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quantiles with large-dimensional covariates

Laurent Gardes
Université de Strasbourg & CNRS, IRMA, UMR 7501,

7 rue René Descartes, 67084 Strasbourg Cedex, France

Abstract

The first part of the paper is dedicated to the construction of a γ - nonpara-
metric confidence interval for a conditional quantile of level depending on the
sample size. When this level converges to 0 or 1 as the sample size increases,
the conditional quantile is said to be extreme and is located in the tail of the
conditional distribution. The proposed confidence interval is constructed by
approximating the distribution of ordered statistics selected with a nearest
neighbor approach by a Beta distribution. We show that its coverage proba-
bility converges to the preselected probability γ and its accuracy is illustrated
on a simulation study. When the dimension of the covariate increases, the
coverage probability of the confidence interval can be very different from γ.
This is a well known consequence of the data sparsity especially in the tail of
the distribution. In the second part of the paper, a dimension reduction pro-
cedure is proposed in order to select more appropriate nearest neighbors and
in turn to obtain a better coverage probability. This procedure is based on the
Tail Conditional Independence assumption introduced in (Gardes, Extreme,
pp. 57–95, 18(3), 2018).

Keywords: Extreme conditional quantiles, confidence interval, dimension re-
duction.

1 Introduction
In a large range of applications, it is necessary to examine the effects of an
observable Rp-valued random covariate X on the distribution of a dependent
R-valued variable Y . For instance, Y can modelize the level of ozone in the air
and X the vector gathering the concentration of others pollutants and weather
conditions (see e.g. Han et al. [15]). A first approach consists to focus on the
conditional expectation E(Y |X). A more comprehensive way is to analyze the
conditional quantile of Y given X. Recall that for all x ∈ X ⊂ Rp, (X being
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the support ofX), the (1−α)-conditional quantile of Y givenX = x where α ∈
(0, 1) is Q(α|x) = inf{y; S(y|x) ≤ α}, where S(·|x) := P(Y > ·|X = x) is the
conditional survival function of Y givenX = x. In this paper, we are interested
in the construction of a confidence interval of Q(α|x0) for a given point x0 ∈ X .
More specifically, based on n independent copies (X1, Y1), . . . , (Xn, Yn) of the
random vector (X,Y ), we searching for a random interval [An,γ(x0), Bn,γ(x0)]

such that, as n→∞,

P {[An,γ(x0), Bn,γ(x0)] 3 Q(α|x0)} → γ, (1)

where γ ∈ (0, 1) is a preselected probability (usually, γ = 0.9 or 0.95). To
allow us to make inference in the right and left-tails of the conditional distri-
bution, we also consider the case where α depends on the sample size n and
converges to 0 or 1 as n→∞. In the application on ozone concentration, this
can be of high interest since large level of ozone in the air may cause serious
effects on public health and on environment.
The literature on the estimation of confidence interval for quantile is, up to
our knowledge, only dedicated to the case where α is a fixed value in (0, 1).
Several approaches have been considered. The first one, called direct approach
(see e.g. Fan and Liu [6]), consists to construct the confidence interval starting
from a given estimator Q̂n(α|x0) of Q(α|x0). Under some regularity assump-
tions on Q(·|x0) (in particular the derivative q(·|x0) of Q(·|x0) must exits),
if one can find a positive sequence (cn) such that cn(Q̂n(α|x0) − Q(α|x0))

converges to a centered gaussian distribution with variance q2(α|x0) then, de-
noting by Φ the cumulative distribution function on a centered and normalized
gaussian distribution, the coverage probability of the interval[

Q̂n
(
α− c−1

n Φ−1((1− γ)/2)
∣∣x0

)
, Q̂n

(
α+ c−1

n Φ−1((1− γ)/2)
∣∣x0

)]
,

converges to γ. There is a huge literature on the estimation of conditional
quantile for α fixed (see for example Yang [27] and Stute [25]) but also for ex-
treme conditional quantile (i.e. when α = αn → 0, see for instance Gardes [8],
Gardes et al. [13], etc.). The main drawback of the direct approach is that
in most of the cases, the sequence cn depends on unknown parameters (e.g.
the probability density function of X) that have to be estimated. To avoid
the estimation of cn, resampling methods have been considered by Parzen et
al. [21] and Kocherginsky et al. [18]. Unfortunately, these methods are often
time consuming. A last approach to construct confidence interval of quantile is
based on order statistics. The order statistic method has been first introduced
in the unconditional case (see Hutson [17]). Assume that Y1, . . . , Yn are inde-
pendent and identically distributed random variables with common survival
function SY (·) and quantile function QY (·). Denoting by Y1,n ≤ . . . ≤ Yn,n
the ordered statistics, if SY (·) is a continuous and strictly increasing function,
the probability integral transform ensures that

P(Yj,n < QY (α)) = P(SY (Yj,n) > α) = P(Un−j+1,n > α),
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where U1,n ≤ . . . ≤ Un,n are the order statistics associated to independent
standard uniform random variables. Since Un−j+1,n is distributed as a Beta
distribution of parameters n − j + 1 and n, denoting by Fbeta(·; a, b) the dis-
tribution function of a Beta distribution with parameters a > 0 and b > 0 and
letting

Lγ(m,α) := max

{
j ∈ {1, . . . ,m}; Fbeta(α;m− j + 1, j) ≤ 1− γ

2

}
and

Rγ(m,α) := min

{
j ∈ {1, . . . ,m}; 1− Fbeta(α;m− j + 1, j) ≤ 1− γ

2

}
,

for γ ∈ (0, 1), m ∈ N \ {0} and α ∈ (0, 1) with the convention max{∅} = +∞
and min{∅} = −∞, one can show that

P
{

[YLγ(n,α),n, YRγ(n,α),n] 3 QY (α)
}
→ γ.

This method of construction has been recently adapted by Goldman and
Kaplan [14] to the conditional case but always for a fixed quantile level α.

The first contribution of this paper is to adapt the order statistics method
to the conditional case by using a nearest neighbors approach. Instead of
using the whole sample as in the unconditional case, only the kn closest
observations to x0 are used in the order statistics method. The proposed
confidence interval can be used if the quantile level α depends on n and
converges to 0 or 1 as n→∞. Constructing a confidence interval for extreme
conditional quantile (α = αn → 0 or 1) is often more challenging because
there are fewer observations available in the tail.

The nearest neighbors strongly depends on the (pseudo)-distance in Rp used
to select the observations around the point of interest x0. The euclidean
distance is of course the natural choice but when p becomes large, some
nearest neighbors can be located far away from the point of interest leading
to confidence interval with a bad coverage probability. This is the well known
curse of dimensionality phenomenon. To overcome this problem, one way is
to assume the existence of a function g0 : Rp → R such that the conditional
distribution of Y given X is equal to the conditional distribution of Y
given g0(X). In other words, it is assumed that X and Y are independent
conditionally on g0(X) (in symbols X |= Y |g0(X), see for instance Basu and
Pereira [2]). The dimension of the covariate is thus reduced since X can be
replaced by g0(X). In this case, it seems preferable to use the pseudo-distance
d0 defined for all (x, y) ∈ Rp × Rp by d0(x, y) = |g0(x) − g0(y)| instead of
the euclidean distance in Rp. A natural question now is how to find the
true function g0 and therefore the most suitable distance d0 ? One common
approach is to assume that g0 is linear (i.e. for all x ∈ Rp, g0(x) = b>0 x

where b0 ∈ Rp). This corresponds to the single-index model introduced in a
regression context for instance by Li [19]. This single-index structure has been
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considered by Zhu et al. [28] for the estimation of conditional quantile when
the level α is fixed. Finding the distance reduces to finding the direction b0.
Its estimation has received much attention in the literature (see Li [19] for
the classical Sliced Inverse Regression (SIR) method), Cook and Weisberg [4],
Samarov [23], Cook and Li [3]).

The second contribution of this work is the proposition of a new
data-driven procedure to select the appropriate distance d0 in the nearest
neighbors approach in order to construct a confidence interval for an extreme
conditional quantile in the right-tail of the distribution (i.e. when the quantile
level α = αn → 0 as the sample size increases). Condition X |= Y |g0(X) is re-
laxed by assuming that Y is tail conditionally independent of X given g0(X),
see Gardes [9]. Basically, under this condition, S(y|x0) is equivalent, as
y → ∞, to a function depending on x0 through g0(x0). Hence, inference on
the extreme conditional quantile of Y given X can be achieved only by using
the information brought by the reduced covariate g0(X). In this paper, we
assume that g0 belongs to a pre-specified parametric family (not necessarily
the family of linear functions). Note that assuming that Y is tail conditionally
independent of X given g0(X), an estimator of g0 has been proposed by
Gardes [9] in the particular case of a linear function. Unfortunately, the
estimation procedure is computationally expensive.

The paper is organized as follows. The definition of the confidence interval for
conditional extreme quantile is given in Section 2. In particular, we show that
the coverage probability of the proposed confidence interval converges to the
nominal one. This section corresponds to our first contribution. The second
contribution is handled in Section 3 where an estimator of an appropriate
distance d0 is proposed and used for the construction of a confidence interval
of extreme conditional quantile. In each section, the methods are illustrated
with simulated data. All the proofs are postponed to Section 5.

