paper,
we also provide an existence and uniqueness theorem in the case where the linearly
elastic shell under consideration is an elliptic membrane shell.

Keywords
Linearly elastic flexural shells, hyperbolic equations, penalty method, constrained
optimization, Galerkin method

1 Introduction

Flexural shells are widely used in many applicative fields such as physics,
engineering and material science. Some remarkable applications involving the
usage of such shells are: reinforced oil palm shell and palm oil clinker concrete
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(PSCC) beam [1], smart composite shell panels [2], functionally graded spherical
shell panel [3], anisogrid lattice conical shells [4], and reinforced Eco-friendly
coconut shell concrete [5]. Because of its wide range of applications, the theory of
flexural shells is one of the most important branches in Mathematical Elasticity.

Unlike the static case, which was addressed by Ciarlet and his associates in
the references [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], there
are very few reference about the time-dependent case. In this direction we cite,
for instance, the papers [19] and [20].

To our best knowledge, there are no references that treat the existence and
uniqueness of solutions for the dynamics of flexural shells with mathematical
rigour.

In Section 2 we present some geometrical and analytical background; in
Section 3 we formulate the problem describing the displacement of a flexural
shell when it is subjected to a dynamic load; in Section 4 we prove the sought
existence and uniqueness result by relying on classical arguments that, however,
are not amenable for the implementation of a numerical scheme of the solution;
in Sections 5 and 6 we prove the existence and uniqueness of solutions using a
penalty scheme, which is easier to treat in a context of numerical simulations;
finally, in Section 7, we provide an existence and uniqueness theorem in the case
where the linearly elastic shell under consideration is an elliptic membrane shell.

2 Geometrical preliminaries

For details about the classical notions of differential geometry recalled in this
section see, e.g., [21] or [22].

Greek indices, except ε and ν, take their values in the set {1, 2}, while Latin
indices, except when they are used for indexing sequences, take their values in
the set {1, 2, 3}, and the summation convention with respect to repeated indices
is systematically used in conjunction with these two rules. The notation E3

designates the three-dimensional Euclidean space; the Euclidean inner product
and the vector product of u,v ∈ E3 are denoted u · v and u ∧ v; the Euclidean
norm of u ∈ E3 is denoted |u|. The notation δji designates the Kronecker symbol.

Given an open subset Ω of Rn, notations such as L2(Ω), Hm(Ω), or Hm
0 (Ω),

m ≥ 1, designate the usual Lebesgue and Sobolev spaces, and the notation D(Ω)
designates the space of all functions that are infinitely differentiable over Ω and
have compact support in Ω. The notation ‖·‖X designates the norm in a normed
vector space X. The dual space of a vector space X is denoted by X∗ and the
duality pair between X∗ and X is denoted by X∗〈·, ·〉X . Spaces of vector-valued
functions are denoted with boldface letters. Lebesgue-Bochner spaces defined
over a bounded open interval I (cf. [23]), are denoted Lp(I;H), where H is a
Banach space and 1 ≤ p ≤ ∞. The notation ‖·‖0,Ω designates the norm of the

Lebesgue space L2(Ω), and the notation ‖·‖m,Ω, designates the norm of the
Sobolev space Hm(Ω), m ≥ 1. The notation ‖·‖Lp(I;H) designates the norm of

the Lebesgue-Bochner space Lp(I;H). The notations η̇ and η̈ denote the first
weak derivative with respect to t ∈ I and second weak derivative with respect
to t ∈ I of a scalar function η defined over the interval I. The notations η̇ and η̈
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Paolo Piersanti 3

denote the first weak derivative with respect to t ∈ I and second weak derivative
with respect to t ∈ I of a vector-valued function η defined over the interval I.

A domain in Rn is a bounded and connected open subset Ω of Rn, whose
boundary ∂Ω is Lipschitz-continuous, the set Ω being locally on a single side of
∂Ω.

Let ω be a domain in R2, let y = (yα) denote a generic point in ω, and let
∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ . A mapping θ ∈ C1(ω;E3) is an immersion
if the two vectors

aα(y) := ∂αθ(y)

are linearly independent at each point y ∈ ω. Then the image θ(ω) of the set ω
under the mapping θ is a surface in E3, equipped with y1, y2 as its curvilinear
coordinates. Given any point y ∈ ω, the vectors aα(y) span the tangent plane
to the surface θ(ω) at the point θ(y), the unit vector

a3(y) :=
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|

is normal to θ(ω) at θ(y), the three vectors ai(y) form the covariant basis at
θ(y), and the three vectors aj(y) defined by the relations

aj(y) · ai(y) = δji

form the contravariant basis at θ(y); note that the vectors aβ(y) also span the
tangent plane to θ(ω) at θ(y) and that a3(y) = a3(y).

The first fundamental form of the surface θ(ω) is defined by means of its
covariant components

aαβ := aα · aβ = aβα ∈ C0(ω),

or by means of its contravariant components

aαβ := aα · aβ = aβα ∈ C0(ω).

Note that the symmetric matrix field (aαβ) is the inverse of the matrix field
(aαβ), that aβ = aαβaα and aα = aαβa

β , and that the area element along θ(ω)

is given at each point θ(y), y ∈ ω, by
√
a(y) dy, where

a := det(aαβ) ∈ C0(ω).

Given an immersion θ ∈ C2(ω;E3), the second fundamental form of the surface
θ(ω) is defined by means of its covariant components

bαβ := ∂αaβ · a3 = −aβ · ∂αa3 = bβα ∈ C0(ω),

or by means of its mixed components

bβα := aβσbασ ∈ C0(ω),
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and the Christoffel symbols associated with the immersion θ are defined by

Γσαβ := ∂αaβ · aσ = Γσβα ∈ C0(ω).

The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is
defined by

κ(y) :=
det(bαβ(y))

det(aαβ(y))
= det

(
bβα(y)

)
(the denominator in the above relation does not vanish since θ is assumed to
be an immersion). Note that the Gaussian curvature κ(y) at the point θ(y) is
also equal to the product of the two principal curvatures at this point.

A surface θ(ω) defined by means of an immersion θ ∈ C2(ω;E3) is said to be
elliptic if its Gaussian curvature is everywhere > 0 in ω, or equivalently, if there
exists a constant κ0 such that

0 < κ0 ≤ κ(y) for all y ∈ ω.

