Walls Dynamics in a Ferromagnetic Nanowire

Gilles Carbou

Université de Pau et des Pays de l'Adour Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 5142

Fourth International Conference on Nonlinear Evolutionary Partial Differential Equations - Theories and Applications

Shanghai, June 2-7, 2015

< ロ > < 同 > < 回 > < 回 > .

Domain Walls in Nanowires Quasi-Solutions and Metastability Stabilization by pinching

Plan

2 Domain Walls in Nanowires

3 Quasi-Solutions and Metastability

4 Stabilization by pinching

・ロト ・聞 と ・ ヨ と ・ ヨ と

Domain Walls in Nanowires Quasi-Solutions and Metastability Stabilization by pinching

3d model

Properties

- Spontaneous magnetization
- Magnetic field generated by the magnetization
- Formation of domains and domain walls

Industrial Applications

- Electromagnets
- Transformers
- Radar absorbing paints
- Mobile phones
- Modern Recording Devices

Domain Walls in Nanowires Quasi-Solutions and Metastability Stabilization by pinching

3d model

Properties

- Spontaneous magnetization
- Magnetic field generated by the magnetization
- Formation of domains and domain walls

Stuart S. P. Parkin, Masamitsu Hayashi, Luc Thomas, *Magnetic Domain-Wall Racetrack Memory*, Science **320** (2008)

- 3d storage devices
- Fast access to the information

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{\text{eff}} - m \wedge (m \wedge H_{\text{eff}})$$

$$H_{
m eff}=-\partial_m E$$

- preserves the saturation constraint |m| = 1
- Precession term (makes *m* move around *H_e*)
- Damping term (aligns m with H_{eff})
- Energy Decreasing

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

```
|m(t,x)| = 1 p. p.
```

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{\rm eff} - m \wedge (m \wedge H_{\rm eff})$$

$$H_{eff} = -\partial_m E$$

- preserves the saturation constraint |m| = 1
- Precession term (makes *m* move around *H_e*)
- Damping term (aligns *m* with *H*_{eff})
- Energy Decreasing

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

```
|m(t,x)| = 1 p. p.
```

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = - m \wedge H_{\text{eff}} - m \wedge (m \wedge H_{\text{eff}})$$

$$H_{eff} = -\partial_m E$$

- preserves the saturation constraint |m| = 1
- Precession term (makes *m* move around *H*_e)
- Damping term (aligns *m* with H_{eff})
- Energy Decreasing

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

```
|m(t,x)| = 1 p. p.
```

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{\text{eff}} - m \wedge (m \wedge H_{\text{eff}})$$

$$H_{eff} = -\partial_m E$$

- preserves the saturation constraint |m| = 1
- Precession term (makes *m* move around *H*_e)
- Damping term (aligns *m* with *H*_{eff})
- Energy Decreasing

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

```
|m(t,x)| = 1 p. p.
```

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{\text{eff}} - m \wedge (m \wedge H_{\text{eff}})$$

$$H_{eff} = -\partial_m E$$

- preserves the saturation constraint |m| = 1
- Precession term (makes *m* move around *H*_e)
- Damping term (aligns *m* with *H*_{eff})
- Energy Decreasing

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{\rm eff} - m \wedge (m \wedge H_{\rm eff})$$

$$H_{eff} = A\Delta m + H_d(m) + \Phi_{anis}(m)$$

Exchange field

- Nonlinear parabolic equation
- Homogeneous Neumann boundary condition

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m:\mathbb{R}^+_t imes\Omega_x o\mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{\text{eff}} - m \wedge (m \wedge H_{\text{eff}})$$

$$H_{eff} = A\Delta m + H_d(m) + \Phi_{anis}(m)$$

Demagnetizing field

• field generated by the magnetization

• curl
$$H_d(m) = 0$$

• div $(H_d(m) + m) = 0$

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = A\Delta m + H_d(m) + \Phi_{anis}(m)$$