2 Confidence interval estimation

2.1 Definition and main result
Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X,Y ).
In all what follows, we assume that the distribution of (X,Y ) is absolutely
continuous with respect to the Lebesgue measure. As mentioned in the intro-
duction, for a given x0 ∈ X where X is the support of X, our first contribution
is to propose a confidence interval of the conditional quantile

Q(α|x0) := inf{y; S(y|x0) ≤ α},

where S(·|x0) = P(Y > ·|X = x0). While much of the literature focuses on a
fixed level α in (0, 1), we allow the case where α = αn depend on the sample
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size n. We assume that
lim
n→∞

αn = c ∈ [0, 1]. (2)

Condition (2) with c ∈ (0, 1) corresponds to a classical conditional quantile.
For instance, if αn = 1/2, the value Q(αn|x0) is the conditional median of Y
given X = x0. When c ∈ {0, 1} in (2), the level is said to be extreme. If
c = 0 (resp. c = 1), the conditional quantile is located in the right-tail (resp.
left-tail) of the conditional distribution of Y given X = x0.
The basic idea to construct a random interval [An,γ(x0), Bn,γ(x0)] satisfy-
ing (1) is to apply the order statistics method to observations close enough
to x0. The order statistics method to construct confidence interval has been
proposed by Hutson [17] in the unconditional case and is described in the
introduction. To select the observations, a nearest neighbors approach is con-
sidered. More specifically, for some (pseudo)-metric d on Rp, let

(X
(d,x0)
1 , Y

(d,x0)
1 ), . . . , (X(d,x0)

n , Y (d,x0)
n )

be the sample (X1, Y1), . . . , (Xn, Yn) rearranged in order to have
d(X

(d,x0)
1 , x0) ≤ . . . ≤ d(X

(d,x0)
n , x0). For kn ∈ {1, . . . , n}, we denote by

Y
(d,x0)

1,kn
≤ . . . ≤ Y

(d,x0)
kn,kn

the ordered statistics associated to the sample

Y
(d,x0)

1 , . . . , Y
(d,x0)
kn

. For a preselected probability γ ∈ (0, 1), we propose as
a confidence interval of Q(αn|x0) the following random interval

CIγ,αn(kn, d, x0) := [Y
(d,x0)
Lγ(kn,αn),kn

, Y
(d,x0)
Rγ(kn,αn),kn

], (3)

where we recall that

Lγ(kn, αn) := max

{
j ∈ {1, . . . , kn}; Fbeta(αn; kn − j + 1, j) ≤ 1− γ

2

}
Rγ(kn, αn) := min

{
j ∈ {1, . . . , kn}; F beta(αn; kn − j + 1, j) ≤ 1− γ

2

}
,

Fbeta(·; a, b) being the distribution function of a Beta distribution with param-
eters a and b and F beta := 1−Fbeta. The confidence interval CIγ,αn(kn, d, x0)

is thus defined as in the unconditional case except that only the kn nearest
neighbors random variables Y (d,x0)

1 , . . . , Y
(d,x0)
kn

are used.
It remains to prove that the coverage probability of this interval converges to γ
as n → ∞. The accuracy of the confidence interval CIγ,αn(kn, d, x0) depends
on the smoothness of the function x→ S[Q(α|x0)|x]. For α ∈ (0, 1) and ζ > 0,
we introduce the quantity

ω(α, ζ) := sup
d(x,x0)≤ζ

(
S[Q(α|x0)|x]

α
− 1

)2

.

which is the largest deviation of the ratio S[Q(α|x0)|x]/S[Q(α|x0)|x0] from 1
when x belongs to the ball of center x0 and radius ζ. Note that this quantity
is classically considered when dealing with conditional distribution (see for
instance Daouia et al. [1]). In the following result, the conditions required to
ensure that the coverage probability of (3) converges to γ are established.
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Theorem 1 Let γ ∈ (0, 1) and x0 in the support of X. Assume that kn →∞
and let hn > 0 such that P(d(X

(d,x0)
kn

, x0) ≤ hn) = 1. For a sequence of level
αn ∈ (0, 1) satisfying (2), if S(·|x0) is continuous and strictly increasing

δ2
n :=

ln2(kn)

knαn(1− αn)
→ 0, (4)

and if

η2
n :=

knαn
1− αn

ω(αn, hn)→ 0, (5)

then, P [CIγ,αn(kn, d, x0) 3 Q(αn|x0)] = γ +O (δn) +O (ηn)→ γ.

First note that the confidence interval given by (3) is not the only possible
confidence interval of Q(αn|x0) with asymptotic coverage probability γ. One
can also consider the one-sided confidence intervals

CI(L)
γ,αn(kn, d, x0) := [Y

(d,x0)
L2γ−1(kn,αn),kn

,∞)

and CI(R)
γ,αn(kn, d, x0) := (−∞, Y (d,x0)

R2γ−1(kn,αn),kn
],

Obviously, under the conditions of Theorem 1, the coverage probabilities of
these two intervals converge to γ.
The proof of Theorem 1 is based on the decomposition

P[Y
(x0)
Lγ(kn,αn),kn

> Q(αn|x0)] = (1− γ)/2 +B1,n(Lγ(kn, αn)) +B2,n,

and on a similar decomposition for P[Y
(x0)
Rγ(kn,αn),kn

≤ Q(αn|x0)]. This decom-
position highlights two terms of error: the term B1,n(Lγ(kn, αn)) given for
j ∈ {1, . . . , kn} by

B1,n(j) := P[Y
(x0)
j,kn

> Q(αn|x0)]− Fbeta(αn; kn − j + 1, j)

and the quantity

B2,n := Fbeta(αn; kn − Lγ(kn, αn) + 1,Lγ(kn, αn))− (1− γ)/2.

The first term of error is a consequence of the approximation of the distribution
S(Y

(x0)
j,kn
|x0) by a Beta distribution. We show in the proof of Theorem 1 that

max
j=1,...,kn

|B1,n(j)| = O(ηn).

Condition (5) ensures that B1,n(Lγ(kn, αn)) converges to 0. Note that this
condition entails that kn should be chosen not too large. In the unconditional
case (i.e. if X and Y are independent) then ηn = B1,n(j) = 0 for all j and one
can take kn = n. Remark also that in the unconditional case, the accuracy of
the confidence interval does not depend on the underlying distribution.
The second term of error is related to the behavior of the distribution function
of a beta distribution. In Lemma 2, it is established that B2,n = O(δn) and
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thus B2,n → 0 under condition (4). If c = 0, the rate of convergence of αn
to 0 is limited by (4) (namely, αn � ln2(kn)/kn). Similarly, when c = 1, one
can construct an asymptotic confidence interval only if 1− αn � ln2(kn)/kn.
It also appears that, as expected, the rate of convergence of the coverage
probability can be very slow for an extreme conditional quantile.
In the next result, a sequence hn such that P(d(X

(d,x0)
kn

, x0) ≤ hn) = 1 is
proposed when d is the euclidean distance given for (x, y) ∈ Rp × Rp by
de(x, y) = [(x− y)>(x− y)]1/2

Proposition 1 Assume that the distribution of X admits fX as a probability
density function. If kn/(ln lnn)→∞ and n/kn →∞ then, for

hn =

(
2

fX(x0)

kn
n

)1/p

,

one has P(de(X
(de,x0)
kn

, x0) ≤ hn) = 1 for n large enough.

It thus appears that for a given value of kn, the radius hn increases with
the dimension p. As a consequence, when p becomes large, some of the
kn-nearest neighbors can be located far away from the point of interest and
the confidence interval can performs very badly. This phenomenon is well
known as the “curse of dimensionality”. In Section 3, a procedure to overcome
this difficulty is proposed.

2.2 Numerical illustration
Let us take a look at the finite sample performance of the estimated confidence
interval introduced in the previous section. Using the observations of a sample
{(X1, Y1), . . . , (Xn, Yn)} driven from a random pair (X,Y ), our objective is the
construction of a confidence interval with asymptotic coverage probability γ
of the conditional quantile Q(α|x0) associated to the conditional cumulative
distribution function S(·|x0). In the estimation procedure, the nearest neigh-
bors are selected by using the classical euclidean distance de in Rp.
Let ξ : R→ (0,∞) defined by ξ(z) := 5z2/36 + 1/4 and let g0 : Rp → R. Two
models for the distribution of (X,Y ) are considered:

− Model 1: Conditional Burr distribution. For y > 0,

S(y|X) =
(

1 + yc(X)
)−1/τ(X)

,

where c and τ are positive functions defined for all x ∈ Rp by c(x) = ‖x‖1
and τ(x) = c(x)ξ(g0(x)).

− Model 2: Conditional Weibull distribution. For y > 0,

S(y|X) := exp
(
−y1/ξ(g0(X))

)
.
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In all what follows, the p components of the random vector X are independent
and uniformly distributed on [−5, 5] and the point of interest x0 is the vector
with all its components equal to 1. In Model 1, the conditional distribution
of Y given that X = x is heavy-tailed since for all t > 0 and x ∈ X ,

lim
y→∞

S(ty|x)

S(y|x)
= t−ξ(g0(x)).

The conditional extreme index is the function ξ ◦ g0. The conditional dis-
tribution of Y given that X = x in Model 2 is a conditional Weibull type
distribution (see for instance [12, 11]) and ξ(g0(x)) is referred to as the condi-
tional Weibull-tail index.
Three conditional quantile levels are considered: α = α1,n = 1 − 8 ln(n)/n,
αn = α2 = 1/2 and αn = α3,n = 8 ln(n)/n. In these three situations, con-
dition (2) holds with respectively c = 1, c = 1/2 and c = 0. The first
case corresponds to an extreme quantile located in the left-tail of the con-
ditional distribution. The quantile level α2 corresponds to the conditional
median and α3,n to an extreme quantile in the right-tail. To evaluate the
performance of the confidence interval, we compute its coverage probabil-
ity P[CIγ,αn(kn, de, x0) 3 Q(αn|x0)]. This probability is approximated numer-
ically by a Monte-Carlo procedure. More specifically, N = 2 000 independent
samples of size n = 1000 were generated. For given values of kn ∈ {1, . . . , n}
and γ ∈ (0, 1), the confidence interval obtained with the r-th replication is
denoted CI

(r)
γ,αn(kn, de, x0). The coverage probability is then approximated by

pγ,αn(kn, de, x0) :=
1

N

N∑
r=1

I
CI

(r)
γ,αn (kn,de,x0)

(Q(αn|x0)).

This value is expected to be close to the prespecified probability γ.