Given an immersion θ ∈ C2(ω;E3) and a vector field η = (ηi) ∈ C1(ω;R3), the
vector field

η̃ := ηia
i

can be viewed as a displacement field of the surface θ(ω), thus defined by
means of its covariant components ηi over the vectors ai of the contravariant
bases along the surface. If the norms ‖ηi‖C1(ω) are small enough, the mapping

(θ + ηia
i) ∈ C1(ω;E3) is also an immersion, so that the set (θ + ηia

i)(ω) is also
a surface in E3, equipped with the same curvilinear coordinates as those of the
surface θ(ω), called the deformed surface corresponding to the displacement
field η̃ = ηia

i. One can then define the first fundamental form of the deformed
surface by means of its covariant components

aαβ(η) := (aα + ∂αη̃) · (aβ + ∂βη̃),

and the second fundamental form of the deformed surface by means of its
covariant components

bαβ(η) := ∂α(aβ + ∂βη̃) · (a1 + ∂1η̃) ∧ (a2 + ∂2η̃)

|(a1 + ∂1η̃) ∧ (a2 + ∂2η̃)|

The linear part with respect to η̃ in the difference
1

2
(aαβ(η)− aαβ) is called

the linearized change of metric tensor associated with the displacement field
ηia

i, the covariant components of which are then given by

γαβ(η) =
1

2
(aα · ∂βη̃ + ∂αη̃ · aβ)

=
1

2
(∂βηα + ∂αηβ)− Γσαβησ − bαβη3 = γβα(η).
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The linear part with respect to η̃ in the difference (bαβ(η)− bαβ) is called
the linearized change of curvature tensor associated with the displacement field
ηia

i, the covariant components of which are then given by

ραβ(η) = (∂αβη̃ − Γσαβ∂ση̃) · a3

= ∂αβη3 − Γσαβ∂ση3 − bσαbσβη3

+ bσα(∂βησ − Γτβσητ ) + bτβ(∂αητ − Γσατησ)

+ (∂αb
τ
β + Γτασb

σ
β − Γσαβb

τ
σ)ητ = ρβα(η).

Let us now define the time-dependent version of the linearized change of
metric tensor γαβ . Consider the operator

γ̃αβ : L2(0, T ;H1(ω)×H1(ω)× L2(ω))→ L2(0, T ;L2(ω)),

defined by

γ̃αβ(η)(t) := γαβ(η(t)) for all η ∈ L2(0, T ;H1(ω)×H1(ω)× L2(ω)),

for almost all (a.a. in what follows) t ∈ (0, T ).
Let us show that the definition is well-posed, i.e., that for each η in

L2(0, T ;H1(ω)×H1(ω)× L2(ω)) the following integral∫ T

0

‖γ̃αβ(η)(t)‖20,ω dt,

is finite.
Clearly, γαβ(η(t)) is in L2(ω), for a.a. t ∈ (0, T ). Observe also that∫ T

0

‖γ̃αβ(η)(t)‖20,ω dt =

∫ T

0

‖γαβ(η(t))‖20,ω dt ≤ C
∫ T

0

‖η(t)‖2H1(ω)×H1(ω)×L2(ω) dt,

where the constant C is uniform with respect to t, since it depends only on the
Christoffel symbols and the second fundamental form of the surface θ(ω).

The operator γ̃αβ is clearly linear. Indeed, for each ξ, η in L2(0, T ;H1(ω)×
H1(ω)× L2(ω)), we have that

γ̃αβ(ξ + η)(t) = γαβ(ξ(t)) + γαβ(η(t)) = (γ̃αβ(ξ) + γ̃αβ(η))(t),

for a.a. t ∈ (0, T ). The fact that γ̃αβ(cη) = c γ̃αβ(η), for all c ∈ R and all
η ∈ L2(0, T ;H1(ω)×H1(ω)× L2(ω)), is straightforward.

The operator γ̃αβ is continuous. Indeed, for each η in L2(0, T ;H1(ω)×
H1(ω)× L2(ω)), we have that

‖γ̃αβ(η)‖2L2(0,T ;L2(ω)) =

∫ T

0

‖γαβ(η(t))‖20,ω dt

≤ C‖η‖L2(0,T ;H1(ω)×H1(ω)×L2(ω)),
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where, again, the constant C > 0 is uniform with respect to t.
The terminology “analogue” for the linear and continuous operator γ̃αβ is

justified by the fact that

γ̃αβ(η) = γαβ(η) for all η ∈ H1(ω)×H1(ω)× L2(ω) independent of t.

We can similarly define the time-dependent version of the linearized change
of curvature tensor ραβ . Consider the operator

ρ̃αβ : L2(0, T ;H1(ω)×H1(ω)×H2(ω))→ L2(0, T ;L2(ω)),

defined by

ρ̃αβ(η)(t) := ραβ(η(t)) for all η ∈ L2(0, T ;H1(ω)×H1(ω)×H2(ω)),

for a.a. t ∈ (0, T ). This operator is clearly well-defined, linear, and continuous.
Moreover, for all η ∈ H1(ω)×H1(ω)×H2(ω) independent of t, we have

ρ̃αβ(η) = ραβ(η).

3 A natural model for time-dependent flexural shells

Let ω be a domain in R2 with boundary γ, and let γ0 be a non-empty relatively
open subset of γ. Let I be an interval of the form (0, T ), with T <∞.

For each ε > 0, we define the sets

Ωε := ω × ]−ε, ε[ and Γε± := ω × {±ε},

we let xε = (xεi ) designate a generic point in the set Ωε, and let ∂εi := ∂/∂xεi .
Hence we have xεα = yα and ∂εα = ∂α. Define, also, the set

Γε0 := γ0 × [−ε, ε],

which is thus a subset of the lateral face of the undeformed reference
configuration.

In all that follows, we are given an injective immersion θ ∈ C3(ω;E3) and
ε > 0, and we consider a shell with middle surface θ(ω) and with constant
thickness 2ε. This means that the reference configuration of the shell is the set
Θ(Ωε), where the mapping Θ : Ωε → E3 is defined by

Θ(xε) := θ(y) + xε3a
3(y) at each point xε = (y, xε3) ∈ Ωε.

Note that the injectivity assumption is made here for physical reasons, but
that is otherwise not needed in the proofs. One can then show (cf. Theorem 3.1-
1 of [21] or Theorem 4.1-1 of [22]) that, if the thickness ε > 0 is small enough,
such a mapping Θ ∈ C2(Ωε;E3) is a C2–diffeomorphism from Ωε onto Θ(Ωε),
hence is in particular an injective immersion, in the sense that the three vectors

gεi (x
ε) := ∂εiΘ(xε)
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are linearly independent at each point xε ∈ Ωε; these vectors then constitute
the covariant basis at the point Θ(xε), while the three vectors gj,ε(xε), defined
by the relations

gj,ε(xε) · gεi (xε) = δji ,

constitute the contravariant basis at the same point.
It will be implicitly assumed in what follows that the immersion θ ∈

C3(ω;E3) is injective and that ε > 0 is small enough so that Θ : Ωε → E3 is
a C2-diffeomorphism onto its image.

We henceforth assume that the shell is made of a homogeneous and isotropic
linearly elastic material and that its reference configuration Θ(Ωε) is a natural
state, i.e., is stress free. As a result of these assumptions, the elastic behavior of
this elastic material is completely characterized by its two Lamé constants λ ≥ 0
and µ > 0 (see, e.g., Section 3.8 in [24]). The positive constant ρ designates the
mass density of the shell per unit volume.

