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ABSTRACT

Numerical investigation of a natural convection flow with a localized thermal disturbance is presented 

here. The configuration of a differentially heated cavity is considered with air as working fluid. In this 

study, the initial flow regime is steady and close to the transition to unsteadiness. Different cases of local 

wall temperature disturbances are tested in a thin area at the onset of the hot vertical boundary layer. 

These cases are distinguished by the time-averaged temperature of this area (higher or lower than the 

hot wall temperature) and by their temporal evolution (steady or periodic). In cases with a periodic 

disturbance, the imposed frequency corresponds to the first frequency emerging in the unsteady regime. 

The results show the spread of temperature fluctuations across the whole cavity with the periodic 

disturbance, in particular near the upper corner of the cavity. The hot steady disturbance trigs the onset 

of time-dependent flow. Moreover, the local modification of the hot wall temperature has an impact on 

global heat transfer: about 16% downstream the disturbance area and about 2% on the opposite cold 

wall. 
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Nomenclature 

A Aspect ratio (A=H/L) 
Ad Disturbance amplitude  
𝑓𝑓 Dimensionless frequency (scaled by 𝑓𝑓0 = 1/𝑡𝑡0) 
g Gravitational acceleration, m s-2 
H Height of the cavity, m 
L Length of the cavity, m 
Nu(Z,t) Local Nusselt number based on height H, 𝑁𝑁𝑁𝑁 (𝑍𝑍, 𝑡𝑡) =  − ∂𝜃𝜃(𝑋𝑋,𝑍𝑍, 𝑡𝑡) / ∂𝑋𝑋 
< 𝑁𝑁𝑁𝑁𝑃𝑃𝑖𝑖 > Zonal Nusselt number (time and space-averaged Nusselt number on a part Pi, i=1,2,3) 
𝑝𝑝𝑚𝑚∗  Dimensionless motion pressure, 𝑝𝑝𝑚𝑚∗ = 𝑝𝑝𝑚𝑚

𝑃𝑃𝑃𝑃×𝜌𝜌0𝑉𝑉02
 

Pr Prandtl number, Pr =  𝜈𝜈 𝛼𝛼⁄  
RaH Rayleigh number based on height H, 𝑅𝑅𝑎𝑎𝐻𝐻  =  (𝑔𝑔β𝛥𝛥𝛥𝛥𝐻𝐻3) / (𝛼𝛼ν) 
𝑡𝑡0 Reference time, 𝑡𝑡0 = 𝐻𝐻/𝑉𝑉0 
𝑡𝑡∗ Dimensionless time (scaled by 𝑡𝑡0) 
T Temperature, °C 
T0 Mean temperature of the cavity, 𝛥𝛥0  =  (𝛥𝛥ℎ  +  𝛥𝛥𝑐𝑐) / 2, °C 
u, w Horizontal and vertical velocity component in x and z direction 
𝑉𝑉0 Reference velocity, 𝑉𝑉0 = 𝛼𝛼

𝐻𝐻�𝑅𝑅𝑎𝑎𝐻𝐻 
x, z Horizontal and vertical coordinates, m 
X, Z Dimensionless coordinates; 𝑋𝑋 =  𝑥𝑥/𝐻𝐻, 𝑍𝑍 = 𝑧𝑧/𝐻𝐻 
Z1, Z2 Limits of the disturbance area 

Greek symbols 

α Thermal diffusivity, m² s-1 
β Thermal expansion coefficient, K-1 

δ Temperature level of the disturbance, δ ∈  {−1;  0;  1} 
ΔT Temperature difference between the hot and the cold walls, 𝛥𝛥𝛥𝛥 = 𝛥𝛥ℎ −  𝛥𝛥𝑐𝑐, °C 
ε Numerical parameter; ε = 0 steady disturbance, ε = 1 sine disturbance 
Ψ (Z) Spatial term of the disturbance function 
𝜃𝜃 Dimensionless temperature, 𝜃𝜃 =  (𝛥𝛥 – 𝛥𝛥0) / 𝛥𝛥𝛥𝛥 
ν Kinematic viscosity, m² s-1 

Subscripts and Superscripts 

c Cold wall 
h Hot wall  
d Disturbance 
rms Root mean square 
crit critical 
0 Reference value 
Φ’ Fluctuation of Φ, Φ’ = Φ − < Φ > 
Φ� (t) Spatial averaged value of h, Φ�(𝑡𝑡)  = ∫ < Φ (𝑍𝑍, 𝑡𝑡) >  𝑑𝑑𝑍𝑍1

0  
<Φ(Z)> Time average value of h, < Φ (𝑍𝑍) > = 𝑓𝑓𝑑𝑑 ∫ Φ (𝑍𝑍, 𝑡𝑡)𝑡𝑡+1/𝑓𝑓𝑑𝑑

𝑡𝑡 𝑑𝑑𝑡𝑡 
* Dimensionless quantity 
- Steady disturbance 
~ Sine disturbance  

 



3 
 

Abbreviations 

CS Cold Spot 
HS Hot Spot 
DHC Differentially Heated Cavity 

1. Introduction 

Natural convection flows occur in a wide range of practical applications in which heat 

transfer optimization is of great interest: a better insulation of the walls such as in buildings 

construction, enhancement of thermal flux for cooling electronic device or nuclear reactors, 

as for thermal storage tanks and solar energy collectors. 