Selection of the number of nearest neighbors − We first take a look
at the influence of kn (the number of nearest neighbors) on the coverage prob-
ability. In Figure 1, the values of pγ,αn(kn, de, x0) (with αn ∈ {αn,1, α2, αn,3})
are represented as a function of kn ∈ {10, . . . , 200} for Model 1 with
g0 ∈ {g(j)

0 , j = 1, 2, 3} (see Table 1 for the definition of the functions g(j)
0 ). It

appears that when the quantile level is extreme, only few values of kn provide
a reasonable coverage probability. It is thus relevant to propose a data driven
procedure to select the value of kn. The selected number of nearest neighbors
depends on: the quantile level αn, the point of interest x0 ∈ Rp, the nominal
coverage probability γ and the distance d used to collect the nearest neighbors.
First, let

C(k) :=
1

2

(
Y

(d,x0)
Lγ(k,αn),k + Y

(d,x0)
Rγ(k,αn),k

)
be the random variable corresponding to the center of the confidence in-
terval CIγ,αn(kn, d, x0). The basic idea to select a convenient number of
nearest neighbors is to take k is a stability region of the finite sequence
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{C(n0), . . . , C(n1)} where 1 ≤ n0 < n1 ≤ n. More precisely, we are searching
for the value

k̃(sel)
n := arg min

i∈{n0,...,n1}
Var(C(i)).

Of course, the variance of C(i) (and consequently the number k̃(sel)
n ) is un-

known in practice. We propose the following method to obtain an esti-
mator of k̃(sel)

n . Let a ∈ (0, 1) and denote by b·c the floor function. For
i ∈ {n0, . . . , n1}, the variance of C(i) is estimated by the local estimator

Ĉn(i) :=
1

bnac
∑
j∈V(i)

C(j)− 1

bnac
∑
`∈V(i)

C(`)

2

,

where V(i) ⊂ {n0, . . . , n1} is the set of the bnac nearest neighbors of i. Finally,
for a given η ≥ 0, we propose to take the following number of nearest neighbors:

k̂(sel)
n := min{i ∈ {n0, . . . , n1}; Var(Ĉn(i)) ≤ η}, (6)

with the convention min{∅} = n0. Note that when η = 0, k̂(sel)
n is the ar-

gument of the minimum of the sequence {Ĉn(n0), . . . , Ĉn(n1)}. The role of
η is to obtain a value of k̂(sel)

n less sensitive to the fluctuations of the se-
quence {Ĉn(n0), . . . , Ĉn(n1)}. To sum up, the setting parameters required to
compute (6) are: the integers n0 and n1 delimiting the searching region for
the value of kn, the value of a to compute the local estimator of the vari-
ance and the value of η. In all what follows, these parameters are fixed to
n0 = b0.05n/pc, n1 = 200, a = 0.006 and η to the first quartile of the se-
quence {Ĉn(n0), . . . , Ĉn(n1)}.
In Figure 1, one can check that for the conditional median (αn = α2 = 1/2)
the coverage probability obtained with the selected value of kn is close to the
best attainable coverage probability. The choice of kn is much more difficult
for the extreme quantiles of level αn,1 and αn,3.

Obtained results − The values of p̃γ,αn(de, x0) := pγ,αn(k̂
(sel)
n , de, x0), are

gathered in Table 2 for Model 1 and Table 3 for Model 2 (see also Table 1
for the definitions of the functions g(j)

0 ).
For the conditional median (αn = 1/2), the coverage probability is quite close
to 1−γ and the accuracy of the confidence interval is not affected by the dimen-
sion p of the covariate. For a right-tail extreme quantile (αn = 8 ln(n)/n), the
coverage probability is close to the nominal one when p = 1, but the precision
of the confidence interval is strongly deteriorated when p increases (for in-
stance, for p = 4 and γ = 0.9, the coverage probability of CIγ,αn(k̂

(sel)
n , de, x0)

is equal to 0.6975). As discussed before, this is an expected consequence of
the data sparsity around x0 when p increases. Finally, for a left-tail extreme
quantile (αn = 1 − 8 ln(n)/n), the accuracy mostly depends on the function
g0. For instance, the expected number of observations in the left-tail of the
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conditional distribution of Y given X = x0 is larger when g0 = g
(3)
0 than

when g0 = g
(2)
0 . This can explains the good coverage probability obtained for

g0 = g
(3)
0 (and the bad one for g0 = g

(2)
0 ).

3 Dimension reduction and confidence inter-
val of large conditional quantile
As seen in the previous section, a large value of the covariate dimension (p ≥ 4)
can seriously deteriorates the coverage probability of the confidence interval of
an extreme quantile located in the right-tail of the conditional distribution. In
this section, a dimension reduction procedure is proposed to obtain a better
probability coverage of extreme quantile with αn → 0. Note that the procedure
described below can be easily adapted to the situation where αn → 1.

3.1 Tail conditional independence
Without any further assumptions, the classical euclidean distance is the natu-
ral distance to use in order to select the nearest neighbors. Unfortunately, due
to the data sparsity when p is large, this distance selects observations that can
be located far away from the point of interest x0. In the literature devoted
to dimension reduction, it is commonly assumed that there exists a function
g0 : Rp → R such that the conditional distribution of Y given X is equal to
the conditional distribution of Y given g0(X). The dimension of the covariate
is thus reduced since X can be replaced by g0(X). In this case, to select the
nearest neighbors, it seems preferable to use the pseudo-distance d0 defined
for all (x, y) ∈ Rp × Rp by d0(x, y) := |g0(x)− g0(y)| instead of the euclidean
distance in Rp. Since we are only interested in the right-tail of the conditional
distribution, we assume hereafter that Y is tail conditionally independent of X
given g0(X) as defined in Gardes [8]. More specifically, we assume that

(TCI) the right endpoint of the conditional distribution of Y given X = x

is infinite for all x ∈ X and that there exists a function ϕy : R → R
depending on y and such that, as y →∞,

P[Y > y|X]

ϕy(g0(X))

a.s.u.−→ 1. (7)

The notation a.s.u.−→ stands for the almost surely uniform convergence1 (see
for instance Lukács [20] or Rambaud [22, Proposition 1]). Roughly speak-
ing under (7), inference on the extreme conditional quantile of Y given X

can be achieved only by using the information brought by the reduced covari-
ate g0(X). The appropriate distance to select the nearest neighbors is thus

1A stochastic process (Zy, y ∈ R) converges almost surely uniformly to 1 as y →∞ (in symbol
Zy

a.s.u.−→ 1) if for all ε > 0, there exits A such that for all y > A, P[|Zy − 1| ≤ ε] = 1.
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the distance d0.
Note that if there exist φ : R → R, φ 6= Id and g̃0 : Rp → R such that
g0 = φ ◦ g̃0 then if g0 satisfies (7) same holds for the function g̃0. To ensure
that g0 is the only function satisfying (7), we must assume that g0 ∈ G where
G is a set of functions satisfying the following property:

(P) for all g : Rp → R ∈ G, there are no functions φ : R → R (with φ 6= Id)
and g̃ : Rp → R ∈ G such that g = φ ◦ g̃.

Let up = (1, . . . , 1)> ∈ Rp. A classical set satisfying (P) is the set of linear
functions given by

GL :=
{
g : Rp → R; g(x) = b>x; b ∈ Θp

}
, (8)

with Θp := {b ∈ Rp with b>b = 1 and b>up > 0}. Note that this set is the one
considered in Gardes [9]. One can also consider set on non-linear functions (see
Section 3.3 for an example). Finding an appropriate distance for the selection
of nearest neighbors (in an extreme value framework) amounts to finding the
function g0 satisfying (7). In Gardes [9], a method has been proposed in
the particular case of a linear function g0. Unfortunately, the procedure is
computationally expensive and can be used only for a linear function g0 ∈ GL.

3.2 Selection of the distance
In this section, we propose a new data-driven procedure to select an appropri-
ate distance d0 for the selection of the nearest neighbors. As explained above,
we thus have to estimate the function g0 ∈ G satisfying (7). For H ∈ N \ {0}
and g ∈ G, let S1,g, . . . ,SH,g be non-overlapping intervals covering the support
of g(X). We denote by {(X(i), Yn−i,n), i = 0, . . . , n − 1} the random vectors
{(Xi, Yi), i = 1, . . . , n} rearranged in order to have Y1,n ≤ . . . ≤ Yn,n. For a
given βn ∈ (0, 1) with βn → 0 as n→∞, let

Êh,g(βn) :=
1

M2
h,g

bnβnc−1∑
i,j=1

|g(X(i))− g(X(j))|IS2h,g((g(X(i)), g(X(j)))),

with

Mh,g :=

bnβnc∑
i=1

ISh,g(g(X(i))).

The statistic Êh,g(βn) is the average distance between the observations g(Xi)

with (Xi, Yi) ∈ Sh,g × [Yn−bnβnc,n,∞). If condition (7) holds for g0 ∈ G
then, for y large enough and given that Y > y, the random variable g0(X)

is more likely to be observed around the local maximum points of the func-
tion ϕy. This is illustrated in Figure 2 where n independent random vectors
(Xi, Yi), i = 1, . . . , n are generated from Model 1 with g0 = g

(2)
0 (see Ta-

ble 1). Recall that Model 1 satisfies condition (7) with ϕy(z) = y−1/ξ(z).

11



Note that this function admits two local maxima at the points −3
√

5 and
3
√

5. In the left panel of Figure 2, the histogram shows clearly that the obser-
vations {g0(Xi), Yi > y} are located around the two maximum points of the
function ϕy. In the right panel, we can check that this is no longer the case
replacing the function g0 by another function (here g1(x) = (1, . . . , 1)>x/

√
4).

Therefore, for n large enough, the number of sets Sh,g0 × [Yn−bnβnc,n,∞) con-
taining at least one observation is expected to be smaller than the number of
local maximum points and for these sets, Êh,g0(βn) must be close to 0. We
thus propose to estimate the function g0 ∈ G satisfying (7) by

ĝ0 := arg min
g∈G

 ∑
h∈JH,g

Êh,g(βn) + λcard(JH,g)

 , (9)

where λ > 0, JH,g := {h ∈ {1, . . . ,H}; Mh,g > 0} and card(JH,g) is
the number of elements in JH,g. For g ∈ G and h ∈ {1, . . . ,H}, we
take Sh,g := [ξ̂h−1,g, ξ̂h,g] where ξ̂h,g is the sample quantile with corresponding
probability h/H of the sample {g(Xi), i = 1, . . . , n}. The setting parameters
of our procedure of estimation are: the sequence βn, the number H of
intervals and finally the penalty term λ. In the numerical illustration below,
these parameters are set to βn = 5/(3

√
n), λ = 1 and H = 20.