We also assume that the shell is subjected to applied body forces whose
density per unit volume is defined by means of its contravariant components
f i,ε ∈ L∞(0, T ;L2(Ωε)), i.e., over the vectors gεi of the covariant bases; to
applied surface forces whose density per unit area is defined by means of its
contravariant components hi,ε ∈ L∞(0, T ;L2(Γε+ ∪ Γε−)), i.e., over the vectors gεi
of the covariant bases; and to a homogeneous boundary condition of place along
the portion Γε0 of its lateral face, i.e., the admissible displacement fields vanish on
Γε0. For a.a. t ∈ (0, T ), we can thus define the contravariant components pi,ε(t)
of the vector pε = (pi,ε) over the vectors ai of the covariant bases by

pi,ε(t) :=

{∫ ε

−ε
f i,ε(t) dxε3 + hi,ε+ (t) + hi,ε− (t)

}
∈ L2(ω) for a.a. t ∈ (0, T ),

where hi,ε± (t) := hi,ε(t)(·,±ε) ∈ L2(ω), for a.a. t ∈ (0, T ).
Define the space

V K(ω) := {η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω); ηi = ∂νη3 = 0 on γ0},

where the symbol ∂ν denotes the outer unit normal derivative operator along γ.
The space V K(ω) is the one used for formulating the two-dimensional equations
governing Koiter’s model (see the series of papers [25], [11], [18] and [17]).

Define the norm ‖ · ‖V K(ω) by

‖η‖V K(ω) :=

{∑
α

‖ηα‖21,ω + ‖η3‖22,ω

}1/2

for each η = (ηi) ∈ V K(ω),

Next, we define the fourth-order two-dimensional elasticity tensor of the
shell, viewed here as a two-dimensional linearly elastic body, by means of its
contravariant components

aαβστ :=
4λµ

λ+ 2µ
aαβaστ + 2µ

(
aασaβτ + aατaβσ

)
.
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Following the terminology proposed in Section 6.1 of [21], a linearly elastic
shell is said to be a flexural shell if the following two additional assumptions
are satisfied: first, length γ0 > 0 (an assumption that is satisfied if γ0 is a non-
empty relatively open subset of γ, as here), and second, the following space of
admissible linearized inextensional displacements:

V F (ω) := {η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω);

ηi = ∂νη3 = 0 on γ0 and γαβ(η) = 0 in ω},

contains nonzero functions, i.e.,

V F (ω) 6= {0}.

Classical examples of flexural shells are, for instance, cylindrical shells, conical
shells and plates (see, respectively, Figures 6.1-1, 6.1-2, and 6.1-3 of [21]).

To begin with, we state a crucial inequality that holds for general surfaces.

Theorem 3.1. Let ω be a domain in R2 and let θ ∈ C3(ω;E3) be an immersion.
Let γ0 be a non-empty relatively open subset of γ. Define the space

V K(ω) := {η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω); ηi = ∂νη3 = 0 on γ0}.

Then there exists a constant c = c(ω, γ0,θ) > 0 such that{∑
α

‖ηα‖21,ω + ‖η3‖22,ω

}1/2

≤ c
{∑
α,β

‖γαβ(η)‖20,ω +
∑
α,β

‖ραβ(η)‖20,ω
}1/2

for all η = (ηi) ∈ V K(ω).

The above inequality, which is due to Bernadou & Ciarlet [26] and was later
improved by Bernadou, Ciarlet & Miara [27] (see also Theorem 2.6-4 of [21]),
constitutes an example of a Korn inequality on a general surface; it constitutes a
“Korn inequality” in the sense that it provides a basic estimate of an appropriate
norm of a displacement field defined on a surface in terms of an appropriate norm
of a specific “measure of strain” (here, the linearized change of metric tensor
and the linearized change of curvature tensor) corresponding to the displacement
field under consideration.

A natural formulation of a set of time-dependent two-dimensional equations
(“two-dimensional”, in the sense that they are posed over the two-dimensional
subset ω) can be derived by slightly modifying the model proposed by Xiao in
the paper [20], where time-dependent Koiter’s shells are studied.

Let us introduce the problem PεF (ω), which constitutes the point of departure
of our analysis.

Problem PεF (ω). Find a vector field ζε = (ζεi ) : (0, T )→ V F (ω) such that

ζε ∈ L∞(0, T ;V F (ω)),

ζ̇
ε
∈ L∞(0, T ;L2(ω)),

ζ̈
ε
∈ L∞(0, T ;V ∗F (ω)),
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that satisfies the following variational equations

2ε3ρ
d2

dt2

∫
ω

ζεi (t)ηi
√
ady +

ε3

3

∫
ω

aαβστρστ (ζε(t))ραβ(η)
√
ady =

∫
ω

pi,ε(t)ηi
√
a dy,

for all η = (ηi) ∈ V F (ω), in the sense of distributions in (0, T ), and that
satisfies the following initial conditions{

ζε(0) = ζ0,

ζ̇
ε
(0) = ζ1,

(1)

where ζ0 ∈ V F (ω) and ζ1 ∈ L
2(ω) are prescribed.

�

We say that ζε is a weak solution of Problem PεF (ω) if

ζε ∈ L∞(0, T ;V F (ω)),

ζ̇
ε
∈ L∞(0, T ;L2(ω)),

ζ̈
ε
∈ L∞(0, T ;V ∗F (ω)),

if ζε satisfies the variational equations of Problem PεF (ω) in the sense of
distributions in (0, T ), and also satisfies the initial conditions (1).

We say that ζε is a strong solution of Problem PεF (ω) if

ζε ∈ C0([0, T ];V F (ω)) ∩ C1([0, T ];L2(ω)),

if ζε satisfies the variational equations of Problem PεF (ω) in the sense of
distributions in (0, T ), and also satisfies the initial conditions (1).

We recall a very important inequality which is used to study evolutionary
problems: Gronwall’s inequality (see the seminal paper [28] and Theorem 1.1 in
Chapter III of [29]).

Theorem 3.2. Let T > 0 and suppose that the function y : [0, T ]→ R is
absolutely continuous and such that

dy

dt
(t) ≤ a(t)y(t) + b(t), for a.a. t ∈ (0, T ),

where a, b ∈ L1(0, T ) and a, b ≥ 0 for a.a. t ∈ (0, T ). Then, it results

y(t) ≤
[
y(0) +

∫ t

0

b(s) ds

]
e
∫ t
0
a(s) ds, for all t ∈ [0, T ].

4 Existence and uniqueness of solutions of Problem Pε
F (ω):

Classical approach

The proof of existence and uniqueness of strong solutions of Problem PεF (ω) can
be straightforwardly obtained by implementing the same strategy as in Section 6
of Chapter 1 of [30]. In all what follows, the symbol “↪→” denotes a continuous
embedding, while the symbol “↪→↪→” denotes a compact embedding.
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Theorem 4.1. Problem PεF (ω) admits a unique strong solution ζε ∈
C0([0, T ];V F (ω)) ∩ C1([0, T ];L2(ω)).

Proof. Define

HF (ω) := V F (ω)
‖·‖L2(ω)

and let us observe that it is a closed subspace of L2(ω). Indeed, given any η,
ξ ∈HF (ω), there exist sequences (ηk)∞k=1 and (ξk)∞k=1, both of them in V F (ω),
such that

ηk → η, in L2(ω) as k →∞,
ξk → ξ, in L2(ω) as k →∞.