These practical applications can be modeled through the simpler representation of the 

differentially heated cavity (DHC) in order to have a better understanding of the associated 

physics. DHC have been deeply studied experimentally and numerically for decades since 

the pioneering works of Batchelor [1]. In 1983 de Vahl Davis and Jones [2] published a 

benchmark solution in an air-filled square DHC for a Rayleigh number varying in the range 

of 103 - 106. In the next years, several studies have been made to investigate the transition 

from a steady to a time-dependent flow [3-6]. Tric et al. [7] proposed 3D accurate solutions 

of air natural convection in a cubic DHC by mean of pseudo-spectral Chebyshev algorithm. 

Xin and Le Quéré [8-11] revisited the onset of time-dependent flows for aspect ratios 

between 1 and 8, for both adiabatic and perfectly conducting horizontal walls. They used 

several stability analysis algorithms to provide accurate critical Rayleigh numbers and 

associated frequencies of the most unstable modes. 

Several authors have used multiple strategies to act on buoyancy-driven flows. For a heated 

vertical plate with a superimposed perturbation source, Zhao et al. [12] observed numerically 

a net heat transfer enhancement by a resonance-induced advancement of the laminar-

turbulent transition. For the Rayleigh-Bénard convection, Howle [13-14] investigated the 

control of the flow using localized heat fluxes, whereas Abourida et al. [15] and Douamna 
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et al. [16] chose to impose a time-dependent temperature at the isothermal walls. By varying 

amplitude, period and dephasing between walls, heat transfer was changed. Hossain and 

Floryan investigated the control of natural convection in a fluid layer heated from below [17] 

or from below and above [18] with a sine spatial distribution. They found a significant 

increase of heat transfer when a synchronized disturbance is applied over both walls. 

Focusing now on the DHC configuration, one of the first ways to act on the flow in DHC 

was by means of a thin fin on the hot wall, positioned horizontally [19-22] or tilted [23,24], 

and more recently by using a flexible fin [25]. As buoyancy-driven flows can be induced by 

means of appropriate temperature boundary conditions, several studies have been carried out 

on the thermal disturbance in DHC instead of a mechanical one. In 1996, Kwak et al. [26,27] 

imposed numerically a sine-varying temperature on the hot wall of a square cavity for a fixed 

Rayleigh number and varied the amplitude and the frequency. The wall temperature 

oscillation caused an increase in time-average heat transfer, which was maximal at the 

resonant frequency. More recently, Mahapatra et al. [28,29] used alternatively active heat 

sources on the bottom wall of an enclosure. Heat transfer was higher compared to the case 

with a single steady heater and increased with frequency. In an experimental study, Penot et 

al. [30] investigated the effect of a thin pipe localized close to the hot wall. The pipe 

temperature was varied periodically at the resonant frequency of the critical flow regime. 

The thermal disturbances increased velocity fluctuations, but the introduction of the pipe 

acted in the opposite manner due to an obstacle effect, and a decrease of the global Nusselt 

number is observed. 

In this paper, a thermal disturbance localized on the hot wall is used as actuator to act on 

natural convection and to modify heat transfer. Wall temperature is modified on a thin area 

at the onset of the hot vertical boundary layer. An aspect-ratio of 4 is considered, being the 

first aspect-ratio for which unsteady flow displays traveling waves near the cavity walls [10]. 
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Air is taken as working fluid. In such a case, the flow is steady laminar up to the critical 

Rayleigh number of 108 where unsteady regime appears in the outer edge of the boundary-

layers. A 2D numerical study is performed in order to evaluate the feasibility and the 

pertinence of such an approach. The flow is idealized with a bi-dimensional aspect, since the 

first weak 3D flow does not alter the transition scenario to unsteadiness [11]. 

In the following sections, the model, the numerical methods and the validation are provided. 

Then an analysis of the results in terms of temperature fluctuations in the whole cavity and 

in terms of heat transfer through the active walls is carried out. 

2. Model and validation 

The DHC considered in this study is a parallelepiped-shaped cavity of aspect ratio H/L=4. It 

is composed of two vertical opposite isothermal walls, whereas the others walls are adiabatic 

(see Fig. 1). Two different temperatures (𝛥𝛥𝑐𝑐 and 𝛥𝛥ℎ) are imposed on these isothermal walls. 

Air thermophysical properties are evaluated at the mean temperature of the cavity 𝛥𝛥0  =

𝑇𝑇𝑐𝑐+𝑇𝑇ℎ
2

=  20 °𝐶𝐶. Due to small temperature variation in the cavity (the temperature difference 

between active walls is at worse ∆𝛥𝛥 =  𝛥𝛥ℎ − 𝛥𝛥𝑐𝑐 = 2.7 °C), these properties are given constant 

in the computational domain, except for the density in the buoyant term where the 

Boussinesq approximation is used. The characteristic Rayleigh number is 

𝑅𝑅𝑎𝑎𝐻𝐻 =  9.0 ×  107, close to the critical value. In this study, the physical lengths are scaled 

by H (see Fig. 1): (𝑋𝑋,𝑍𝑍) = �𝑥𝑥
𝐻𝐻

, 𝑧𝑧
𝐻𝐻
�. The dimensionless temperatures and velocities are 

defined by 𝜃𝜃 =  𝑇𝑇−𝑇𝑇0 
Δ𝑇𝑇

 and 𝐕𝐕 =  � 𝑁𝑁
𝑉𝑉0

, 𝑤𝑤
𝑉𝑉0
�, where 𝑉𝑉0  = 𝛼𝛼

𝐻𝐻�𝑅𝑅𝑎𝑎𝐻𝐻 R denotes the reference velocity. 