Anisotropic field

- Preferential axis for the magnetization
- Φ_{anis}(m) = (m · ξ)ξ (Uniaxial anisotropy)

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx - \frac{1}{2} \int_{\Omega} (\xi \cdot m)^2$$

Applied Magnetic or Electric Field

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$
$$H_{eff} = A\Delta m + H_d(m) + \Phi_{anis}(m)$$

Action of an Applied Magnetic Field

Ha : applied magnetic field

Zeeman Energy

$$-\int_{\Omega}H_{app}\cdot m\,dx$$

Action of an Applied Electric Field

v: Electric Current

Transport Term

 $v \cdot \nu = 0$ on $\partial \Omega$

.....

Applied Magnetic or Electric Field

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$
$$H_{eff} = A\Delta m + H_d(m) + \Phi_{anis}(m) + H_a$$

Action of an Applied Magnetic Field

Ha: applied magnetic field

Zeeman Energy

$$-\int_{\Omega}H_{app}\cdot m\,dx$$

Action of an Applied Electric Field

v: Electric Current

Transport Term

 $v \cdot \nu = 0$ on $\partial \Omega$

æ

Applied Magnetic or Electric Field

Landau-Lifschitz

$$\frac{\partial m}{\partial t} = -m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) - (\mathbf{v} \cdot \nabla)m - m \wedge (\mathbf{v} \cdot \nabla)m$$
$$H_{eff} = A\Delta m + H_d(m) + \Phi_{anis}(m) + H_a$$

Action of an Applied Magnetic Field

Ha: applied magnetic field

Zeeman Energy

$$-\int_{\Omega}H_{app}\cdot m\,dx$$

Action of an Applied Electric Field

v : Electric Current

Transport Term

 $\mathbf{v}\cdot\mathbf{\nu}=\mathbf{0} \text{ on }\partial\Omega$

• □ > • □ > • = >

< = >

Domain Walls in Nanowires Quasi-Solutions and Metastability Stabilization by pinching

References

Modelization

- Landau-Lifschitz (30')
- Miltat, Thiaville (LPS, Orsay)

Existence Results

- Joly-Métivier-Rauch (LL-Maxwell without exchange field)
- Visintin, Alouges-Soyeur, C.-Fabrie, Ding-Guo (Global in time weak solutions)
- C.- Fabrie-Guès (Local in time strong solutions)
- C.-Fabrie-Efendiev (models of hysteresis and magnetostriction)

Numerical Simulations

- Joly-Haddad (without exchange field)
- Labbé, Garcia-Cervera, Pröhl (with exchange field)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Plan

- Quasi-Solutions and Metastability
- 4 Stabilization by pinching

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire

・ロト ・聞 と ・ ヨ と ・ ヨ と

Domains and Domain Walls

Organization of the magnetization :

- domains (in which *m* is almost constant)
- domain walls (microstructures in which we observe stiff variations of m)

イロト イポト イヨト イヨト

Domains and Domain Walls in nanowires

Organization of the magnetization :

- domains (in which *m* is almost constant)
- domain walls (microstructures in which we observe stiff variations of *m*)

< ロ > < 同 > < 回 > < 回 > .

Goal : describe walls dynamics in ferromagnetic nanowires

Domains and Domain Walls in nanowires

Organization of the magnetization :

- domains (in which *m* is almost constant)
- domain walls (microstructures in which we observe stiff variations of m)

Goal : describe walls dynamics in ferromagnetic nanowires

Nanowires model

Landau-Lifschitz Equation

$$egin{aligned} m &: \mathbb{R}^+_t imes \Omega o \mathcal{S}^2 \ rac{\partial m}{\partial t} &= m \wedge H_{ ext{eff}} - m \wedge (m \wedge H_{ ext{eff}}) \ H_{ ext{eff}} &= A \Delta m + H_d(m) \end{aligned}$$

 $\Omega = [0, L] imes B(0, \eta)$ $\eta \longrightarrow 0$

ヘロト ヘヨト ヘヨト ヘヨト

э.