Let us now consider the sequence (Υk)∞k=1, where

Υk := ηk + ξk, for each k ≥ 1,

and observe that (Υk)∞k=1 is contained in V F (ω), since the constraints appearing
in the definition of the space V F (ω) are linear. Hence, we have

Υk → (η + ξ), in L2(ω) as k →∞,

which shows that the element (η + ξ) belongs to HF (ω). Likewise, it can be
shown that, given any α ∈ R and any η ∈HF (ω), it results (αη) ∈HF (ω).

It can also be observed that the following chain of embeddings holds if we
identify HF (ω) with its dual (see, e.g., Lemma 6.8 on page 74 of [30])

V F (ω) ↪→↪→HF (ω) ↪→↪→ V ∗F (ω).

Since V F (ω) is clearly dense in HF (ω) with respect to the norm ‖ · ‖L2(ω),
we are in a position to apply Theorem 8.2-2 of [31] and infer the existence and
uniqueness of strong solutions of Problem PεF (ω). This completes the proof.

The proof presented above is straightforward and resorts to classical results.
However, in the context of the implementation of numerical schemes, the
involved function spaces are not amenable for the construction of a finite element
basis. We recall, indeed, that it is often very complicated to construct a finite
element basis within a function space bearing a constraint.

5 Penalty scheme for the considered problem

To fix the ideas, from now onward, we identify L2(ω) and L2(ω) with their
respective dual spaces, and we equip them with the following inner products

(η, ξ) ∈ L2(ω)× L2(ω)→
∫
ω

ηξ
√
a dy,

(η, ξ) ∈ L2(ω)×L2(ω)→
∫
ω

ηiξi
√
ady.
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The main difficulty arising when studying the existence and uniqueness of
weak solutions of the time-dependent flexural shell model presented in Section 3
is that the space V F (ω) is not, in general, dense in L2(ω). This prevents abstract
spectral theory from being applied (see, for instance, Theorem 6.2-1 of [31]). A
possible way to overcome this difficulty consists in adapting the penalty scheme
described in Chapter II, Section 4 of [32] (see also [33]) to formulate an alternate
problem posed over the function space V K(ω), which does not take into account
the constraint appearing in the definition of the space V F (ω).

Observe first that V K(ω) is dense in L2(ω) and that

V K(ω) ↪→↪→ L2(ω) ↪→↪→ V ∗K(ω).

Let κ > 0 denote the penalty parameter and let us introduce the corresponding
“penalized” problem PεF,κ(ω).

Problem PεF,κ(ω). Find a vector field ζεκ = (ζεi,κ) : [0, T ]→ V K(ω) such that

ζεκ ∈ C0([0, T ];V K(ω)) ∩ C1([0, T ];L2(ω)),

that satisfies the following variational equations

2ε3ρ
d2

dt2

∫
ω

ζεi,κ(t)ηi
√
a dy +

ε3

3

∫
ω

aαβστρστ (ζεκ(t))ραβ(η)
√
a dy

+
1

κ

∫
ω

aαβστγστ (ζεκ(t))γαβ(η)
√
a dy =

∫
ω

pi,ε(t)ηi
√
a dy,

for all η ∈ V K(ω), in the sense of distributions in (0, T ), and which satisfies
the initial conditions (1).

�

We say that ζεκ is a weak solution of Problem PεF,κ(ω) if

ζεκ ∈ L∞(0, T ;V K(ω)),

ζ̇
ε

κ ∈ L∞(0, T ;L2(ω)),

ζ̈
ε

κ ∈ L∞(0, T ;V ∗K(ω)),

if ζεκ satisfies the variational equations of Problem PεF,κ(ω) in the sense of
distributions in (0, T ), and also satisfies the initial conditions (1).

We say that ζεκ is a strong solution of Problem PεF,κ(ω) if

ζεκ ∈ C0([0, T ];V K(ω)) ∩ C1([0, T ];L2(ω)),

if ζεκ satisfies the variational equations of Problem PεF,κ(ω) in the sense of
distributions in (0, T ), and also satisfies the initial conditions (1).

For each κ > 0, let us define the bilinear form aκ : V K(ω)× V K(ω)→ R by

aκ(ξ,η) :=
ε3

3

∫
ω

aαβστρστ (ξ)ραβ(η)
√
ady +

1

κ

∫
ω

aαβστγστ (ξ)γαβ(η)
√
a dy.
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The bilinear form aκ(·, ·) is continuous over the space V K(ω), i.e., there exists
a constant Cκ > 0, which depends on κ, such that

|aκ(ξ,η)| ≤ Cκ‖ξ‖V K(ω)‖η‖V K(ω), for all ξ,η ∈ V K(ω).

For κ > 0 sufficiently small (recall that the small parameter ε > 0 is fixed),
the uniform positive-definiteness of the elasticity tensor of the shell (aαβστ ) (cf.
Theorem 3.3-2 of [21]) and Korn inequality on a general surface (Theorem 3.1)
give the existence of a constant c > 0 such that

aκ(η,η) =
ε3

3

∫
ω

aαβστρστ (η)ραβ(η)
√
ady +

1

κ

∫
ω

aαβστγστ (η)γαβ(η)
√
ady

≥ ε3

3

∑
α,β

{
‖ραβ(η)‖20,ω + ‖γαβ(η)‖20,ω

}
≥ c

{∑
α

‖ηα‖21,ω + ‖η3‖22,ω

}
,

for all η ∈ V K(ω), namely, the bilinear form aκ(·, ·) is V K(ω)-elliptic.
We first prove, by Galerkin method, that Problem PεF,κ(ω) admits a unique

strong solution.

Theorem 5.1. Problem PεF,κ(ω) admits a unique strong solution ζεκ ∈
C0([0, T ];V K(ω)) ∩ C1([0, T ];L2(ω)).

Proof. (i)Construction of Galerkin approximation. Observe that the space
V K(ω) is an infinite-dimensional and separable Hilbert space. Therefore, by
Theorem 6.2-1 of [31], there exists an orthonormal Hilbert basis (wk)∞k=1 of
the space L2(ω) which also constitutes an orthogonal Hilbert basis of the space
V K(ω).

For each positive integer m ≥ 1, let us denote by Em the following
m-dimensional linear hull

Em := Span (wk)mk=1 ⊂ V K(ω) ⊂ L2(ω).

Since each element of the Hilbert basis (wk)∞k=1 is independent of the time
variable t, we have wk ∈ L∞(0, T ;V K(ω)), for each integer 1 ≤ k ≤ m. We now
discretize Problem PεF,κ(ω) and, in order to keep the notation simple, we drop
the dependence of the vector fields entering the variational equations on the
parameters κ and ε. Let us observe that, the duality pair between Em and its
dual coincides with the inner product of L2(ω) defined in Section 2.