The frequencies are scaled by using the characteristic time 𝑡𝑡0 =  𝐻𝐻
𝑉𝑉0

=  𝐻𝐻2

𝛼𝛼�𝑅𝑅𝑎𝑎𝐻𝐻 
 . The dynamic 

of the system as well as the heat transfer are governed by the dimensionless continuity, 

momentum and energy conservation equations: 
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𝜵𝜵 ∙ 𝑽𝑽 = 0 (1) 

 𝜕𝜕𝑽𝑽
𝜕𝜕𝑡𝑡∗

+ 𝑽𝑽 ∙ 𝜵𝜵 𝑽𝑽 = −𝛁𝛁𝑝𝑝𝑚𝑚∗ + 𝑃𝑃𝑃𝑃𝜃𝜃 𝒆𝒆𝒛𝒛  
𝑃𝑃𝑃𝑃

�𝑅𝑅𝑎𝑎𝐻𝐻
 ∇2𝑽𝑽 (2) 

 𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡∗

+ 𝑽𝑽 ∙ 𝜵𝜵 𝜃𝜃 =
1

�𝑅𝑅𝑎𝑎𝐻𝐻
 ∇2𝜃𝜃 (3) 

Fig. 1 shows the scheme of the studied cavity and gathers the boundary conditions used. The 

vertical walls have isothermal boundary conditions with 𝜃𝜃ℎ = 0.5 on the left wall and 𝜃𝜃𝑐𝑐 =

−0.5 on the right wall, whereas horizontal walls are adiabatic: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑍𝑍 = 0) = 0 

and  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑍𝑍 =  1) = 0. For all walls, no slip boundary condition is applied: 𝑈𝑈 =  𝑊𝑊 =  0. 

Numerical study of 2D DHC is carried out by means of a co-localized finite-volume approach 

[31]. The spatial derivatives are discretized using second-order schemes for the temperature 

and the velocity, whereas integration in time is performed with a second order Crank-Nicholson 

scheme. The nodes of the grid are spread under a hyperbolic cosine distribution function in each 

direction (cosh(4 𝐴𝐴 𝑋𝑋 − 2) ; cosh(4 𝑍𝑍 − 2)) to obtain a well refine mesh near the walls. To 

ensure that the results obtained do no depend on the number of grid elements, a grid 

independency test is performed. This test conducted on grids 60x120, 100x200, 130x260 and 

160x320 confirms that the grid 130x260 is the most suitable grid to obtain accurate solutions 

with small CPU times. This grid will be used in the present study. The time step is chosen as 

the maximal value to keep the CFL number lower than 1. 

The evolution of the global (time- and space-averaged) Nusselt number versus Rayleigh number 

both on a logarithmic scale is plotted in Fig. 2. The corresponding Rayleigh number varies 

between 5 × 107 and 1.9 × 108. We find the law < 𝑁𝑁𝑁𝑁��� > = (0.0741 ± 0.0006)𝑅𝑅𝑎𝑎𝐻𝐻
0.252±0.0005, 

very close to the correlation from Grondin [32] for a DHC with aspect ratio 4: < 𝑁𝑁𝑁𝑁���� > =

 0.0725 𝑅𝑅𝑎𝑎𝐻𝐻0.25
R. 
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The transition to time-dependent flow is conducted by successive Hopf bifurcations between 

which the mode frequencies of the travelling waves are stable at the first order [10]. The 

Rayleigh numbers of these bifurcations are defined as critical Rayleigh numbers. By varying 

the Rayleigh number from 9 × 107 to 1.8 × 108 without thermal disturbance, five time-

dependent branches of solutions for the unsteady Navier-Stokes equations are found. The 

corresponding frequencies and critical Rayleigh numbers are presented in Table 1. Frequencies 

fcrit are determined at the first Rayleigh number after the bifurcation by a Fourier analysis, 

whereas critical Rayleigh number are calculated by extrapolating the square signal amplitude 

(at point M, see Fig. 1)  to zero, which is characteristic of a Hopf bifurcation. These results are 

in very good agreement with the benchmark solutions from [10]. A maximum deviation of 2% 

is found on the critical Rayleigh of the first branch. These results on heat transfer and unsteady 

behavior validate the numerical methods. 

According to the results of Gadoin et al. [33], the optimal location to disturb the flow is at the 

beginning of the boundary layers, where the boundary layer modes have the greatest receptivity. 

Hence, in the cases with disturbance, the boundary temperature is modified on the hot wall 

(𝑋𝑋 =  0) between elevations 𝑍𝑍1  =  0.20 and 𝑍𝑍2  =  0.25, called the disturbance area. This 

disturbance area is localized outside the circulating region downstream the corner, and enables 

to obtain a large area downstream along the hot wall, where the effect on heat transfer will be 

analyzed. The temperature law applied in the disturbance area (𝑍𝑍 ∈ [𝑍𝑍1;𝑍𝑍2]) is written in 

equation (4), where spatial term Ψ (𝑍𝑍) is given in equation (5). 