Nanowires model

Landau-Lifschitz Equation

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= A \Delta m + H_{d}(m) \end{split}$$

• Fil assimilated to [0, L]e1

- Id Exchange
- Equivalent Demagnetizing Field : $\mathcal{H}(m) = -m_2 \vec{e}_2 m_3 \vec{e}_3$

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > <

Nanowires model

Landau-Lifschitz Equation

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \textbf{A} \Delta m + H_{d}(m) \end{split}$$

- Fil assimilated to [0, L]e1
- 1d Exchange
- Equivalent Demagnetizing Field : $\mathcal{H}(m) = -m_2 \vec{e}_2 m_3 \vec{e}_3$

Nanowires model

Landau-Lifschitz Equation

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon^{2} m_{xx} + H_{d}(m) \end{split}$$

- Fil assimilated to [0, L]e1
- 1d Exchange
- Equivalent Demagnetizing Field : $\mathcal{H}(m) = -m_2 \vec{e}_2 m_3 \vec{e}_3$

Nanowires model

Landau-Lifschitz Equation

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon^{2} m_{xx} + H_{d}(m) \end{split}$$

- Fil assimilated to [0, L]e1
- 1d Exchange
- Equivalent Demagnetizing Field : $\mathcal{H}(m) = -m_2 \vec{e}_2 m_3 \vec{e}_3$

Nanowires model

Landau-Lifschitz Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = \varepsilon^{2} m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$$

- Fil assimilated to [0, L]e1
- 1d Exchange
- Equivalent Demagnetizing Field : $\mathcal{H}(m) = -m_2 \vec{e}_2 m_3 \vec{e}_3$

Nanowires model

Landau-Lifschitz Equation

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon^{2} m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + H_{a} \end{split}$$

- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

(a)

Nanowires model

Landau-Lifschitz Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$
$$H_{eff} = \varepsilon^{2} m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{1}$$

- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

(a)

Nanowires model

Landau-Lifschitz Equation

$$m:\mathbb{R}^+_t\times [0,L]_x\to S^2$$

$$\frac{\partial m}{\partial t} = m \wedge H_{\text{eff}} - m \wedge (m \wedge H_{\text{eff}}) - (\vec{v} \cdot \nabla)m - m \wedge (\vec{v} \cdot \nabla)m$$
$$H_{\text{eff}} = \varepsilon^2 m_{xx} - m_2 \vec{e}_2 - m_3 \vec{e}_3$$

- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

<ロ> <同> <同> < 同> < 同> 、

Nanowires model

Landau-Lifschitz Equation

$$m: \mathbb{R}^+_t \times [0, L]_x \to S^2$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) - v \partial_x m - m \wedge v \partial_x m$$
$$H_{eff} = \varepsilon^2 m_{xx} - m_2 \vec{e}_2 - m_3 \vec{e}_3$$

- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

<ロ> <同> <同> < 同> < 同> 、

Nanowires model

Landau-Lifschitz Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) - v \partial_{x} m - m \wedge v \partial_{x} m$$
$$H_{eff} = \varepsilon^{2} m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{1}$$

Goal : describe walls dynamics in this model

(a)

Exact Static Solutions for Infinite Nanowires

Infinite Nanowire $m : \mathbb{R}_t^+ \times \mathbb{R}_x \to S^2$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $H_{eff} = m_{xx} - m_2 \vec{e}_2 - m_3 \vec{e}_3$

a Forromagnetia Nanowira

Exact Solutions with Applied Magnetic Field

Infinite Nanowire $m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{1}$

Moving Solution

$$M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{h_{a}t} \left(M_{0}(x + h_{a}t) \right)$
+/- wall : $\mathcal{M}(x) = R_{h_{a}t} \left(M_{0}(-(x - h_{a}t)) \right)$