For each positive integer m ≥ 1, the “penalized” discrete problem
corresponding to Problem PεF,κ(ω), that we denote by Pε,mF,κ (ω), amounts to:

Problem Pε,mF,κ (ω). Find functions ck : [0, T ]→ R, 1 ≤ k ≤ m, such that

ζm(t) :=

m∑
k=1

ck(t)wk, for a.a. t ∈ (0, T ),
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which satisfies the following variational equations in the sense of distributions
in (0, T ), for each integer 1 ≤ p ≤ m

2ρε3

∫
ω

ζ̈mi (t)wpi
√
ady

+
ε3

3

∫
ω

aαβστρστ (ζm(t))ραβ(wp)
√
ady

+
1

κ

∫
ω

aαβστγστ (ζm(t))γαβ(wp)
√
ady

=

∫
ω

pi,ε(t)wpi
√
a dy,

and for which the following initial conditions hold:{
ζm(0) = ζm0 ,

ζ̇
m

(0) = ζm1 ,
(2)

where initial data ζm0 and ζm1 are, respectively, the projections of ζ0 and ζ1 onto
the finite dimensional space Em. �

We immediately observe that the projections of ζ0 = (ζi,0) and ζ1 = (ζi,1)
onto Em can be expanded as follows (cf. Theorem 4.9-1 of [34])

ζm0 =

m∑
k=1

(∫
ω

ζi,0w
k
i

√
ady +

∫
ω

∂αζi,0∂αw
k
i

√
ady +

∫
ω

∂αβζ3,0∂αβw
k
3

√
a dy

)
wk,

ζm1 =

m∑
k=1

(∫
ω

ζi,1w
k
i

√
ady

)
wk,

so that ζm0 → ζ0, in V K(ω) and ζm1 → ζ1, in L2(ω).
Since the elements of the Hilbert basis do not depend on the time variable

we can take the coefficients ck as well as their derivatives ċk and c̈k outside the
integral sign. This gives, for each 1 ≤ k ≤ m, the following second order linear
ordinary differential equation with respect to the variable t

2ε3ρc̈k(t) + aκ(wk,wk)ck(t) =

∫
ω

pi,ε(t)wki
√
ady,

ck(0) =

∫
ω

ζi,0w
k
i

√
ady +

∫
ω

∂αζi,0∂αw
k
i

√
ady +

∫
ω

∂αβζ3,0∂αβw
k
3

√
a dy,

ċk(0) =

∫
ω

ζi,1w
k
i

√
ady.

Such an ordinary differential equation admits a unique solution, which clearly
depends on the parameters κ and ε.

(ii)Energy estimates. Let us multiply the variational equations in
Problem Pε,mF,κ (ω) by ċk(t) and sum with respect to k varying in the
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set {1, . . . ,m}. As a result, we obtain that the variational equations in
Problem Pε,mF,κ (ω) take the form

ρε3 d

dt

∫
ω

ζ̇mi (t)ζ̇mi (t)
√
ady

+
ε3

6

d

dt

∫
ω

aαβστρστ (ζm(t))ραβ(ζm(t))
√
ady

+
1

2κ

d

dt

∫
ω

aαβστγστ (ζm(t))γαβ(ζm(t))
√
a dy

=

∫
ω

pi,ε(t)ζ̇mi (t)
√
a dy,

(3)

for a.a. t ∈ (0, T ).
Carrying out an integration over the interval (0, t), where 0 < t ≤ T ,

changes (3) into

ρε3

∫
ω

ζ̇mi (t)ζ̇mi (t)
√
a dy

+
ε3

6

∫
ω

aαβστρστ (ζm(t))ραβ(ζm(t))
√
ady

+
1

2κ

∫
ω

aαβστγστ (ζm(t))γαβ(ζm(t))
√
a dy

= ρε3

∫
ω

ζmi,1ζ
m
i,1

√
ady +

ε3

6

∫
ω

aαβστρστ (ζm(0))ραβ(ζm(0))
√
a dy

+
1

2κ

∫
ω

aαβστγστ (ζm(0))γαβ(ζm(0))
√
ady

+

∫ t

0

∫
ω

pi,ε(τ)ζ̇mi (τ)
√
a dy dτ

≤ ρε3‖ζ1‖2L2(ω) +

∫ t

0

∫
ω

pi,ε(τ)ζ̇mi (τ)
√
a dy dτ+C‖ζ0‖2V K(ω)

+
1

2κ

∫
ω

aαβστγστ (ζm(0))γαβ(ζm(0))
√
a dy.

Since each pi,ε is in L∞(0, T ;L2(ω)), an application of Cauchy-Schwarz
inequality gives∫ t

0

∫
ω

pi,ε(τ)ζ̇mi (τ)
√
ady dτ ≤

(∫ T

0

‖pε(t)‖2L2(ω) dt

)1/2(∫ t

0

‖ζ̇
m

(τ)‖2L2(ω) dτ

)1/2

≤ 1

2

(∫ T

0

‖pε(t)‖2L2(ω) dt+

∫ t

0

‖ζ̇
m

(τ)‖2L2(ω) dτ

)
.

An application of Hölder’s inequality gives

1

2κ

∫
ω

aαβστγστ (ζm(0))γαβ(ζm(0))
√
ady ≤ C

2κ

∑
α,β

‖γαβ(ζm0 )‖20,ω.
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By virtue of the uniform positive-definiteness of the elasticity tensor of the
shell (aαβστ ), and Korn inequality on a general surface (Theorem 3.1), for each
integer m ≥ 1, there exists a real constant C̃ > 0 independent of ζm (and so
independent of t, m and κ) for which the following estimate holds true

1

C̃

{
‖ζ̇

m
(t)‖2L2(ω) + ‖ζm(t)‖2V K(ω) +

1

κ

∑
α,β

‖γαβ(ζm(t))‖20,ω
}

≤ ‖ζ1‖2L2(ω) + ‖pε‖2L∞(0,T ;L2(ω))+‖ζ0‖2V K(ω) +
1

κ

∑
α,β

‖γαβ(ζm0 )‖20,ω

+
1

κ

∑
α,β

∫ t

0

‖γαβ(ζm(τ))‖20,ω dτ

+

∫ t

0

{
‖ζ̇

m
(τ)‖2L2(ω) + ‖ζm(τ)‖2V K(ω)

}
dτ.

An application of Gronwall’s inequality (Theorem 3.2) with a ≡ C̃ > 0 and

b ≡ C̃
(
‖ζ1‖2L2(ω) + ‖pε‖2L∞(0,T ;L2(ω))+‖ζ0‖2V K(ω) +

1

κ

∑
α,β

‖γαβ(ζm0 )‖20,ω
)
≥ 0

gives the following upper bound∫ t

0

{
‖ζ̇

m
(τ)‖2L2(ω) + ‖ζm(τ)‖2V K(ω)

}
dτ +

1

κ

∑
α,β

∫ t

0

‖γαβ(ζm(τ))‖20,ω dτ

≤ C̃TeC̃T
{
‖ζ1‖2L2(ω) + ‖pε‖2L∞(0,T ;L2(ω))+‖ζ0‖2V K(ω)

+
1

κ

∑
α,β

‖γαβ(ζm0 )‖20,ω
}
,

(4)

for all t ∈ [0, T ]. Observe that such an upper bound admits an ulterior uniform
upper bound with respect to m, being ζ0 ∈ V F (ω).