 𝜃𝜃𝑑𝑑(𝑍𝑍, 𝑡𝑡) = 𝜃𝜃ℎ + 𝐴𝐴𝑑𝑑 �𝛿𝛿 + 𝜀𝜀 sin �2𝜋𝜋𝑓𝑓𝑑𝑑
𝑡𝑡
𝑡𝑡0
�� × Ψ (𝑍𝑍) (4) 

 Ψ (𝑍𝑍) =
1
2
�1 + cos �2𝜋𝜋

𝑍𝑍 − 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝑍𝑍2 − 𝑍𝑍1

�� (5) 
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where Ad is the imposed amplitude, δ ∈  {−1;  0;  1} denotes the mean temperature level of the 

disturbance (respectively below, at the same level or above 𝜃𝜃ℎ), 𝜀𝜀 ∈  {0;  1} enables to choose 

between a steady disturbance (𝜀𝜀 =  0) and a sine disturbance (𝜀𝜀 =  1), and fd is the imposed 

disturbance frequency. Table 2 gathers investigated cases. The spatial term Ψ (𝑍𝑍) given in 

equation (5) is centered on the middle of the disturbance area 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 =  𝜕𝜕1+𝜕𝜕2
2

 and spatially 

smooths the disturbance to avoid discontinuities and be more realistic from a practical point of 

view. Three parts (P1, P2, P3) are defined respectively upstream the disturbance area (P1), 

downstream the disturbance area (P2) and all along the cold wall (P3) for further investigations 

(see Fig. 1). The temporal evolution of the imposed wall temperature at the center of the 

disturbance area, 𝜃𝜃𝑑𝑑(𝑍𝑍 = 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡), is plotted in Fig. 3 for all cases. 

 

3. Thermal perturbation and results analysis 

The effects of the disturbance on the flow are analyzed in terms of temperature fluctuations and 

heat transfer changes. For all these studies, the Rayleigh number is imposed at 9.000 × 107, 

slightly below the first critical Rayleigh number 𝑅𝑅𝑎𝑎𝐻𝐻𝑐𝑐  =  1.052 × 108 (see Table 1): without 

any disturbance the flow is steady. All studies presented here below are carried out with an 

amplitude 𝐴𝐴𝑑𝑑  =  1 for cases with disturbance and 𝐴𝐴𝑑𝑑  =  0 for the reference case (ref. case). 

 

3.1 Influence on the temperature and the associated flow regime 

As a first way to illustrate the disturbance effect and its spread downstream the disturbance 

area, time-series of temperature evolution at a measuring point M (located close to the outer 

edge of the thermal boundary layer in XM  = 0.0375 and ZM = 0.9, see Fig. 1) are plotted in 

Fig. 4. Note that the boundary layer thickness is defined as the location where, on the horizontal 

thermal profile, the temperature is equal to the core temperature at the considered elevation. 
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Without disturbance (ref. case), the temperature is steady due to a sub-critical Rayleigh number 

and its value is 𝜃𝜃𝑀𝑀 = 0.2569. For a cold steady disturbance at 𝜃𝜃𝑑𝑑(𝑍𝑍) =  𝜃𝜃ℎ  −  Ψ (𝑍𝑍) (case 

CS-), a slight decrease of 𝜃𝜃𝑀𝑀 is noticed (1.2%), but no fluctuations are detected. With the cold 

sine disturbance (case CS~), the change in mean value of temperature at point M < 𝜃𝜃𝑀𝑀 > is 

more important, around 6 % lower than its value in ref. case. Fluctuations are observed with a 

frequency equal to the disturbance frequency 𝑓𝑓𝑀𝑀  =  𝑓𝑓𝑑𝑑 = 0.40, and the corresponding 

amplitude is equal to 6% of the imposed amplitude. Note that this periodic evolution observed 

in Fig. 4 results from a distortion of the initial sine shape of the disturbance (see Fig. 3). This 

distortion expresses the presence of harmonics of this frequency. For a hot steady disturbance 

at 𝜃𝜃𝑑𝑑(𝑍𝑍)  =  𝜃𝜃ℎ +  Ψ (𝑍𝑍) (case HS-), the mean temperature at point M has slightly increased 

(+1.5%). Moreover, the flow does not remain steady and exhibits periodic fluctuations at 𝑓𝑓𝑀𝑀  =

 0.408: 𝜃𝜃𝑀𝑀,𝑃𝑃𝑚𝑚𝑟𝑟 =  0.002. This frequency and the associated amplitude level correspond to a 

non-perturbed cavity with a Rayleigh number slightly higher than the first critical Rayleigh 

number. Thus the onset of time-dependent flow is trigged by a thin hot-spot placed on the hot 

wall with a Hopf bifurcation, even without any unsteadiness introduced. In case HS~ (hot sine 

disturbance), the temperature exhibits larger amplitude of fluctuations when compared to case 

HS-, since a rms-value of 𝜃𝜃𝑀𝑀,𝑃𝑃𝑚𝑚𝑟𝑟  =  0.033 is achieved, 15 times higher than the value obtained 

for HS- case. Moreover, fluctuations occur at the frequency of the disturbance: 𝑓𝑓𝑀𝑀  = 𝑓𝑓𝑑𝑑 . Thus 

even at an elevation 𝑍𝑍𝑀𝑀 =  0.9 (0.65 above the end of the disturbance area), the induced 

fluctuations are still higher than 5% of their imposed value (𝜃𝜃𝑑𝑑,𝑃𝑃𝑚𝑚𝑟𝑟  =  0.707). To conclude, 

whatever the disturbance, at this location, the mean temperature is modified (consequences in 

terms of heat transfer will be analyzed later on). However, only periodic disturbance (hot or 

cold) or steady hot disturbance trig an unsteady behavior.  