+/- wall, magnetic field along \vec{e}_1

Exact Solutions with Applied Magnetic Field

Infinite Nanowire $m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{1}$

Moving Solution

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{hat} \left(M_0(x + h_a t) \right)$
+/- wall : $\mathcal{M}(x) = R_{hat} \left(M_0(-(x - h_a t)) \right)$

+/- wall, magnetic field along \vec{e}_1

Exact Solutions with Applied Magnetic Field

Infinite Nanowire $m: \mathbb{R}^+_t \times \mathbb{R}_x \to S^2$ ∂m

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$
$$H_{eff} = m_{xx} - m_2 \vec{e}_2 - m_3 \vec{e}_3 + h_a \vec{e}_1$$

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{hat} \left(M_0(x + h_a t) \right)$
+/- wall : $\mathcal{M}(x) = R_{hat} \left(M_0(-(x - h_a t)) \right)$

+/- wall, magnetic field along \vec{e}_1

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

 $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$
 $H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}$

$$Moving Solution$$

$$M_0(x) = \begin{pmatrix} th x \\ 1/ch x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

$$-/+ \text{ wall } : \mathcal{M}(x) = R_{h_at} \left(M_0(x + h_a t) \right)$$

$$+/- \text{ wall } : \mathcal{M}(x) = R_{h_at} \left(M_0(-(x - h_a t)) \right)$$

+/- wall, magnetic field along \vec{e}_1

э

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{4}$$

$$Moving Solution$$

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{h_at} (M_0(x + h_at))$
+/- wall : $\mathcal{M}(x) = R_{h_at} (M_0(-(x - h_at)))$

+/- wall, magnetic field along \vec{e}_1

-/+ wall, magnetic field along \vec{e}_1

0

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{1}$$

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{h_a t} \left(M_0(x + h_a t) \right)$
+/- wall : $\mathcal{M}(x) = R_{h_a t} \left(M_0(-(x - h_a t)) \right)$

+/- wall, magnetic field along \vec{e}_1

-/+ wall, magnetic field along \vec{e}_1

Moving Solution

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{1}$$

Moving Solution

$$M_0(x) = \begin{pmatrix} th x \\ 1/ch x \\ 0 \end{pmatrix},$$

$$R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{h_at} (M_0(x + h_a t))$
+/- wall : $\mathcal{M}(x) = R_{h_at} (M_0(-(x - h_a t)))$

+/- wall, magnetic field along \vec{e}_1

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_t^+ \times \mathbb{R}_x \to S^2$$

 $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$

 $H_{eff} = m_{xx} - m_2 \vec{e}_2 - m_3 \vec{e}_3 + h_a \vec{e}_1$

$$M_0(x) = \begin{pmatrix} th x \\ 1/ch x \\ 0 \end{pmatrix},$$

$$R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

$$\frac{1}{2} + \text{ wall } : \mathcal{M}(x) = R_{h_at} (M_0(x + h_a t))$$

$$\frac{1}{2} + \text{ wall } : \mathcal{M}(x) = R_{h_at} (M_0(-(x - h_a t)))$$

+/- wall, magnetic field along \vec{e}_1

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}$$

$$Moving Solution$$

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{h_at} (M_0(x + h_a t))$
+/- wall : $\mathcal{M}(x) = R_{h_at} (M_0(-(x - h_a t)))$

+/- wall, magnetic field along \vec{e}_1

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{1}$$

$$Moving Solution$$

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

$$-/+ \text{ wall : } \mathcal{M}(x) = R_{h_at} (M_0(x + h_a t))$$

$$+/- \text{ wall : } \mathcal{M}(x) = R_{h_at} (M_0(-(x - h_a t)))$$

+/- wall, magnetic field along \vec{e}_1

-/+ wall, magnetic field along \vec{e}_1

0

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{a}\vec{e}_{1}$$

$$\begin{array}{l} \text{Moving Solution} \\ M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix}, \\ R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \\ \frac{1}{2} + \text{ wall } : \mathcal{M}(x) = R_{h_at} \left(M_0(x + h_a t) \right) \\ \frac{1}{2} + \text{ wall } : \mathcal{M}(x) = R_{h_at} \left(M_0(-(x - h_a t)) \right) \end{aligned}$$