Therefore, we obtain that

(ζm)∞m=1 is uniformly bounded with respect to m in L∞(0, T ;V K(ω)),

(ζ̇
m

)∞m=1 is uniformly bounded with respect to m in L∞(0, T ;L2(ω)).
(5)

Moreover, by (4), there exists a constant L > 0, independent of m, κ and t,
such that

0 ≤ ‖γ̃αβ(ζm)‖2L2(0,T ;L2(ω)) ≤ Lκ+
∑
α,β

‖γαβ(ζm0 )‖20,ω. (6)

Since the following direct sum decomposition holds

V K(ω) = Em ⊕ (Em)⊥,
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and since ζ̈
m

(t) ∈ Em, the variational equations of Problem Pε,mF,κ (ω) give the
existence of a constant Cκ > 0, independent of m and t, such that∣∣∣∣∫

ω

ζ̈mi (t)ηi
√
ady

∣∣∣∣ ≤ Cκ (‖pε‖L∞(0,T ;L2(ω)) + ‖ζm‖L∞(0,T ;V K(ω))

)
,

for any η ∈ V K(ω), with ‖η‖V K(ω) ≤ 1, and a.a. t ∈ (0, T ). As a consequence
of (5) we have

‖ζ̈
m
‖L∞(0,T ;V ∗K(ω)) ≤ Cκ. (7)

(iii)Passage to the limit and retrieval of Problem PεF,κ(ω). By (5) and (7), we

can infer that there exist subsequences, still denoted (ζm)∞m=1, (ζ̇
m

)∞m=1 and

(ζ̈
m

)∞m=1 such that the following convergences take place:

ζm
∗
⇀ ζεκ, in L∞(0, T ;V K(ω)) as m→∞,

ζ̇
m ∗
⇀ ζ̇

ε

κ, in L∞(0, T ;L2(ω)) as m→∞,

ζ̈
m ∗
⇀ ζ̈

ε

κ, in L∞(0, T ;V ∗K(ω)) as m→∞.

(8)

Observe that, by Corollary 8.18 of [23], the following convergence also holds

ζm ⇀ ζεκ, in L2(0, T ;V K(ω)) as m→∞,

the space V K(ω) being reflexive.
By Sobolev embedding theorem (Theorem 10.1.25 of [35]), we obtain

ζm ⇀ ζεκ, in C0([0, T ];L2(ω)),

ζ̇
m
⇀ ζ̇

ε

κ, in C0([0, T ];V ∗K(ω)).
(9)

We now verify that ζεκ is a weak solution of the variational equations of
Problem PεF,κ(ω). Let ψ ∈ D(0, T ) and let µ ≥ 1 be any integer. For each m ≥ µ,
the variational equations of Problem Pε,mF,κ (ω) give

2ρε3

∫ T

0

∫
ω

ζ̈mi (t)ηi
√
a dyψ(t) dt

+
ε3

3

∫ T

0

∫
ω

aαβστρστ (ζm(t))ραβ(η)
√
a dyψ(t) dt

+
1

κ

∫ T

0

∫
ω

aαβστγστ (ζm(t))γαβ(η)
√
a dyψ(t) dt

=

∫ T

0

∫
ω

pi,ε(t)ηi
√
a dyψ(t) dt,

(10)

for all η ∈ Eµ.
Consider the real-valued mapping

ξ ∈ L2(0, T ;V K(ω))→
∫ T

0

∫
ω

aαβστ ρ̃στ (ξ)(t)ραβ(η)
√
adyψ(t) dt

+
1

κ

∫ T

0

∫
ω

aαβστ γ̃στ (ξ)(t)γαβ(η)
√
a dyψ(t) dt
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and observe that it is linear and continuous, as a consequence of the linearity
and continuity of ρ̃αβ and γ̃αβ .

The convergence process (8) thus gives∫ T

0

∫
ω

aαβστρστ (ζm(t))ραβ(η)
√
a dyψ(t) dt

+
1

κ

∫ T

0

∫
ω

aαβστγστ (ζm(t))γαβ(η)
√
adyψ(t) dt

=

∫ T

0

∫
ω

aαβστ ρ̃στ (ζm)(t)ραβ(η)
√
a dyψ(t) dt

+
1

κ

∫ T

0

∫
ω

aαβστ γ̃στ (ζm)(t)γαβ(η)
√
adyψ(t) dt

→
∫ T

0

∫
ω

aαβστρστ (ζεκ(t))ραβ(η)
√
a dyψ(t) dt

+
1

κ

∫ T

0

∫
ω

aαβστγστ (ζεκ(t))γαβ(η)
√
adyψ(t) dt.

(11)

Observe, also, that the following density holds⋃
µ≥1

Eµ
‖·‖V K (ω)

= V K(ω),

As a result, keeping in mind the convergence processes (8) and (11), and
letting m→∞ in (10) gives that ζεκ is a solution of the following variational
equations

2ρε3
V ∗K
〈ζ̈
ε

κ(t),η〉V K(ω)

+
ε3

3

∫
ω

aαβστρστ (ζεκ(t))ραβ(η)
√
ady

+
1

κ

∫
ω

aαβστγστ (ζεκ(t))γαβ(η)
√
a dy

=

∫
ω

pi,ε(t)ηi
√
a dy,

(12)

for all η ∈ V K(ω), in the sense of distributions in (0, T ). Since ζεκ(t) ∈
V K(ω) for a.a. t ∈ (0, T ) and since η ∈ V K(ω) is independent of the time
variable t, two consecutive applications of the integration by parts formula (cf.
Corollary 10.1.26 of [35]) give

d2

dt2

∫
ω

ζεi,κ(t)ηi
√
ady = V ∗K

〈ζ̈
ε

κ(t),η〉V K(ω), for a.a. t ∈ (0, T ),

showing that ζεκ satisfies the variational equations of Problem PεF,κ(ω) in the
sense of distributions in (0, T ).

The last thing that we have to check is the validity of the initial conditions
for ζεκ.
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Let us introduce the operator L0 : C0([0, T ];L2(ω))→ L2(ω) defined in a
way such that L0(η) := η(0). Such an operator L0 turns out to be linear and
continuous and, therefore, by the first convergence of (9), we get that

ζm0 = ζm(0) ⇀ ζεκ(0), in L2(ω).

Since ζm0 → ζ0 in V K(ω), we deduce that ζεκ(0) = ζ0.
Let us introduce the operator L1 : C0([0, T ];V ∗K(ω))→ V ∗K(ω) defined in a

way such that L1(η) := η(0). Such an operator L1 turns out to be linear and
continuous and, therefore, by the second convergence of (9), we get that

ζm1 = ζ̇
m

(0) ⇀ ζ̇
ε

κ(0), in V ∗K(ω).

Since ζm1 → ζ1 in L2(ω), we deduce that ζ̇
ε

κ(0) = ζ1. The existence of a weak
solution of Problem PεF,κ(ω) has thus been shown.