In order to check if these temperature fluctuations exists all over the cavity as well as their 

spatial distribution, 2D fields of rms-temperature, 𝜃𝜃𝑃𝑃𝑚𝑚𝑟𝑟, are drawn in Fig. 5. In the ref. case, the 
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sub-critical regime is considered thus no temperature fluctuation is detected. These observations 

remain true in case CS-, and are consistent with the results obtained at the point M where no 

variation is noticed (see Fig. 4). On the contrary, fluctuations exist in case CS~ and reach 

2 x 10- 3 upstream the disturbance area (close to P1) and 5 x 10-2 downstream (close to P2). In 

this case, the fluctuations are observed in the whole cavity, which is also true for the case HS~. 

However, in HS~ and CS~ cases, their local amplitude is not equally distributed. Several orders 

of magnitude between the different regions are observed: 10-1-10-2 in the hot boundary layer 

versus 10-3-10-4 in the core region. Concerning the case HS-, even if the disturbance is steady, 

fluctuations are only observed outside the core region, at the top and bottom parts of the cavity. 

An unsteady regime with temperature fluctuations located near the cavity walls is observed, 

typically encountered in cavity with aspect ratio 𝐻𝐻/𝐿𝐿 higher or equal to 4 [10]. The flow 

presents unsteady laminar boundary layers with Tollmien-Schlichting waves travelling along 

their outer edges. The maximal temperature fluctuation is 𝜃𝜃𝑃𝑃𝑚𝑚𝑟𝑟𝐻𝐻𝐻𝐻− =  4.5 × 10−3 at the 

position (𝑋𝑋 =  0.025;  𝑍𝑍 =  0.909), relatively close to the hot wall. The fluctuations have 

almost the same amplitude on the cold wall, although no disturbance at this side has been set.  

The propagation of the temperature disturbance in cases HS- and HS~ is plotted in Fig.6 in 

terms of instantaneous temperature fluctuations, 𝜃𝜃’ = 𝜃𝜃 − < 𝜃𝜃 >. The six fields cover one 

temporal period. Temperature fluctuations in the case HS- are mainly present at the end of the 

boundary layer, and are in the order of magnitude of 10-3. This temperature field is close to 

those obtained for supercritical flow regimes [10] except that the temperature fluctuations are 

not centro-symmetrical here. Indeed, they are higher at the end of the hot boundary layer due 

to the location of the disturbance area with respect to the direction of the flow. In the case HS~, 

temperature fluctuations (θ’) gain one order of magnitude compared to the corresponding steady 

case (HS-). Hot and cold structures observed in this figure are defined respectively as areas 

where θ’ is positive or negative. In case HS~, the structure number is increased when compared 
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to case HS-. These structures are no more only located at the end of the boundary layers but all 

along the walls. These structures are then advected by the mean flow. For example, in the HS~ 

case, the hot structure which starts to climb in the second image (𝑡𝑡 = 𝑡𝑡0 + 1
6𝑓𝑓𝑑𝑑  � ) close to the 

disturbance area. At time 𝑡𝑡 = 𝑡𝑡0 + 5
6𝑓𝑓𝑑𝑑  � , this hot structure starts to coalesce with another hot 

structure and form larger structure that can be observed (Z = 0.7) on the first image. Each 

structure can be tracked similarly. Moreover, these structures move faster downstream the 

disturbance area than at the end of the boundary layer. That is why these structures are more 

stretched in this area. This figure also highlights that the temperature fields are affected by the 

disturbance due to the existence of advected structures whose effects strongly depend on the 

type of the disturbance (hot or cold, steady or sine). An analyze of the impact of the temperature 

field modifications on the wall heat transfer will be carried out in the next section. 

3.2 Impacts on wall heat transfer 

Heat transfers through the isothermal walls are quantified by the Nusselt number. The 

comparison of zonal Nusselt number < 𝑁𝑁𝑁𝑁𝑃𝑃𝑖𝑖 > (time- and space-averaged on the parts P1, P2 

and P3, see Fig. 1) at 𝑅𝑅𝑎𝑎𝐻𝐻 =  9.0 ×  107 and for the different cases is shown in Table 3. In 

cases with a disturbance temperature lower than the wall temperature (𝜃𝜃𝑑𝑑  (𝑍𝑍, 𝑡𝑡) <  𝜃𝜃ℎ, cases 

CS- and CS~), an increase of the zonal Nusselt number on P1 and P2 is observed. This increase 

is small on P1, less than 0.9%, and high on P2, by 15.8%. On the contrary, when the disturbance 

temperature is higher than the wall temperature (𝜃𝜃𝑑𝑑  (𝑍𝑍, 𝑡𝑡) >  𝜃𝜃ℎ, cases HS- and HS~), a 

reduction of < 𝑁𝑁𝑁𝑁𝑃𝑃1 > and < 𝑁𝑁𝑁𝑁𝑃𝑃2 > is observed with approximatively the same level in the 

two cases, less than 2% on P1, and around 17% on P2. Moreover, a sine disturbance has no 

distinct effect on global heat transfer compared to the steady disturbance on all parts. However, 

on P3 the modification of the zonal Nusselt number acts in an opposite manner. Indeed, 

<  𝑁𝑁𝑁𝑁𝑃𝑃3 > decreases for the cold disturbances, and  increases for the hot disturbances. These 
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values are smaller than on P2, close to 2.2%. Thus, the temperature change near the disturbance 

area is spread along the whole cavity: the colder temperature downstream the disturbance area 

in cases CS- and CS~ increases the heat transfer downstream the disturbance, but decreases it 

on the cold wall. These results are reversed for cases HS- and HS~. 