+/- wall, magnetic field along \vec{e}_1

э

Exact Solutions with Applied Electric Field

Infinite Nanowire

 $m: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $- v \partial_{x} m - m \wedge v \partial_{x} m$ $H_{eff} = m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$

Moving Solution $M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

-/+ wall : $\mathcal{M}(x) = R_{vt} \left(M_0(x - vt) \right)$
+/- wall : $\mathcal{M}(x) = R_{-vt} \left(M_0(-(x - vt)) \right)$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution

$$\begin{split} M_0(x) &= \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix}, \\ R_\theta &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \\ \frac{1}{2} + \text{ wall } : \mathcal{M}(x) &= R_{\text{vt}} \left(M_0(x - \text{vt}) \right) \\ \frac{1}{2} + \text{vall } : \mathcal{M}(x) &= R_{-\text{vt}} \left(M_0(-(x - \text{vt})) \right) \end{split}$$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

 $m: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $- v \partial_{x} m - m \wedge v \partial_{x} m$ $H_{eff} = m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$

Moving Solution

$$\begin{split} M_0(x) &= \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix}, \\ R_\theta &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \\ \frac{1}{2} + \text{wall } : \mathcal{M}(x) &= R_{\text{vt}} \left(M_0(x - \text{vt}) \right) \\ \frac{1}{2} + \text{wall } : \mathcal{M}(x) &= R_{-\text{vt}} \left(M_0(-(x - \text{vt})) \right) \end{split}$$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution

$$M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{\text{vt}} (M_0(x - \text{vt}))$
+/- wall : $\mathcal{M}(x) = R_{-\text{vt}} (M_0(-(x - \text{vt})))$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution $M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$ $R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$ -/+ wall : $\mathcal{M}(x) = R_{vt} (M_{0}(x - vt))$ +/- wall : $\mathcal{M}(x) = R_{-vt} (M_{0}(-(x - vt)))$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution $M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$ $R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$ -/+ wall : $\mathcal{M}(x) = R_{vt} (M_{0}(x - vt))$ +/- wall : $\mathcal{M}(x) = R_{-vt} (M_{0}(-(x - vt)))$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution $M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$ $R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$ $-/+ \text{ wall } : \mathcal{M}(x) = R_{\mathcal{M}} \left(M_{0}(x - vt) \right)$

+/- wall :
$$\mathcal{M}(x) = R_{-vt} (M_0(-(x - vt)))$$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution $M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$ $R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$ -/+ wall : $\mathcal{M}(x) = R_{vt} (M_{0}(x - vt))$ +/- wall : $\mathcal{M}(x) = R_{-vt} (M_{0}(-(x - vt)))$

-/+ wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

 $m: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $-v \partial_{x} m - m \wedge v \partial_{x} m$ $H_{eff} = m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$

Moving Solution

$$M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{vt} (M_{0}(x - vt))$
+/- wall : $\mathcal{M}(x) = R_{-vt} (M_{0}(-(x - vt)))$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ - v \partial_{x} m - m \wedge v \partial_{x} m \\ H_{eff} &= m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \end{split}$$

Moving Solution

$$M_{0}(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
-/+ wall : $\mathcal{M}(x) = R_{vt} (M_{0}(x - vt))$
+/- wall : $\mathcal{M}(x) = R_{-vt} (M_{0}(-(x - vt)))$

+/- wall, electric field along \vec{e}_1

Exact Solutions with Applied Electric Field

Infinite Nanowire

 $m: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $- v \partial_{x} m - m \wedge v \partial_{x} m$ $H_{eff} = m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$

$$Moving Solution
M_0(x) = \begin{pmatrix} \text{th } x \\ 1/\text{ch } x \\ 0 \end{pmatrix}, \\
R_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \\
-/+ \text{ wall } : \mathcal{M}(x) = R_{vt} \left(M_0(x - vt) \right) \\
+/- \text{ wall } : \mathcal{M}(x) = R_{-vt} \left(M_0(-(x - vt)) \right)$$