To conclude this section, assuming that (7) holds, we propose a more theoret-
ical justification of the estimator given by (9). Before that, let us introduce
the following additional condition on the function ϕy involved in (7). In what
follows, we denote by X0 the support of g0(X) where g0 satisfies condition (7).

(H1) The function ϕy is continuous. Furthermore, there exist J ∈ N \ {0}, a
collection I1, . . . , IJ of non-overlapping intervals covering X0 and y0 ∈ R,
such that for all y ≥ y0 and j ∈ {1, . . . , J}, the function ϕy admits on Ij
a unique local maximum point z∗j such that z∗j is an interior point of Ij .

This condition entails that for y large enough, the function ϕy admits a finite
number of local maximum points. Assuming that (H1) holds, the following
condition on the non-overlapping intervals S1,g, . . . ,SH,g is required.

(H2) For all g ∈ G, there exists H0,g ∈ N \ {0} such that for all H ≥ H0,g and
j ∈ {1, . . . , J},

z∗j ∈
H⋃
h=1

S̊h,g

where I̊ is the interior of the interval I.

Hence, under (H1) and (H2), the J local maximum points of ϕy belong to
the interior of an interval Sh,g. A supplementary condition on the distribution
of (X,Y ) is also required. Let C ⊂ X such that P(X ∈ C) > 0. For all
y and t ∈ (0, 1), let py(·|C) be the survival function of S(y|X) given X ∈ C

12



(py(t|C) := P[S(y|X) > t|X ∈ C]). The associated quantile function is denoted
by qy(·|C) (qy(·|C) := inf{t; py(t|C) ≤ ·}).

(H3) For all (η, d) ∈ (0, 1)2,

lim
y→∞

qy(η|C)
qy(dη|C)

= 0.

This technical condition is satisfied (under some regularity condition, see
Lemma 5) by conditional heavy-tailed distributions defined for all x ∈ X by
S(y|x) := y−1/γ(x)L(y|x), where γ is a positive function and for all x ∈ X ,
L(·|x) is a slowly varying function. Condition (H3) entails that the obser-
vations of g0(X) given that Y > y and g0(X) ∈ C are located on a small
probability set (see Lemma 4). We are now in position to provide a theoreti-
cal justification of (9).

Proposition 2 Assume that there exists a function g0 satisfying condition (7)
and such that g0(X) admits a density function f0. If there exists m > 0

such that f0(x) ≥ m for all x ∈ X0, if condition (H3) holds for all
C = g−1

0 (I) where I ⊂ X0 is an interval then, for y large enough and all
υ > 0, one has under (H1) and (H2) that, introducing the set JH,y(υ) :=

{h ∈ {1, . . . ,H}; P(g0(X) ∈ Sh,g0 |Y > y) > υ},

lim
y→∞

∑
h∈JH,y(υ)

Eg0(y;Sh,g0) = 0 and card(JH,y(υ)) ≤ J, (10)

where, for an independent copie (X∗, Y ∗) of (X,Y ), Eg0(y;Sh,g0) is equal to

E
[
|g0(X)− g0(X∗)|

∣∣{(g0(X), g0(X∗)) ∈ S2
h,g0} ∩ {min(Y, Y ∗) > y}

]
.

Denoting by QY (·) := inf{y; P(Y > y) ≤ ·} the quantile function of the
distribution of Y , one can see that the statistic Êh,g(βn) is the empirical coun-
terpart of the expectation Eg(QY (βn);Sh,g) where QY (βn) has been replaced
by the order statistic Yn−bnβnc,n. Moreover, Mh,g/bnβnc is an estimator of the
probability P(g(X) ∈ Sh,g|Y > QY (βn)). Since QY (βn)→∞ as n→∞, (10)
can be seen as a theoretical justification of (9).

3.3 Numerical illustrations
Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X,Y ),
where X is a Rp-valued random variable with p > 1 and Y is a R-valued ran-
dom variable. The random vector (X,Y ) is distributed according to Model 1
or Model 2 (see Section 2.2). Here we focus on extreme quantiles in the
right-tail and we take αn = αn,3 = 8 ln(n)/n for the quantile level.
It can be shown that Model 1 satisfies condition (TCI) with ϕy(z) =

y−1/ξ(z). Of course, condition (TCI) also holds for Model 2 with ϕy(z) =

exp(−y−1/ξ(z)). In what follows, the function g0 involved in Model 1
and Model 2 is taken in the set {g(j)

0 , j = 2, . . . , 5} (see Table 1). Note
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that the function g(5)
0 defined for all x ∈ Rp by g(5)

0 (x) = |(b(5)
0 )>x2|1/2 (where

the components of x2 are the square of the components of x) is a non-linear
function of x. It belongs to the set

GNL,r :=
{
g : Rp → Rp; g(x) = |b>xr|1/r; b ∈ Θr

}
,

with r ∈ N \ {0} and Θp := {b ∈ Rp with b>b = 1 and b>up > 0}. Instead of
the classical euclidean distance, one could (should) use for each j ∈ {2, . . . , 5}
the (unknown) distance d(j)

0 (with d(j)
0 (x, y) = |g(j)

0 (x)− g(j)
0 (y)|) to select the

nearest neighbors. Using this distance amounts to replace the p-dimensional
covariate X by the real-valued variable g(j)

0 (X). It is thus expected to obtain
better coverage probabilities than in Section 2.2.
The first step consists in the estimation of the function g(j)

0 (or equivalently
of the distance d(j)

0 ) by (9). For j ∈ {2, 3, 4}, the minimization is achieved
over the set G = GL and for j = 5, over the set G = GNL,2. The optimization
problem (9) is solved by using a coordinate search method (see Hooke and
Jeeves [16] and Appendix B for more details). The estimation of g(j)

0 reduces
to the estimation of the vector b(j)0 . Denoting by b̂

(j)
n,0 this estimator, the

accuracy of the estimation procedure is measured by the average and the
standard deviation of the error

δ(j)
n := (̂b

(j)
n,0 − b

(j)
0 )>(̂b

(j)
n,0 − b

(j)
0 ).

The corresponding estimator of g(j)
0 is denoted ĝ(j)

n,0. For each j ∈ {1, . . . , 5},
the average and the standard deviation of δ(j)

n are estimated by a Monte-Carlo
procedure by replicating N = 2 000 times the sample {(X1, Y1), . . . , (Xn, Yn)}.
Next, the confidence interval defined in (3) is computed by selecting the near-
est neighbors with the estimated distance d̂(j)

0 (x, y) := |ĝ(j)
n,0(x) − ĝ(j)

n,0(y)| in-
stead of the euclidean distance. For a given number k of nearest neighbors,
the obtained coverage probability is denoted by pγ,αn(k, d̂

(j)
0 , x0). When k is

chosen by the procedure described in Section 2.2, the coverage probability is
denoted p̃γ,αn(d̂

(j)
0 , x0) := pγ,αn(k̂

(sel)
n , d̂

(j)
0 , x0). This last probability is com-

pared to p̃γ,αn(d
(j)
0 , x0) which is the coverage probability obtained by using the

unknown distance d(j)
0 (x, y) := |g(j)

0 (x)−g(j)
0 (y)| in the selection of the nearest

neighbors.
The values of p̃γ,αn(d̂

(j)
0 , x0), p̃γ,αn(d

(j)
0 , x0) and p̃γ,αn(de, x0) are given in Ta-

bles 4 and 5. For linear functions (i.e. g0 ∈ GL), replacing the euclidean
distance by the estimated distance d̂(j)

0 leads to a significant improvement in
the coverage probability. Note that the estimation of the function g(5)

0 ∈ GNL
is more challenging (especially in Model 1) but the obtained coverage prob-
ability remains better than the one obtained with the euclidean distance.
In Figure 3, the coverage probabilities pγ,αn(k, de, x0), pγ,αn(k, d̂

(j)
0 , x0) and

pγ,αn(k, d
(j)
0 , x0) are represented as a function of the number k of nearest neigh-

bors. It appears that the choice of k is really less crucial when one use the
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estimated distance d̂(j)
0 . We can check again that the the selection of kn by

our procedure provides a confidence interval with a coverage probability close
to γ.

4 Chicago air pollution dataset
The results obtained in this paper are illustrated on the Chicago air pollution
dataset. This dataset, available on the R package NMMAPS Data Lite, gathers
the daily concentrations of different pollutants (ozone (O3), particular matter
with diameter smaller than 10 microns or 25 microns (PM10 or PM25), sulphur
dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), etc.) and some
meteorology and mortality variables. The data were collected in Chicago from
1987 to 2000 during n = 4841 days. This dataset has been studied by several
authors in a dimension reduction context (see for instance Scrucca [24] and
Xia [26]) and, in an extreme value context, by Gardes [9].
We are interested in the conditional distribution of Y given X = x0 where Y
corresponds to the (centered and normalized) concentration of O3 (in parts per
billion) and X is the covariate vector of dimension p = 4 corresponding to the
daily maximum concentrations of PM10, SO2, NO2 and CO. As in Gardes [9],
we assume that condition (7) holds with g0 ∈ GL. As a first step, we use (9)
to estimate the direction b0 such that g0(x) = b>0 x for x ∈ Rp. The obtained
estimated vector is b̂n,0 := (0.198,−0.155, 0.963, 0.093)>. Note that this es-
timated vector is quite close to the direction estimated in [9] and given by
b̃n,0 := (0.175,−0.036, 0.962,−0.207)> (we have (̂bn,0 − b̃n,0)>(̂bn,0 − b̃n,0) =

0.105). As noted by Scrucca [24] or Gardes [9], the covariate NO2 seems to
bring the most important information on large values of ozone concentration.
Our goal is now to construct a confidence interval with prespecified coverage
probability γ = 0.9 of the conditional quantile Q(αn|x0). Two possible situa-
tions for x0 are considered:
Situation 1 − x0 = (xPM10

0 (0.5), xSO2
0 (0.5), xNO2

0 (0.5), xCO
0 (0.5))> where for

τ ∈ (0, 1), xPM10
0 (τ) , xSO2

0 (τ), xNO2
0 (τ) and xCO

0 (τ) are the sample quantile of
order 1− τ of the (centered and normalized) daily maximum values of PM10,
SO2, NO2 and CO. This value of x0 is quite close to a situation observed in
Chicago during the period 1987-2000 with moderate values of the four primary
pollutants.
Situation 2 − x0 is x0 = (xPM10

0 (0.5), xSO2
0 (0.25), xNO2

0 (0.05), xCO
0 (0.05))>

corresponding to large values for NO2 and CO.
For the quantile level αn, we assume that αn ∈ [8 ln(n)/n, 64 ln(n)/n]. The
obtained confidence interval (with γ = 0.9) are represented on Figure 4 as a
function of αn. As already noted in Gardes [9] or Han et al. [15], very im-
portant ozone concentration is more likely to be observed when concentrations
of NO2 and CO are important. As expected, one can also check that the length
of the confidence interval increases when the quantile level αn decreases.
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5 Proofs

5.1 Preliminaries results
In this section we give two useful results on Beta distribution. The probability
density function of a Beta distribution with parameters a and b is given by

fbeta(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1I[0,1](x),

where Γ is the gamma function.