(iv) The weak solution ζεκ is actually strong and uniquely determined. Recall
that the bilinear form aκ(·, ·) is symmetric, continuous, and V K(ω)-elliptic and
that the space V K(ω) is continuously and densely embedded in L2(ω). We are
thus in a position to apply the same procedure presented in Theorem 8.2-2
of [31].

Let us also observe that the convergence ζm → ζεκ in C0([0, T ];V K(ω)) gives

γ̃αβ(ζm)→ γ̃αβ(ζεκ), in L2(0, T ;L2(ω)),

and so, by (6) and the fact that ζ0 ∈ V F (ω), the following energy estimate

‖γ̃αβ(ζεκ)‖L2(0,T ;L2(ω)) ≤
√
Lκ. (13)

This completes the proof.

Noticeably, unlike Section 4, the existence and uniqueness of weak solutions
for Problem PεF (ω) cannot be directly carried out via Galerkin method, since
the space V F (ω) is not, in general, dense in L2(ω). This fact prevents us from
applying Theorem 6.2-1 of [31].

6 The main result: Existence and uniqueness of solutions of
Problem Pε

F (ω)

We are now ready to prove the main theoretical result of this paper: the existence
and uniqueness of weak solutions of Problem PεF (ω).

Theorem 6.1. Problem PεF (ω) admits a unique weak solution ζε.

Proof. (i) Problem PεF (ω) admits a weak solution. By the energy estimates (4)
in Theorem 5.1 and the fact that ζ0 ∈ V F (ω), it can be easily observed that
there exists a positive constant c = c(ζ0, ζ1,p

ε) such that{
‖ζ̇

ε

κ‖2L∞(0,T ;L2(ω)) + ‖ζεκ‖2L∞(0,T ;V K(ω))

}
≤ c.
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Let us consider, for a.a. 0 < t < T , the following partial differential equation
associated with Problem PεF,κ(ω)

2ρε3ζ̈
ε

κ(t) +Aζεκ(t) +
1

κ
Pζεκ(t) = pε(t), in V ∗K(ω),

where the linear operator A : V K(ω)→ V ∗K(ω) defined by

V ∗K(ω)〈Aξ,η〉V K(ω) :=
ε3

3

∫
ω

aαβστρστ (ξ)ραβ(η)
√
ady, for all ξ,η ∈ V K(ω),

is linear and continuous. Similarly, the operator P defined by

V ∗K(ω)〈Pξ,η〉V K(ω) :=

∫
ω

aαβστγστ (ξ)γαβ(η)
√
a dy, for all ξ,η ∈ V K(ω),

is linear and continuous. Besides, for all η ∈ V F (ω), we have

V ∗K(ω)〈Pζεκ,η〉V K(ω) = 0.

As a result, the family (ζ̈
ε

κ)κ>0 is uniformly bounded in L∞(0, T ;V ∗F (ω)).
Hence, up to passing to a subsequence, we get that the following convergence
process takes place

ζεκ
∗
⇀ ζε, in L∞(0, T ;V K(ω)) as κ→ 0,

ζ̇
ε

κ
∗
⇀ ζ̇

ε
, in L∞(0, T ;L2(ω)) as κ→ 0,

ζ̈
ε

κ
∗
⇀ ζ̈

ε
, in L∞(0, T ;V ∗F (ω)) as κ→ 0.

(14)

By Sobolev embedding theorem (Theorem 10.1.25 of [35]), we have that

ζεκ ⇀ ζε, in C0([0, T ];L2(ω)),

ζ̇
ε

κ ⇀ ζ̇
ε
, in C0([0, T ];V ∗F (ω)).

(15)

Let us recall that (see (13)), there exists a constant L > 0, independent of κ
and t, such that

‖γ̃αβ(ζεκ)‖L2(0,T ;L2(ω)) ≤
√
Lκ.

and observe that the convergence process (14) gives

γ̃αβ(ζεκ) ⇀ γ̃αβ(ζε), in L2(0, T ;L2(ω)),

and so, by the energy estimate (13),

‖γ̃αβ(ζε)‖L2(0,T ;L2(ω)) ≤ lim inf
κ→0

‖γ̃αβ(ζεκ)‖L2(0,T ;L2(ω)) = 0.

In conclusion, by the definition of γ̃αβ , we get that γαβ(ζε(t)) = 0 in ω for
a.a. t ∈ (0, T ) and we can thus gain more insight into the regularity of ζε, viz.,

ζε(t) ∈ V F (ω), for a.a. 0 < t < T.
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Let us show that ζε is a weak solution of Problem PεF (ω). We first show that ζε

solves the variational equations of Problem PεF (ω) in the sense of distributions
in (0, T ). For each ψ ∈ D(0, T ) and each η ∈ V F (ω), the variational equations
of Problem PεF,κ(ω) give

2ρε3

∫ T

0
V ∗F (ω)〈ζ̈

ε

κ(t),η〉V F (ω)ψ(t) dt

+
ε3

3

∫ T

0

∫
ω

aαβστρστ (ζεκ(t))ραβ(η)
√
a dyψ(t) dt

+
1

κ

∫ T

0

∫
ω

aαβστγστ (ζεκ(t))γαβ(η)
√
adyψ(t) dt

=

∫ T

0

∫
ω

pi,ε(t)ηi
√
adyψ(t) dt.

Since η ∈ V F (ω), we have

1

κ

∫
ω

aαβστγστ (ζεκ(t))γαβ(η)
√
ady = 0,

for all κ > 0 and a.a. t ∈ (0, T ).
Consider the real-valued mapping

ξ ∈ L2(0, T ;V K(ω))→
∫ T

0

∫
ω

aαβστ ρ̃στ (ξ)(t)ραβ(η)
√
a dyψ(t) dt,

and observe that it is linear and continuous, as a consequence of the linearity
and continuity of ρ̃αβ .

The convergence process (14) thus gives∫ T

0

∫
ω

aαβστρστ (ζεκ(t))ραβ(η)
√
a dyψ(t) dt

=

∫ T

0

∫
ω

aαβστ ρ̃στ (ζεκ)(t)ραβ(η)
√
a dyψ(t) dt

→
∫ T

0

∫
ω

aαβστρστ (ζε(t))ραβ(η)
√
a dyψ(t) dt.

Since ζε ∈ L∞(0, T ;V F (ω)) and since η ∈ V F (ω) is independent of the time
variable t, two consecutive applications of the integration by parts formula (see
Corollary 10.1.26 of [35]) give

d2

dt2

∫
ω

ζεi (t)ηi
√
ady = V ∗F (ω)〈ζ̈

ε
(t),η〉V F (ω), for a.a. t ∈ (0, T ),

and we thus conclude that ζε solves the variational equations of Problem PεF (ω)
in the sense of distributions in (0, T ).
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The last thing to check is the validity of the initial conditions for ζε. Let
us introduce the operator L0 : C0([0, T ];L2(ω))→ L2(ω) defined in a way such
that L0(η) := η(0). Such an operator turns out to be linear and continuous and,
therefore, by the convergence process (15), we get that

ζεκ(0) ⇀ ζε(0) = ζ0, in L2(ω).