+/- wall, electric field along \vec{e}_1

-/+ wall, electric field along \vec{e}_1

Anying Solution

Stability Results

Infinite Nanowire with Applied Magnetic Field

 $m: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$ $H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} + h_{3}\vec{e}_{1}$

G. Carbou, S. Labbé, *Stability for Static wall in a ferromagnetic Nanowire*, Discrete Contin. Dyn. Syst. Ser. B 6 (2006)

Stability for wall profiles for small applied field

R. Jizzini, *Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field,* J. Differential Equations 250 (2011)

Stability Threshold : $|h_a| < 1$

G. Carbou, S. Labbé, E. Trélat, *Control of travelling walls in a ferromagnetic nanowire*, Discrete Contin. Dyn. Syst. Ser. S **1** (2008), no. 1, 51–59

Controlability of the wall position by the mean of the applied field

Stability Results

Infinite Nanowire with Applied Electric Field

$$m : \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) - v \partial_{x} m - m \wedge v \partial_{x} m$$
$$H_{eff} = m_{xx} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$$

R. Jizzini, in preparation

Stability of the exact solutions Stability Threshold : |v| < 2

(a)

Drawbacks of these works on exact solutions

G. Carbou, S. Labbé, *Stabilization of walls for nano-wires of finite lenght*, ESAIM Control Optim. Calc. Var. 18 (2012)

- One wall in a finite wire : centered in the middle of the wire
- This solution is unstable

S. Labbé, Y. Privat, E. Trélat, *Stability properties of steady-states for a network of ferromagnetic nanowires*, submitted

- Several walls in a finite wire : periodically situated
- Unstability

Exact solutions : impossible to describe complex distributions of domain walls

Drawbacks of these works on exact solutions

G. Carbou, S. Labbé, *Stabilization of walls for nano-wires of finite lenght*, ESAIM Control Optim. Calc. Var. 18 (2012)

- One wall in a finite wire : centered in the middle of the wire
- This solution is unstable

S. Labbé, Y. Privat, E. Trélat, *Stability properties of steady-states for a network of ferromagnetic nanowires*, submitted

- Several walls in a finite wire : periodically situated
- Unstability

Exact solutions : impossible to describe complex distributions of domain walls

Gilles Carbou, UPPA

Walls Dynamics in a Ferromagnetic Nanowire

Plan

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire

・ロト ・聞 と ・ ヨ と ・ ヨ と

Goal : description of ${\cal K}$ walls complex configurations in finite wire subject to an applied magnetic field or an electric current

Key idea : taking into account the smallness of the exchange coefficient

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire

イロト イポト イヨト イヨト

Goal : description of ${\cal K}$ walls complex configurations in finite wire subject to an applied magnetic field or an electric current

Key idea : taking into account the smallness of the exchange coefficient

イロト イポト イヨト イヨト

Finite Nanowire with Small Exchange Length

$$\begin{split} m &: \mathbb{R}_t^+ \times [0, L]_x \to S^2 \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} \left(m_2 \vec{e}_2 + m_3 \vec{e}_3 \right) + \frac{1}{\varepsilon} h_a \vec{e}_1 \end{split}$$

ε^2 : small exchange coefficient. TIme rescaling : long time behaviour

- We build a 2K-parameters family of quasi-solutions describing all the configurations with K walls
- We prove that the solution of the Landau-Lifschitz equation remains close to this manifold of almost solutions during an exponentially long time

Finite Nanowire with Small Exchange Length

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} \left(m_{2} \vec{e}_{2} + m_{3} \vec{e}_{3} \right) + \frac{1}{\varepsilon} h_{a} \vec{e}_{1} \end{split}$$