Lemma 1 For all m ∈ N \ {0} and α ∈ (0, 1),

arg max
j∈{1,...,m}

fbeta(α;m− j + 1, j) = m− bmαc.

Furthermore, if mn ∈ N\{0} and αn ∈ (0, 1) are sequences such that mn →∞
and mn(αn ∧ (1− αn))→∞ as n→∞, then for all sequence εn such that

ε2
n = o

(
1− αn
mnαn

)
,

and for αn,τ := αn(1 + τεn), there exist 0 < c1 < c2 such that for n large
enough,(

αn(1− αn)

mn

)1/2

max
j∈{1,...,mn}

sup
τ∈[−1,1]

fbeta(αn,τ ;mn − j + 1, j) ∈ [c1, c2].

Proof − For m ∈ N \ {0} and α ∈ (0, 1), let

aj := fbeta(α;m− j + 1, j) =
m!

(j − 1)!(m− j)!
αm−j(1− α)j−1.

It is easy to check that for all j ∈ {1, . . . ,m− 1},

aj+1

aj
=
m− j
j

1− α
α

.

Hence, aj+1/aj ≥ 1 if and only if j ≤ m(1 − α), proving the first part of the
Lemma. To prove the second part, we start with

max
j∈{1,...,mn}

sup
τ∈[−1,1]

fbeta(αn,τ ;mn − j + 1, j)

= sup
τ∈[−1,1]

fbeta (αn,τ ; bmnαn,τc+ 1,mn − bmnαn,τc) .

In order to study the factor

mn!

(bmnαn,τc)!(mn − bmnαn,τc − 1)!
,

appearing in the expression of fbeta (αn,τ ; bmnαn,τc+ 1,mn − bmnαn,τc), we
use the Stirling’s bounds given for all r ∈ N \ {0} by

√
2πrr+1/2e−r ≤ r! ≤
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rr+1/2e1−r (see for instance [7, Paragraph 2.9]).
First, taking r = mn leads to

√
2πm1/2+mn

n e−mn ≤ mn! ≤ m1/2+mn
n e1−mn . (11)

Next, using the Stirling’s bounds with r = bmnαn,τc yields to
√

2πsn ≤
(bmnαn,τc)! ≤ e× sn with

sn :=
(mnαn,τ )bmnαn,τ c+1/2

ebmnαn,τ c

(
bmnαn,τc
mnαn,τ

)1/2+bmnαn,τ c
.

It is easy to check that for all τ ∈ [−1, 1],

1− 1

mnαn(1− εn)
≤ bmnαn,τc

mnαn,τ
≤ 1,

and bmnαn,τc ≤ mnαn(1 + εn). As a consequence, one has for all τ ∈ [−1, 1]

and for n large enough that,

1

2e
≤
(

1− 1

mnαn(1− εn)

)1/2+mnαn(1+εn)

≤
(
bmnαn,τc
mnαn,τ

)1/2+bmnαn,τ c
≤ 1.

Note that the first inequality is due to the fact that(
1− 1

mnαn(1− εn)

)1/2+mnαn(1+εn)

→ e−1,

since by assumption mnαn → ∞ and εn → 0. We finally get that for n large
enough and all τ ∈ [−1, 1],√

π

2

(mnαn,τ )1/2+bmnαn,τ c

ebmnαn,τ c+1
≤ (bmnαn,τc)! ≤

(mnαn,τ )1/2+bmnαn,τ c

ebmnαn,τ c−1
. (12)

Finally, the Stirling’s bounds applied to r = mn − bmnαn,τc − 1 leads to√
2πtn ≤ (mn − bmnαn,τc − 1)! ≤ e× tn with

tn :=
(mn(1− αn,τ ))mn−bmnαn,τ c−1/2

emn−bmnαn,τ c−1

(
mn − bmnαn,τc − 1

mn(1− αn,τ )

)mn−bmnαn,τ c−1/2

.

Remark that for all τ ∈ [−1, 1],

1− 1

mn(1− αn − αnεn)
≤ mn − bmnαn,τc − 1

mn(1− αn,τ )
≤ 1.

Furthermore, since by assumption(
αnεn

1− αn

)2

= o

(
αn

mn(1− αn)

)
= o(1),

one has for n large enough that

1− αn − αnεn = (1− αn)

(
1− αnεn

1− αn

)
≥ 1− αn

2
.
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As a consequence, we get

1− 1

2mn(1− αn)
≤ mn − bmnαn,τc − 1

mn(1− αn,τ )
≤ 1.

Since (
1− 1

2mn(1− αn)

)mn−bmnαn,τ c−1/2

→ e−1/2,

we obtain the inequality

1

2e1/2
≤
(
mn − bmnαn,τc − 1

mn(1− αn,τ )

)mn−bmnαn,τ c−1/2

≤ 1

leading to √
π

2

(mn(1− αn,τ ))mn−bmnαn,τ c−1/2

emn−bmnαn,τ c−1/2
≤ (mn − bmnαn,τc − 1)!

≤ (mn(1− αn,τ ))mn−bmnαn,τ c−1/2

emn−bmnαn,τ c−2
. (13)

Gathering (11), (12) and (13) yields to
√

2π

e3

(
mn

αn,τ (1− αn,τ )

)1/2

≤ fbeta (αn,τ ; bmnαn,τc+ 1,mn − bmnαn,τc)

≤ 2

π
e3/2 ×

(
mn

αn,τ (1− αn,τ )

)1/2

.

Finally, since for all τ ∈ [−1, 1], |αn,τ/αn − 1| ≤ εn → 0 and |(1− αn,τ )/(1−
αn)− 1| ≤ αnεn/(1− αn)→ 0, αn(1− αn)/2 ≤ αn,τ (1− αn,τ ) ≤ 2αn(1− αn)

and the proof is complete by letting c1 :=
√
π/2e−1 and c2 := 4e.

Lemma 2 Let mn and αn ∈ (0, 1) be two sequences such that mn →∞ and

δ2
n :=

ln2(mn)

mnαn(1− αn)
→ 0, (14)

as n → ∞. For all γ ∈ (0, 1), one has 1 ≤ Lγ(mn, αn) ≤ Rγ(mn, αn) ≤ mn.
Furthermore,

Fbeta(αn;mn − Lγ(mn, αn) + 1,Lγ(mn, αn)) =
1− γ

2
+O (δn) (15)

and Fbeta(αn;mn−Rγ(mn, αn)+1,Rγ(mn, αn)) = 1− 1− γ
2

+O (δn) . (16)

Proof − Remark that sincemn →∞, condition (14) entails thatmn(αn∧(1−
αn))→∞. Hence, since the function j → Fbeta(α;mn− j + 1, j) is increasing
for all α ∈ (0, 1)

max
j=1,...,mn

Fbeta(αn;n− j + 1, j) = Fbeta(αn; 1,mn) = 1− (1− αn)mn → 1,
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as n→∞ and, using the inequality ln(x) ≤ x− 1 that holds for all x ∈ [0, 1]

min
j=1,...,mn

Fbeta(αn;n− j + 1, j) = Fbeta(αn;mn, 1) = αmnn

= exp[mn ln(αn)] ≤ exp[−mn(1− αn)]→ 0.

Hence, for n large enough,{
j ∈ {1, . . . ,mn}; Fbeta(αn;mn − j + 1, j) ≤ 1− γ

2

}
6= ∅,

and {
j ∈ {1, . . . ,mn}; Fbeta(αn;mn − j + 1, j) ≥ 1− 1− γ

2

}
6= ∅.

This conclude the first part of the proof.
We now prove (15). The proof of (16) is similar and is thus omitted. The
definition of Lγ(mn, αn) ensures that

0 ≤ 1− γ
2
− Fbeta(αn;mn − Lγ(mn, αn) + 1,Lγ(mn, αn)) ≤ Dn(Lγ(mn, αn))

where Dn(mn) := 1− Fbeta(αn; 1,mn) and for j = 1, . . . ,mn − 1,

Dn(j) := Fbeta(αn;mn − j, j + 1)− Fbeta(αn;mn − j + 1, j).