Let us introduce the operator L1 : C0([0, T ];V ∗F (ω))→ V ∗F (ω) defined in a
way such that L1(η) := η(0). Such an operator turns out to be linear and
continuous and, therefore, by the convergence process (15), we get that

ζ̇
ε

κ(0) ⇀ ζ̇
ε
(0) = ζ1, in V ∗F (ω).

The existence of a weak solution of Problem PεF (ω) has thus been shown.
(ii)The vector valued function ζε is the unique solution of Problem PεF (ω).

Following the same strategy as for the wave equation (cf. [36]), let us show that
the only weak solution of the initial value problem

2ρε3ζ̈
ε
(t) +Aζε(t) = 0, in V ∗F (ω), for a.a. 0 < t < T,

ζε(0) = 0,

ζ̇
ε
(0) = 0,

(16)

is ζε ≡ 0.
To this end, for any fixed 0 ≤ s ≤ T , let us define the function

ξ(t) :=

{∫ s
t
ζε(τ) dτ , 0 ≤ t ≤ s,

0 , s < t ≤ T,

and observe that (cf., e.g., Theorem 8.13 of [23]) ξ ∈ C0([0, T ];V F (ω)). Define
the bilinear form BF : V K(ω)× V K(ω)→ R associated with the “flexural” part
by

BF (ξ,η) :=
ε3

3

∫
ω

aαβστρστ (ξ)ραβ(η)
√
ady.

Since ζ̇
ε
(0) = 0 = ξ(s), an application of the integration by parts formula

(Corollary 10.1.26 of [35]) yields∫ s

0

{
−2ρε3

∫
ω

ζ̇εi (t)ξ̇i(t)
√
ady +BF (ζε(t), ξ(t))

}
dt = 0.

Since ξ̇(t) = −ζε(t), for all 0 ≤ t ≤ s, the latter formula becomes∫ s

0

{
2ρε3

∫
ω

ζ̇εi (t)ζεi (t)
√
ady −BF (ξ̇(t), ξ(t))

}
dt = 0.

Another application of integration by parts formula (Corollary 10.1.26 of [35])
transforms the latter into∫ s

0

d

dt

(
ρε3‖ζε(t)‖2L2(ω) −

1

2
BF (ξ(t), ξ(t))

)
dt = 0,
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and the initial conditions in (16) give

ρε3‖ζε(s)‖2L2(ω) +
1

2
BF (ξ(0), ξ(0)) = 0.

In conclusion, we have BF (ξ(0), ξ(0)) = 0 and ‖ζε(s)‖L2(ω) = 0, for all 0 ≤
s ≤ T . By the arbitrariness of s, we conclude that the weak solution ζε is
uniquely defined almost everywhere in (0, T ). This completes the proof.

7 Final considerations: The dynamics of elliptic membrane
shells

Consider a linearly elastic shell, subjected to the various assumptions set
forth in Section 3. Following the terminology proposed in Section 4.1 of [21],
such a shell is said to be an elliptic membrane shell if the following two
additional assumptions are satisfied: first, γ0 = γ, i.e., the homogeneous
boundary condition of place is imposed over the entire lateral face γ × [−ε, ε]
of the shell, and second, its middle surface θ(ω) is elliptic, according to the
definition given in Section 2. Note that the assumption γ0 = γ implies that the
space V K(ω) introduced in Section 3 now reduces to

V K(ω) = H1
0 (ω)×H1

0 (ω)×H2
0 (ω).

To begin with, we recall a crucial inequality that holds for elliptic surfaces
(cf., e.g., Theorem 2.7-3 of [21]).

Theorem 7.1. Let ω be a domain in R2 and let θ ∈ C3(ω;E3) be an immersion
such that θ(ω) is an elliptic surface. Define the space

V M (ω) := H1
0 (ω)×H1

0 (ω)× L2(ω),

and the norm ‖ · ‖V M (ω) by

‖η‖V M (ω) :=

{∑
α

‖ηα‖21,ω + ‖η3‖20,ω

}1/2

for each η = (ηi) ∈ V M (ω).

Then there exists a constant c = c(ω,θ) > 0 such that

‖η‖V M (ω) ≤ c
{∑
α,β

‖γαβ(η)‖20,ω
}1/2

for all η = (ηi) ∈ V M (ω).

A natural formulation of a set of time-dependent two-dimensional equations
(again, “two-dimensional”, in the sense that they are posed over the two-
dimensional subset ω) can be derived in the same way as in Section 3.

Let us introduce the problem PεM (ω), describing the evolution of time-
dependent elliptic membrane shells.
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Problem PεM (ω). Find a vector field ζε = (ζεi ) : [0, T ]→ V M (ω) such that

ζε ∈ C0([0, T ];V M (ω)) ∩ C1([0, T ];L2(ω)),

that satisfies the following variational equations

2ερ
d2

dt2

∫
ω

ζεi (t)ηi
√
ady + ε

∫
ω

aαβστγστ (ζε(t))γαβ(η)
√
a dy =

∫
ω

pi,ε(t)ηi
√
ady,

for all η = (ηi) ∈ V M (ω), in the sense of distributions in (0, T ), and that
satisfies the following initial conditions{

ζε(0) = ζ0,

ζ̇
ε
(0) = ζ1,

where ζ0 ∈ V M (ω) and ζ1 ∈ L
2(ω) are prescribed.

�

We say that ζε is a strong solution of Problem PεM (ω) if

ζε ∈ C0([0, T ];V M (ω)) ∩ C1([0, T ];L2(ω)),

if ζε satisfies the variational equations of Problem PεM (ω) in the sense of
distributions in (0, T ), and also satisfies the initial conditions.

Since the space V M (ω) is continuously and densely embedded in the space
L2(ω) and since, as a consequence of the uniform positive-definiteness of
the elasticity tensor of the shell (aαβστ ) and Theorem 7.1, the bilinear form
BM : V M (ω)× V M (ω)→ R defined by

BM (η, ξ) := ε

∫
ω

aαβστγστ (η)γαβ(ξ)
√
ady,

is V M (ω)-elliptic, the existence and uniqueness of strong solutions of
Problem PεM (ω) is classical (cf, e.g., Theorem 8.2-2 of [31]).

Theorem 7.2. Problem PεM (ω) admits a unique strong solution ζε ∈
C0([0, T ];V M (ω)) ∩ C1([0, T ];L2(ω)).
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de W. T. Koiter. Computing Methods in Applied Sciences and Engineering,
Part 1 1996; 134: pp. 89–136.

[27] Bernadou M, Ciarlet PG and Miara B. Existence theorems for two-
dimensional linear shell theories. J Elasticity 1994; 34: 111–138.

[28] Gronwall TH. Note on the derivatives with respect to a parameter of the
solutions of a system of differential equations. Ann of Math 1919; 20(4):
292–296.

[29] Hartman P. Ordinary Differential Equations. Second ed. Philadelphia:
Society for Industrial and Applied Mathematics, 1982.
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