 

3.2.1 Spatial-variation of local time-averaged wall heat transfer 

In order to understand the spatial modification of the heat transfer on parts P1, P2 and P3 due 

to the disturbance, the variation of the local Nusselt with the vertical position Z is plotted in 

Fig. 7 for the hot wall and in Fig. 8 for the cold wall. These local Nusselt numbers < 𝑁𝑁𝑁𝑁ℎ(𝑍𝑍) > 

and < 𝑁𝑁𝑁𝑁𝑐𝑐(𝑍𝑍) > are averaged in time over one time period of the disturbance. To highlight the 

effect, a superimposed graph shows the relative gains or losses in local heat transfer with respect 

to the ref. case, %𝑁𝑁𝑁𝑁𝜕𝜕 =  <𝑁𝑁𝑢𝑢𝑍𝑍>− 𝑁𝑁𝑢𝑢𝑍𝑍(𝑃𝑃𝑐𝑐𝑓𝑓.𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐)
𝑁𝑁𝑢𝑢𝑍𝑍(𝑃𝑃𝑐𝑐𝑓𝑓.𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐)

, for part P1 in Fig. 7 and part P3 in Fig. 8. 

Downstream the disturbance area (P2 part), the local Nusselt number is strongly reduced for the 

hot disturbances and increased for the cold disturbances, due to the change of the temperature 

field in the flow (Fig. 9). < 𝑁𝑁𝑁𝑁ℎ(𝑍𝑍) >  gradually returns to the value obtained in the ref. case. 

Upstream the disturbance (P1 part), a slight change is noticed compared to ref. case, which 

never exceed 2.4% (HS~ case). These deviations are in accordance with the zonal values on P1 

in Table 3 and are due to the change on the temperature of the return flow from P3 part (see 

Fig. 9). 

Similarly, for P3 part, the local Nusselt numbers are overall higher in cases HS- and HS~ 

compared to ref. case, and lower in cases CS- and CS~, which is in agreement with results given 

in Table 3. Although no significant difference is observed between zonal heat transfer for a 

steady and a sine disturbance (cases CS- and CS~ on one side, cases HS- and HS~ at the other 

side, see Table 3), their spatial distribution are substantially different (see Fig. 8). In the cases 

with a sine disturbance (dotted lines), a minimum value of  %NuZ is reached for 𝑍𝑍 ≈ 0.9, 
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before an increase downstream. From 𝑍𝑍 = 0.7 to the bottom of the cavity, %NuZ averaged over 

this area is higher by 11% for the sine disturbances than for the corresponding steady ones. 

These differences between the local values of < 𝑁𝑁𝑁𝑁𝑐𝑐(𝑍𝑍) > are due to a difference on 

temperature distribution between the steady and the sine disturbances. In order to evaluate the 

local temperature modification induced by the disturbance, < 𝜃𝜃𝐶𝐶𝐻𝐻− − 𝜃𝜃ref.  case > and < 𝜃𝜃𝐶𝐶𝐻𝐻~ −

𝜃𝜃ref.  case > in the whole cavity are drawn in Fig. 9, completed with 4 snapshots of (𝜃𝜃𝐶𝐶𝐻𝐻~ −

𝜃𝜃ref.  case) to observe its time-evolution. Streamlines are also overprinted (see movie of this 

time-evolution during one period is available with the online version of this article). In these 

CS- and CS~ cases, although the temperature is globally reduced, areas with higher temperature 

than in ref. case appear. In order to explain the higher value of %NuZ for 𝑍𝑍 < 0.7 in the case 

CS~ compared to the case CS-, a focus on the core for 𝑍𝑍 ≈ 0.7 is required (Fig. 9). A major 

difference between cases CS- and CS~ is observed at this elevation. Indeed, a hotter area exists 

in case CS~. In this area, a part of the flow goes from the left (hot) to the right (cold) side. This 

air flow feeds the cold boundary layer, which increases the temperature difference and 

consequently %NuZ at this elevation for case CS~. Moreover, snapshots of 𝜃𝜃𝐶𝐶𝐻𝐻~ − 𝜃𝜃ref.  case 

(Fig. 9, right part) show that the heat transfer from the left to the right of the cavity is unsteady. 

This unsteady behavior is highlighted for 𝑍𝑍 ∈ [0.4 ; 0.6], where the direction of the secondary 

flow in the core region changes on each snapshot. These complex unsteady phenomena and 

temperature differences in the core region cause the differences observed on the heat transfer 

distributions on P3 part for steady and sine disturbances, although the time-averaged values of 

zonal heat transfer remain very close. 