Hence to prove (15) it suffices to show that

max
j=1,...,mn

Dn(j) = O
(

ln(mn)

[mnαn(1− αn)]1/2

)
. (17)

First, Dn(mn) = (1− αn)mn . Using the inequality (1− u)ξ ≤ exp(−ξu) that
holds for all u ∈ (0, 1) and ξ > 0 and the fact that 1−αn ∈ (0, 1), we get that

Dn(mn)[mnαn(1− αn)]1/2

ln(mn)
≤ exp(−mnαn)(mnαn)1/2

ln(mn)
→ 0,

as n→∞. We thus have shown that

Dn(mn) = o

(
ln(mn)

[mnαn(1− αn)]1/2

)
. (18)

Now, let U1, . . . , Umn be mn independent standard uniform random variables
and let U1,mn ≤ . . . ≤ Umn,mn be the corresponding order statistics. It is well
known that for all j ∈ {1, . . . ,mn}, the order statistic Uj,mn follows a beta
distribution with parameters j and mn − j + 1. Hence, for all j = 2, . . . ,mn

Dn(mn − j + 1) = P[Uj−1,mn ≤ αn]− P[Uj,mn ≤ αn]

≤ P
[
Uj,mn ≤ αn + max

j=2,...,mn
(Uj,mn − Uj−1,mn)

]
− P[Uj,mn ≤ αn].
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Let

An :=

{
max

j=2,...,mn
(Uj,mn − Uj−1,mn) ≤ 2

ln(mn)

mn

}
and An :=

{
max

j=2,...,mn
(Uj,mn − Uj−1,mn) > 2

ln(mn)

mn

}
.

It is easy to check that

Dn(mn − j + 1) ≤ P
[{
Uj,mn ≤ αn + max

j=2,...,mn
(Uj,mn − Uj−1,mn)

}
∩An

]
− P[Uj,mn ≤ αn] + P(An)

≤ D(1)
n (mn − j + 1) + P(An), (19)

with

D(1)
n (mn − j + 1) := P

[
Uj,mn ≤ αn + 2

ln(mn)

mn

]
− P[Uj,mn ≤ αn].

Using the mean value theorem, for all j = 2, . . . ,mn, there exists θn,j ∈ (0, 1)

such that

D(1)
n (mn − j + 1) = 2

ln(mn)

mn
fbeta

(
αn + 2θn,j

ln(mn)

mn
; j,mn − j + 1

)
.

Under (14), the second part of Lemma 1 entails that

max
j=2,...,mn

D(1)
n (mn − j + 1) = O

(
ln(mn)

[mnαn(1− αn)]1/2

)
. (20)

It remains now to deal with the probability P(An). Let E1, . . . , Emn+1 be inde-
pendent standard exponential random variables. From Rényi’s representation
theorem,

P(An) = P
(

max
j=2,...,mn

Ej
E1 + . . .+ Emn+1

> 2
ln(mn)

mn

)
.

Let Tmn+1 := (E1 + . . .+ Emn+1)/(mn + 1). From the law of large numbers,
Tmn+1

a.s.−→ 1 and thus, for all η ∈ (0, 1/4), there exists Nη ∈ N \ {0} such that
for all n ≥ Nη, P(Tmn+1 > 1− η) = 1. As a consequence, for n ≥ Nη

P(An) = P
({

Emn−1,mn−1 > 2
(mn + 1) ln(mn)

mn
Tmn+1

}
∩ {Tmn+1 > 1− η}

)
≤ P

(
Emn−1,mn−1 > 2(1− η)

(mn + 1) ln(mn)

mn

)
∼ m2η−1

n .

Since for η ∈ (0, 1/4),

m2η−1
n = o

(
ln(mn)

[mnαn(1− αn)]1/2

)
,

we have shown that

P(An) = O
(

ln(mn)

[mnαn(1− αn)]1/2

)
. (21)

By gathering (18), (19), (20) and (21) we get (17) and the proof is complete.
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For i = 1, . . . , n, let Vi := S(Yi|Xi) and V (x0)
i := S(Y

(x0)
i |X(x0)

i ).

Lemma 3 i) The random variables V1, . . . , Vn are independent standard uni-
form random variables. Furthermore, they are independent from X1, . . . , Xn.
ii) The random variables V (x0)

1 , . . . , V
(x0)
n are independent standard uniform

random variables.

Proof − i) Since the random pairs {(Xi, Yi), i = 1, . . . , n} are independent
copies of (X,Y ), the random variables V1, . . . , Vn are n independent copies of
V = S(Y |X). Now, for all t ∈ [0, 1], denoting by fX the probability density
function of X,

P(V ≤ t) =

∫
P[S(Y |x) ≤ t|X = x]fX(x)dx =

∫
S[Q(t|x)|x]fX(x)dx = t,

and thus V is a standard uniform random variable. To prove that the random
variables V1, . . . , Vn are independent form X1, . . . , Xn, it suffices to prove that
X and V are independent. Let A ∈ B(Rp) and t ∈ [0, 1],

P[{V ≤ t} ∩ {X ∈ A}] =

∫
P[{Y ≥ Q(t|x)} ∩ {x ∈ A}|X = x]fX(x)dx

= t

∫
IA(x)fX(x)dx = tP[X ∈ A],

proving the independence.
ii) Let (t1, . . . , tn) ∈ [0, 1]n. Let Σn be the set of the permutations of {1, . . . , n}.
One has

P[{V (x0)
1 ≤ t1} ∩ . . . ∩ {V (x0)

n ≤ tn}]
=

∑
σ∈Σn

P
[{
Vσ(1) ≤ t1, . . . , Vσ(n) ≤ tn

}
∩
{
‖Xσ(1) − x0‖ ≤ . . . ≤ ‖Xσ(n) − x0‖

}]
From i), since the standard uniform random variables V1, . . . , Vn are indepen-
dent form X1, . . . , Xn,

P[{V (x0)
1 ≤ t1} ∩ . . . ∩ {V (x0)

n ≤ tn}]
=

∑
σ∈Σn

P
[
Vσ(1) ≤ t1, . . . , Vσ(n) ≤ tn

]
P
[
‖Xσ(1) − x0‖ ≤ . . . ≤ ‖Xσ(n) − x0‖

]
= t1 . . . tn

∑
σ∈Σn

P
[
‖Xσ(1) − x0‖ ≤ . . . ≤ ‖Xσ(n) − x0‖

]
= t1 . . . tn,

and the proof is complete.

The next lemma is a technical result used in the proof of Proposition 2.

Lemma 4 Assume that there exists a function g0 satisfying condition (7).
For a given interval I0 ⊂ R such that P(X ∈ g−1

0 (I0)) > 0, assume that
condition (H2) holds for C0 := g−1

0 (I0) then, for all ε ∈ (0, 1),

P[g0(X) ∈ By,ε|X ∈ C0] ≤ ε
and lim

y→∞
P [g0(X) ∈ By,ε|{X ∈ C0} ∩ {Y > y}] = 1,

where By,ε := {z ∈ I0; ϕy(z) ≥ qy(ε/2|C0)}.
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Proof of Lemma 4 − To not overload the equations, we write in the rest of
the proof py(·|C0) =: py,0(·). The corresponding quantile function is denoted
qy,0(·) = inf{t; py,0(t) ≤ ·}. Note also that {X ∈ C0} = {g0(X) ∈ I0}.
Let us prove first that P(g0(X) ∈ By,ε|g0(X) ∈ I0) ≤ ε. We start with

P({g0(X) ∈ By,ε} ∩ {g0(X) ∈ I0})

= P
({

S(y|X) ≥ qy,0(ε/2)
S(y|X)

ϕy(g0(X))

}
∩ {X ∈ C0}

)
.

From (7), for all δ > 0, there exists y0 such that for all y ≥ y0,

1− δ ≤ S(y|X)

ϕy(g0(X))
≤ 1 + δ, (22)

almost surely. Hence, for y ≥ y0,

P ({S(y|X) ≥ (1 + δ)qy,0(ε/2)} ∩ {X ∈ C0})
≤ P({g0(X) ∈ By,ε} ∩ {g0(X) ∈ I0})
≤ P ({S(y|X) ≥ (1− δ)qy,0(ε/2)} ∩ {X ∈ C0}) .

Since py,0 is the survival function of S(y|X) given X ∈ C0, we have for y ≥ y0,

py,0 ((1 + δ)qy,0(ε/2)) ≤ P[g0(X) ∈ By,ε|g0(X) ∈ I0] ≤ py,0 ((1− δ)qy,0(ε/2)) .

Now, since (H2) holds with C0, there exists y1 such that for y ≥ y1,

qy,0(ε)

qy,0(ε/2)
< 1− δ and

qy,0(ε/4)

qy,0(ε/2)
> 1 + δ.

Hence, qy,0(ε) < (1−δ)qy,0(ε/2) and by applying the non-increasing and right-
continuous function py,0, one has that ε ≥ py,0 ((1 + δ)qy,0(ε/2)). In the same
way, ε/4 ≤ py,0 ((1 + δ)qy,0(ε/2)). As a consequence, for y ≥ max(y0, y1),

ε/4 ≤ P[g0(X) ∈ By,ε|g0(X) ∈ I0] ≤ ε,

proving the first part of the lemma. Now, let us prove that πy(ε) := P(g0(X) ∈
By,ε|{g0(X) ∈ I0} ∩ {Y > y}) converges to 1 as y → ∞. It suffices to prove
that πy(ε)/πy(ε)→∞ as y →∞ where πy(ε) = 1− πy(ε). First, denoting by
BC
y,ε = I0 \By,ε the complement of the set By,ε in I0,

πy(ε) =
1

P({Y > y} ∩ {g0(X) ∈ I0})

∫
X
IBC

y,ε
(g0(x))S(y|x)fX(x)dx.

Using (22) and the fact that ϕy(g0(x)) ≤ qy,0(ε/2) for g(x) ∈ BC
y,ε, one has for

y ≥ max(y0, y1) that

πy(ε) ≤
(1 + δ)(1− ε/4)

P(Y > y|g0(X) ∈ I0)
qy,0(ε/2).

Next using similar arguments and the fact that By,ε/2 ⊂ By,ε,

πy(ε) ≥
1

P({Y > y} ∩ {g0(X) ∈ I0})

∫
X
IBy,ε/2(g(x))S(y|x)fX(x)dx

≥ (1− δ)ε/8
P(Y > y|g0(X) ∈ I0)

qy,0(ε/4).

The proof is then complete by using condition (H2).
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In the next result, we prove that the technical condition (H2) is satisfied for
conditional heavy-tailed distributions.

Lemma 5 Let us consider the random vector (X,Y ) such that for y > 0 and
x ∈ X ⊂ Rp, S(y|x) = y−1/γ(x)L(y, x), where γ is a positive function defined
on X and for all x ∈ X , L(·|x) is a slowly varying function. Let C ⊂ X
with P(X ∈ C) > 0. If the cumulative distribution of γ(X) given X ∈ C is
continuous and if

lim
y→∞

sup
x∈C

lnL(y, x)

ln y
= 0 (23)

then condition (H2) holds.

Proof of Lemma 5 − For all y and t ∈ (0, 1), let us introduce the set
Ay(t) := {x ∈ X ;S(y|x) > t}. One has

Ay(t) =

{
x ∈ X ; γ(x) >

(
− ln t

ln y
+

lnL(y, x)

ln y

)−1
}
.

Condition (23) entails that for all δ > 0, there exists yδ such that for all y > yδ,
A−y (t) ⊂ Ay(t) ⊂ A+

y (t) with

A±y (t) :=

{
x ∈ X ; γ(x) ≥

(
− ln t

ln y
± δ
)−1

}
.

Hence, denoting by G the survival function of γ(X) given that X ∈ C, one has
for all y and t ∈ (0, 1)

G

[(
− ln t

ln y
− δ
)−1

]
≤ py(t|C) ≤ G

[(
− ln t

ln y
+ δ

)−1
]
. (24)

Let G← be the generalized inverse of G. For (η, d) ∈ (0, 1)2, replacing t by
y−1/G←(η)−δ in the first inequality leads to py(y−1/G←(dη)−δ|C) ≥ dη. Apply-
ing the function qy(·|C) (the inverse of py(·|C)) conducts us to the inequality
y−1/G

←
(dη)−δ ≤ qy(dη|C). Similarly, using the second inequality in (24), one

has for η ∈ (0, 1) that y−1/G
←

(η)+δ ≥ qy(η|C). Gathering these inequalities
yields

qy(dη|C)
qy(η|C)

≤ y1/G←(dη)−1/G←(η)+2δ.

This inequality is true for all δ > 0. Since G is continuous, one can take

0 < δ <
1

2

(
1

G←(dη)
− 1

G←(η)

)
,

to conclude the proof.
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5.2 Proofs of main results
Proof of Theorem 1 − Using the notations introduced in Lemma 3, we start
with

P[Y
(x0)
j,kn
≤ Q(αn|x0)] = P

[
kn∑
i=1

I(Q(αn|x0),∞)(Y
(x0)
i ) ≤ kn − j

]

= P

[
kn∑
i=1

I
(−∞,S[Q(αn|x0)|X(x0)

i ])
(V

(x0)
i ) ≤ kn − j

]

Let εn := ω1/2(αn, hn;x0). Since for all i = 1, . . . , kn,

αn(1− εn) ≤ S[Q(αn|x0)|X(x0)
i ] ≤ αn(1 + εn),

one has that

P

[
kn∑
i=1

I(−∞,αn(1+εn))(V
(x0)
i ) ≤ kn − j

]
≤ P[Y

(x0)
j,kn
≤ Q(αn|x0)]

≤ P

[
kn∑
i=1

I(−∞,αn(1−εn))(V
(x0)
i ) ≤ kn − j

]
.

Remarking that from Lemma 3, ii)

P

[
kn∑
i=1

I(−∞,αn(1±εn))(V
(x0)
i ) ≤ kn − j

]
= P

[
V

(x0)
kn−j+1,kn

> αn(1± εn)
]

= F beta(αn(1± εn); kn − j + 1, j),

where for all a > 0 and b > 0, F beta(·; a, b) = 1− Fbeta(·; a, b), one has

F beta(αn(1 + εn); kn − j + 1, j) ≤ P[Y
(x0)
j,kn
≤ Q(αn|x0)]

≤ F beta(αn(1− εn); kn − j + 1, j).

Using the mean value theorem, for all j = 1, . . . , kn, there exists τ (+)
n,j ∈ (0, 1)

and τ (−)
n,j ∈ (0, 1) such that

Rn(τ
(+)
n,j ;x0) ≤ P[Y

(x0)
j,kn
≤ Q(αn|x0)]− F beta(αn; kn − j + 1, j) ≤ Rn(τ

(−)
n,j ;x0),

whereRn(τ
(±)
n,j ;x0) := ∓αnεnfbeta(αn(1±τ (±)

n,j εn; kn−j+1, j). Hence, Lemma 1
leads to

P[Y
(x0)
j,kn
≤ Q(αn|x0)] = F beta(αn; kn − j + 1, j) +O

(
εn

(
knαn

1− αn

)1/2
)
,

uniformly on j = 1, . . . , kn. We conclude the proof by applying Lemma 2 with
mn = kn.
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Proof of Proposition 1 − Let
n∑
i=1

I(−∞,hn)(de(Xi, x0))

be the number of covariates in the ball of center x0 and radius hn =

(2kn/[nfX(x0)])1/p. To prove Proposition 1, it suffices to show that for n large
enough, P[Nn ≥ kn] = 1. From [5, Corollary 2.1] (see also [13, Lemma 2]),
since nhpn/[ln lnn] → ∞, one as Nn/(nh

p
n)

a.s.−→ fX(x0). Hence, for n large
enough,

P
[
Nn

nhpn
>
fX(x0)

2

]
= 1.

The end of the proof is straightforward.

Proof of Proposition 2 − Let j ∈ {1, . . . , J} where J is defined in condi-
tion (H1). The first step of the proof consists in showing that

lim
y→∞

Eg0(y; Ij) = 0. (25)

Let us introduce the following measurable sets: Ay := {Y > y}; A∗y := {Y ∗ >
y}; Bj := {g0(X) ∈ Ij} and B∗j := {g0(X∗) ∈ Ij}, where (X∗, Y ∗) is an
independent copie of (X,Y ). For all ε > 0, let By,ε = {z ∈ Ij ; ϕy(z) ≥
qy(ε/2|Cj)} where Cj := g−1

0 (Ij). Finally, let Bj,∈ := {g0(X) ∈ By,ε}. Before
proving (25), let us give some results on the previous defined sets. From
Lemma 4,

P[Bj,∈|Bj ] ≤ ε, (26)

and
lim
y→∞

P[Bj,∈|Bj ∩ Ay] = 1. (27)

Since on Ij , ϕy admits a unique maximum point z∗j in the interior of Ij , By,ε
is an interval included in Ij and containing z∗j . Since f0(x) ≥ m for all x ∈ X0,
conditions (26) conducts to

m× l(By,ε) ≤
∫
By,ε

f0(x)dx ≤ εP(Bj).

As a consequence,

P
[
|g0(X)− z∗j | ≤

εP(Bj)
m

∣∣∣∣Bj,∈] = 1. (28)

We are now in position to prove (25). For y ∈ R,

Eg0(y; Ij) =
E[|g0(X)− g0(X∗)|IBj∩B∗j∩Ay∩A∗y ]

[P(Ay ∩ Bj)]2
.

Remarking that |g0(X)− g0(X∗)| = g0(X) + g0(X∗)− 2 min(g0(X), g0(X∗)),
one has

Eg0(y; Ij) =
2

[P(Ay ∩ Bj)]2
[T1,y − T2,y] , (29)
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where T1,y := P(Bj ∩ Ay)E[g0(X)IBj∩Ay ] and
T2,y := E[min(g0(X), g0(X∗))IBj∩B∗j∩Ay∩A∗y ].
Let us first focus on the term T1,y. We start with

T1,y = P(Bj ∩ Ay)
[
E(g0(X)IBj,∈∩Ay) + E(g0(X)IBj,/∈∩Ay)

]
,

where Bj,/∈ = Ij \ Bj,∈. From (28), and since Bj,∈ ⊂ Bj ,

E(g0(X)IBj,∈∩Ay) ≤
(
z∗y +

εP(Bj)
m

)
P(Bj,∈ ∩ Ay)

≤ P(Bj ∩ Ay)
(
z∗yP(Bj,∈|Bj ∩ Ay) +

εP(Bj)
m

)
.

From (27), for all ε > 0, there exists y1,ε ∈ R such that for all y > y1,ε,
1 − ε ≤ P[Bj,∈|Bj ∩ Ay] ≤ 1 + ε. Furthermore, since By,ε is a closed interval,
there exists cj > 0 such that |z∗j | ≤ cj and thus, z∗jP(Bj,∈|Bj ∩Ay) ≤ z∗j + εcj .
Hence,

E(g0(X)IBj,∈∩Ay) ≤ P(Bj ∩ Ay)
(
z∗j + εcj +

εP(Bj)
m

)
. (30)

Moreover, for all y > y1,ε

E(g0(X)IBj,/∈∩Ay) ≤ cjP[Bj,/∈ ∩ Ay] = cjP[Bj ∩ Ay]P[Bj,/∈|Bj ∩ Ay]
≤ cjεP[Bj ∩ Ay] (31)

Gathering (30) and (31) yield to

T1,y ≤ [P(Bj ∩ Ay)]2
[
z∗j + ε

(
2cj +

P(Bj)
m

)]
(32)

for all y > y1,ε. Let us now focus on the term T2,y. We start with the
decomposition T2,y = T

(1)
2,y + 2T

(2)
2,y + T

(3)
2,y where

T
(1)
2,y := E

[
min(g0(X), g0(X∗))IBj,∈∩B∗j,∈∩Ay∩A∗y

]
,

T
(2)
2,y := E

[
min(g0(X), g0(X∗))IBj,∈∩B∗j,/∈∩Ay∩A∗y

]
,

and
T

(3)
2,y := E

[
min(g0(X), g0(X∗))IBj,/∈∩B∗j,/∈∩Ay∩A∗y

]
.

First, from (28) and since Bj,∈ ⊂ Bj ,

T
(1)
2,y ≥

(
z∗j −

εP(Bj)
m

)
[P(Bj,∈ ∩ Ay)]2

≥ [P(Bj,∈ ∩ Ay)]2
(
z∗jP(Bj,∈|Bj ∩ Ay)−

εP(Bj)
m

)
.