To evaluate the impact of unsteady phenomena on local heat transfer, the time-averaged Nusselt 

number <Nu(Z)> along P2 for the cases with a disturbance is shown in Fig. 10. <Nu(Z)> is 

framed by the local minimal and maximal values (dotted lines). In case CS-, the minimal and 

maximal values are equal to the time-averaged value since no fluctuations on 𝑁𝑁𝑁𝑁(𝑍𝑍, 𝑡𝑡) are 
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detected. In case HS-, very weak fluctuations exist close to the upper corner, as observed in Fig. 

6 for the temperature fluctuations. On the contrary, in the cases CS~ and HS~ the minimal and 

maximal values are substantially distinguished from the time-averaged values, and the two 

corresponding curves exhibits the envelope for the local Nusselt number. The difference 

between a cold disturbance and a hot one affects this envelope mainly in the region directly 

downstream the disturbance area, because of the strong modification of the time-averaged heat 

transfer occurring here (see Fig. 7). Farther from the disturbance area (for Z>0.60), these two 

envelopes tend to reach the same shape whatever the case (HS~ or CS~). 

 

3.2.2 Time-evolution of local wall heat transfer 

As the time-averaged heat transfers are very close between the steady and sine disturbances, a 

focus on instantaneous wall heat transfer is carried out to well understand these similarities. 

Fig. 11 shows the evolution of local Nusselt number at the position 𝑍𝑍 =  0.3 on the hot wall. 

This location (directly downstream the disturbance area) allows to observe the disturbance 

effect. 𝑁𝑁𝑁𝑁 (𝑍𝑍 =  0.3) is obviously steady in ref. case since a sub-critical flow regime is 

achieved. In case CS- it remains steady, whereas in case CS~ oscillations are observed with a 

peak-to-peak amplitude around 3.4. For both cases the mean values are very close, with 0.6% 

of deviation. However, these mean values have increased by 27% when compared to the value 

of ref. case. For the hot disturbances cases (HS- and HS~), the mean values are very close as 

well and 29% below the value obtain for the ref. case. Therefore, the local heat transfer 

oscillates for the sine disturbances downstream the disturbance area, around the value for steady 

disturbances. This explains why no significant deviation is observed on time-averaged heat 

transfer between steady and sine disturbances. 
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Moreover, it has been shown that the dynamic of the disturbances are responsible to the 

development of periodically hot and cold structures. In order to evaluate the impact of these 

structures on the instantaneous heat transfer, the profiles of local Nusselt number at different 

times for case HS~ on P2  are shown in Fig. 12. The different times are equally distributed over 

a disturbance period. These profiles are consistent with the shape of the envelope plotted in Fig. 

10. The snapshots of 𝑁𝑁𝑁𝑁 (𝑍𝑍, 𝑡𝑡) are non-monotonic: they show important spatial oscillations 

caused by alternated hot and cold structures, which could not be highlighted with the envelope. 

Therefore, the sine disturbance creates strong oscillations on 𝑁𝑁𝑁𝑁 (𝑍𝑍, 𝑡𝑡), in a similar manner to 

the propagation to a transversal wave with a fixed node in 𝑍𝑍 =  1. 

Conclusion 

Numerical study of natural convection in differentially heated cavity with aspect ratio 4 has 

been performed with a localized thermal disturbance on the lower part of the hot wall. Four 

kinds of thermal disturbance have been tested according to the disturbance temperature (above 

or below the wall temperature) and its temporal evolution (steady or sinusoidal). Results have 

been analyzed in terms of temperature variations and heat transfer impact. 

Except for the steady cold case (CS-), the thermal disturbance spreads through the cavity. The 

steady hot disturbance (HS- case) trigs the onset of a time-dependent supercritical flow, where 

fluctuations are located at the end of the vertical boundary layers and the horizontal wall jets. 

For the sine disturbances (CS~ and HS~ cases), temperature fluctuations reach the core region 

but remain much higher in the main flow. Alternating hot and cold structures are observed in 

the vertical boundary layers.  

 The wall heat transfer is affected spatially and temporally by the disturbances. The global heat 

transfer is increased by a hot disturbance and decrease by a cold disturbance, with a change 

around 2%. Downstream the disturbance, the heat transfer is inversely modified, with a major 
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change around 17%. For the sine disturbances, the heat transfer oscillates around a value close 

to the value obtained for the steady disturbances. Thus no heat transfer enhancement is noticed 

by the introduction of periodic disturbance. On the cold wall, the heat transfer distribution is 

complex, due to local fluid regions with higher or lower temperature (when compared to the 

reference case) combined with the unsteady secondary flow coming from the hot wall. 

This study indicates how the wall heat transfer in internal natural convection flows can be 

optimized with the modification on a small area of the wall thermal condition. Thus, a 

comparison of these results with the actual situation in an experimental DHC could be subject 

of future studies. 
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𝑃𝑃1: 𝑋𝑋 = 0,𝑍𝑍 ∈ [0;𝑍𝑍1] 
𝑃𝑃2: 𝑋𝑋 = 0,𝑍𝑍 ∈ [𝑍𝑍2; 1] 
𝑃𝑃3: 𝑋𝑋 = 0.25,𝑍𝑍 ∈ [0; 1] 
 
 

Fig. 1 : Scheme of the rectangular cavity with disturbance area  on the hot wall for Z between Z1 and Z2; the 
measuring point M is located at (X=0.0375; Z=0.9); the wall parts (P1, P2, P3) are respectively upstream and downstream 

the disturbance area, and all along the cold wall 

 

 
Fig. 2 : Evolution of the global (time- and space-averaged) Nusselt number with the Rayleigh number of the studied cavity;  

axis are displayed  in a logarithmic scale 
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Fig. 3 : Temporal evolution of the temperature disturbance at the center of the disturbance area 𝜃𝜃𝑑𝑑(Z = Zcent) for all cases 

 

      
Fig. 4 : Time-evolution of the temperature plot at the measuring point M (see Fig. 1); left: ref. case, CS- and CS~;  

right: ref. case, HS- and HS~ 
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Fig. 5 : 𝜃𝜃Rrms in the whole cavity; top-left: ref. case, middle-top: case CS-, top-right: case CS~, bottom-middle: case HS-,  

bottom-right: case HS~ 
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Fig. 6 : Temporal evolution of the temperature fluctuations 𝜃𝜃’ = 𝜃𝜃 − < 𝜃𝜃 > during one disturbance period 1/fd = 2.5;  
top: case HS-, bottom: case HS~; note that the scale for case HS~ is ten times the scale for case HS- 
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Fig. 7 : Local time-averaged Nusselt number <Nuh (Z)> on the hot wall for all cases, and superimposed graph for local gain or 

loss respect to ref. case, %𝑁𝑁𝑁𝑁𝜕𝜕 = 𝑁𝑁𝑢𝑢𝑍𝑍− 𝑁𝑁𝑢𝑢𝑍𝑍(𝑃𝑃𝑐𝑐𝑓𝑓.𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐)
𝑁𝑁𝑢𝑢𝑍𝑍(𝑃𝑃𝑐𝑐𝑓𝑓.𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐)

 

 
Fig. 8: Local time-averaged Nusselt number <Nuc (Z)> at the cold wall for all cases, and superimposed graph for local gain or 

loss respect to ref. case, %𝑁𝑁𝑁𝑁𝜕𝜕 = <𝑁𝑁𝑢𝑢𝑍𝑍>− 𝑁𝑁𝑢𝑢𝑍𝑍(𝑃𝑃𝑐𝑐𝑓𝑓.𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐)
𝑁𝑁𝑢𝑢𝑍𝑍(𝑃𝑃𝑐𝑐𝑓𝑓.𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐)
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Fig.9: Left-hand two images: time-averaged values of relative temperature with respect to ref. case  < 𝜃𝜃 −  𝜃𝜃𝑃𝑃𝑐𝑐𝑓𝑓.  𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐>  in 
cases CS- and CS~; right-hand four images: temporal evolution of instantaneous relative temperature with respect to ref. 

case  𝜃𝜃 −  𝜃𝜃𝑃𝑃𝑐𝑐𝑓𝑓.  𝑐𝑐𝑎𝑎𝑟𝑟𝑐𝑐  in case CS~  during one disturbance period; streamlines are overprinted 
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Fig. 10 : Profiles of time-averaged Nusselt number <Nu(Z)> on the part P2,  

bounded by its minimal and maximal values Nu(Z)min  and Nu(Z)max. 
top-left: case CS-, top-right: case CS~;  bottom-left: case HS-, bottom-right: case HS~ 
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Fig. 11: Time evolution of local Nusselt number at Z = 0.3 on the hot wall, for the 5 investigated cases 

 

 
Fig. 12 : Snapshots of local Nusselt numbers at the hot wall for 6 times equally distributed over a period. 

HS~ case, Z∈ [0.3; 1]. 
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 fcrit RaH, crit
 (x10-8) 

Branch Present Xin [10] Present Xin [10] 
1 0.403 0.404 1.052 1.032 
2 0.434 0.433 1.050 1.056 
3 0.467 0.468 1.180 1.183 
4 0.506 0.507 1.273 1.291 
5 0.545 0.545 1.403 1.421 

Table 1: Dimensionless critical frequencies fcrit  and critical Rayleigh numbers RaH, crit for the five first branches;  
Comparison with benchmark solutions from Xin [10]. 

 

 

 

 Ref. case Case CS- Case CS~ Case HS- Case HS~ 
Ad 0 1 1 1 1 
δ _ -1 -1 1 1 
ε _ 0 1 0 1 
fd _ _ 0.40 _ 0.40 

Table 2: Studied cases; CS and HS denote cases with respectively a lower (δ = -1) and a higher (δ = +1)  disturbance 
temperature than the hot wall temperature (‘cold spot’ and ‘hot spot’); symbols ‘ - ‘ and ‘ ~ ’ denote cases with respectively a 

constant (ε = 0) and a sine (ε = 1) disturbance 

 

 

 

 Ref. case Case CS- Case CS~ Case HS- Case HS~ 
< 𝑁𝑁𝑁𝑁𝑃𝑃1 > 14.825 14.954 (+0.9%) 14.881 (+0.4%) 14.690 (-0.9%) 14.573 (-1.7%) 

< 𝑁𝑁𝑁𝑁𝑃𝑃2 > 5.326 6.169 (+15.8%) 6.166 (+15.8%) 4.409 (-17.2%) 4.407 (-17.3%) 

< 𝑁𝑁𝑁𝑁𝑃𝑃3 > 7.486 7.317 (-2.3%) 7.321 (-2.2%) 7.662 (+2.4%) 7.648 (+2.2%) 
Table 3: Values of zonal Nusselt numbers on wall parts upstream disturbance area (P1), downstream the disturbance area 

(P2) and at the cold wall (P3) (see Fig. 1). Comparison with the ref. case. 
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