Using the same arguments than those leading to (30), we obtain

T
(1)
2,y ≥ [P(Bj ∩ Ay)]2

(
z∗j − εcj −

εP(Bj)
m

)
. (33)
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Now, using (26), one has for y > y1,ε,

T
(2)
2,y ≥ −cjP(Bj,∈ ∩ Ay)P(B∗j,/∈ ∩ A

∗
y)

= −cj [P(Bj ∩ Ay)]2P(Bj,∈|Bj ∩ Ay)P(Bj,/∈|Bj ∩ Ay)
≥ cjε[P(Bj ∩ Ay)]2. (34)

Finally, from (28), one has for y > y1,ε

T
(3)
2,y ≥ −cj [P(Bj,∈ ∩ Ay)]2 ≥ −cjε2[P(Bj ∩ Ay)]2. (35)

Collecting (33), (34) and (35) yield to

T2,y ≥ [P(Bj ∩ Ay)]2
(
z∗j − ε

P(Bj)
m

+ εcj + cjε
2

)
. (36)

for all ε > 0 and y > y1,ε. Gathering (29), (32) and (36) conduct to

Eg0(y; Ij) ≤ 2ε

(
cj + 2

P(Bj)
m
− cjε

)
,

proving (25 since ε can be chosen arbitrarily small.
Now, conditions (H1) and (H2) entail that there exist h∗1, . . . , h∗J such that for
all j ∈ {1, . . . , J}, z∗j ∈ Sh∗j ,g0 ⊂ Ij . Furthermore, taking

ε ≤ min
j∈{1,...,J}

P(g0(X) ∈ Sh∗j ,g0),

conditions (26) and (27) entail that for all υ > 0, there exists y2 ∈ R such that
for all y ≥ y2 and h /∈ {h∗1, . . . , h∗J},

P(g0(X) ∈ Sh,g0 |Ay) ≤ υ,

showing that card(JH,y(υ)) ≤ J . Finally, mimicking the proof of (25), it is
easy to check that for all h ∈ {h∗1, . . . , h∗J} ⊃ JH,y(υ), Eg0(y;Sh,g0) → 0 as
y →∞, concluding the proof.
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Appendix A: Tables and figures

Table 1: Expressions of the functions g(j)
0 used in the numerical illustrations. Recall

that x ∈ Rp and that the components of x2 are the square of the components of x.

j g
(j)
0 (x) p b

(j)
0 Set G

1 (b
(1)
0 )>x 1 1 GL

2 (b
(2)
0 )>x 2 (1, 2)/

√
5 GL

3 (b
(3)
0 )>x 4 (0, 1, 2, 0)/

√
5 GL

4 (b
(4)
0 )>x 8 (0, 1, 2, 0, 0, 0, 1, 1)/

√
7 GL

5 |(b(5)
0 )>x(2)|1/2 4 (1, 0, 0, 1)/

√
2 GNL,2
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Table 2: Values of the coverage probability for Model 1.

p γ g0(x) p̃γ,αn(de, x0) p̃γ,αn(de, x0) p̃γ,αn(de, x0)

αn,1 α2 αn,3

1 0.9 g
(1)
0 (x) 0.3130 0.8770 0.9125

1 0.95 g
(1)
0 (x) 0.330 0.9320 0.9410

2 0.9 g
(2)
0 (x) 0.0900 0.8700 0.8040

2 0.95 g
(2)
0 (x) 0.1265 0.9385 0.8530

4 0.9 g
(3)
0 (x) 0.8675 0.7865 0.6265

4 0.95 g
(3)
0 (x) 0.9110 0.8670 0.6975

8 0.9 g
(4)
0 (x) 0.7045 0.9115 0.5215

8 0.95 g
(4)
0 (x) 0.7330 0.9550 0.6095

Table 3: Values of the coverage probability for Model 2.

p γ g0(x) p̃γ,αn(de, x0) p̃γ,αn(de, x0) p̃γ,αn(de, x0)

αn,1 α2 αn,3

1 0.9 g
(1)
0 (x) 0.9300 0.9270 0.9350

1 0.95 g
(1)
0 (x) 0.9525 0.9640 0.9630

2 0.9 g
(2)
0 (x) 0.7140 0.9280 0.8310

2 0.95 g
(2)
0 (x) 0.7985 0.9630 0.8930

4 0.9 g
(3)
0 (x) 0.2885 0.9245 0.6430

4 0.95 g
(3)
0 (x) 0.3565 0.9640 0.7200

8 0.9 g
(4)
0 (x) 0.3070 0.8805 0.6230

8 0.95 g
(4)
0 (x) 0.3785 0.9400 0.7190
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Table 4: Reduction of dimension for Model 1 with αn = αn,3 = 8 ln(n)/n.

p g
(j)
0 (x)

E(δ(j)
n )

γ p̃γ,αn(d̂
(j)
0 , x0) p̃γ,αn(d

(j)
0 , x0) p̃γ,αn(de, x0)(sd(δ(j)

n ))

2 g
(2)
0 (x)

0.0163 0.9 0.8805 0.9255 0.8040
(0.0233) 0.95 0.9210 0.9550 0.8530

4 g
(3)
0 (x)

0.0265 0.9 0.8665 0.9235 0.6225
(0.0235) 0.95 0.9060 0.9510 0.6975

4 g
(5)
0 (x)

0.1047 0.9 0.7965 0.8910 0.2470
(0.0905) 0.95 0.8370 0.9065 0.2990

8 g
(4)
0 (x)

0.0595 0.9 0.8895 0.9345 0.5215
(0.0412) 0.95 0.9260 0.9615 0.6095

Table 5: Reduction of dimension for Model 2 with αn = αn,3 = 8 ln(n)/n.

p g
(j)
0 (x)

E(δ(j)
n )

γ p̃γ,αn(d̂
(j)
0 , x0) p̃γ,αn(d

(j)
0 , x0) p̃γ,αn(de, x0)(sd(δ(j)

n ))

2 g
(2)
0 (x)

0.0113 0.9 0.9205 0.9275 0.8310
(0.0161) 0.95 0.9445 0.9530 0.8930

4 g
(3)
0 (x)

0.0213 0.9 0.8910 0.9280 0.6430
(0.0189) 0.95 0.9310 0.9515 0.7200

4 g
(5)
0 (x)

0.0869 0.9 0.8550 0.8820 0.4940
(0.0793) 0.95 0.8840 0.9030 0.5775

8 g
(4)
0 (x)

0.0763 0.9 0.9025 0.9385 0.6230
(0.1918) 0.95 0.9270 0.9615 0.7190
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Figure 1: For Model 1 with γ = 0.1, values of pγ,αn(kn, de, x0) as a function of kn
with αn = 1− 8 ln(n)/n (left panels), αn = 1/2 (middle panels) and αn = 8 ln(n)/n

(right panels). Top panels: g0 = g
(1)
0 (p = 1), center panels: g0 = g

(2)
0 (p = 2),

bottom panels: g0 = g
(3)
0 (p = 4). The horizontal full line is the prespecified

coverage probability (γ = 0.9) and the dashed horizontal line represents the coverage
probability obtained with the selected value k̂(sel)
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Figure 2: Histogram of the observations of g0(X) (left panel) and g1(X) (right panel)
given that Y > y with y = 10 000.
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Figure 3: For Model 1 with γ = 0.1, values of the coverage probabilities as
a function of kn with αn = 8 ln(n)/n. Full line: pγ,αn(kn, de, x0), dashed line:
pγ,αn(kn, d̂

(j)
0 , x0) and dotted line pγ,αn(kn, d

(j)
0 , x0). Top panels: g0 = g

(2)
0 (p = 2)

and g0 = g
(3)
0 (p = 4), bottom panels: g0 = g

(4)
0 (p = 8) and g0 = g

(5)
0 (p = 4).

The horizontal full line is the prespecified coverage probability (γ = 0.9) and the
dashed horizontal line represents the coverage probability obtained with the selected
value k̂(sel)
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Figure 4: Confidence intervals of Q(c ln(n)/n|x0) with prespecified coverage prob-
ability of γ = 0.9 as a function of c ∈ [8, 64]: full lines, situation 1, dashed lines,
situation 2.
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Appendix B: Coordinate search method
We present here the coordinate search algorithm to solve the minimization
problem:

min
x∈Rp

Φ(x),

where Φ : Rp → R can be any complicated function. Let D := [Ip,−Ip] be
the p × 2p matrix where Ip is the p × p identity matrix. For i ∈ {1, . . . , 2p},
we denote by Di the ith column of D.

Initialization − Let x∗0 ∈ Rp be an initial guess of the solution. The setting
parameters of the algorithm are: α0 > 0, 0 < αtol < α0 and ζ ∈ (0, 1). Let
k ∈ N.

Step k − If αk ≤ αtol then STOP. Else,

• if
Φ(x∗k) ≤ min

i=1,...,2p
Φ (x∗k + αkDi)

then x∗k+1 = x∗k and αk+1 = ζαk. Go to Step k + 1.

• if
Φ(x∗k) > min

i=1,...,2p
Φ (x∗k + αkDi)
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then αk+1 = ζ−1αk and

x∗k+1 = arg min {Φ(x); x ∈ {x∗k + αkD1, . . . , x
∗
k + αkD2p}} .

Go to Step k + 1.

This algorithm is used to solve (9). Recall that in Section 3.3, the set of
function G is a set of parametric functions with parameter b ∈ Θp ⊂ Rp. For
any b̃ ∈ Rp let

b :=
u>b̃

|u>b̃|(b̃>b̃)1/2
b̃ ∈ Θp,

be the corresponding vector in Θp. Denoting by gb a function in G, the solution
of (9) is obtained by applying the coordinate search method to the function Φ

defined for all b̃ ∈ Rp by

Φ(b̃) :=
∑
JH,gb

Êgb(βn;Sh,gb) + λcard(JH,gb).

The setting parameters of the algorithm are fixed to α0 = 5, αtol = 0.05

and ζ = 1/2.
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