 ε^2 : small exchange coefficient. TIme rescaling : long time behaviour

- We build a 2*K*-parameters family of quasi-solutions describing all the configurations with *K* walls
- We prove that the solution of the Landau-Lifschitz equation remains close to this manifold of almost solutions during an exponentially long time

Finite Nanowire with Small Exchange Length

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} \left(m_{2} \vec{e}_{2} + m_{3} \vec{e}_{3} \right) + \frac{1}{\varepsilon} h_{a} \vec{e}_{1} \end{split}$$

 ε^2 : small exchange coefficient. TIme rescaling : long time behaviour

- We build a 2*K*-parameters family of quasi-solutions describing all the configurations with *K* walls
- We prove that the solution of the Landau-Lifschitz equation remains close to this manifold of almost solutions during an exponentially long time

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Related Work

J. Carr, R. L. Pego, *Metastable patterns in solutions of* $u_t = \varepsilon^2 u_{xx} - f(u)$, Comm. Pure Appl. Math. **42** (1989)

f(u)=F'(u)

- Description of phase transitions
- Construction of quasi-solutions
- These quasi-solutions remain "stables" on a very long time $e^{\frac{Q}{\varepsilon}}$

< ロ > < 同 > < 回 > < 回 > .

We will use Carr and Pego's methods (geometric methods, see also Hale and Fusco)

- the problem is vectorial
- the problem is quasilinear
- we are able to make the walls move

Related Work

J. Carr, R. L. Pego, *Metastable patterns in solutions of* $u_t = \varepsilon^2 u_{xx} - f(u)$, Comm. Pure Appl. Math. **42** (1989)

f(u)=F'(u)

- Description of phase transitions
- Construction of quasi-solutions
- These quasi-solutions remain "stables" on a very long time $e^{\frac{Q}{\varepsilon}}$

< ロ > < 同 > < 回 > < 回 > .

We will use Carr and Pego's methods (geometric methods, see also Hale and Fusco)

- the problem is vectorial
- the problem is quasilinear
- we are able to make the walls move

Quasi-solutions profiles

• Walls positions : $\sigma_1, \ldots, \sigma_K$ $0 < \delta < \sigma_1$ $\sigma_1 + \delta \le \sigma_2 - \delta$ $\sigma_K + \delta < L$

• Walls angles : $\theta_1, \ldots, \theta_K$

Definition of $\mathsf{m}_{\varepsilon}(heta,\sigma)$

In the domains

 $D_i = [\sigma_{i-1} + \delta, \sigma_i - \delta]$ $\mathbf{m}_{\varepsilon}(\theta, \sigma)(x) = (-1)^i e_1 \text{ dans } D_i$

Central Zone of a wall

in
$$[\sigma_i - \frac{\delta}{2}, \sigma_i + \frac{\delta}{2}],$$

 $\mathbf{m}_{\varepsilon}(\theta, \sigma) = R_{\frac{\theta_i}{\varepsilon}} M_0 \left((-1)^{i+1} \frac{x - \sigma_i}{\varepsilon} \right)$

ヘロマ ヘビマ ヘビマ

2

Transition Zone

ln
$$[\sigma_i + \frac{\delta}{2}, \sigma_i + \delta]$$
,
Smooth connection

Quasi-solutions profiles

- Walls positions : $\sigma_1, \ldots, \sigma_K$ $0 < \delta < \sigma_1$ $\sigma_1 + \delta \le \sigma_2 - \delta$ $\sigma_K + \delta \le L$
- Walls angles : $\theta_1, \ldots, \theta_K$

Definition of $\mathbf{m}_{\varepsilon}(heta, \sigma)$

In the domains

$$D_i = [\sigma_{i-1} + \delta, \sigma_i - \delta]$$

$$\mathbf{m}_{\varepsilon}(\theta, \sigma)(x) = (-1)^i e_1 \text{ dans } D_i$$

Central Zone of a wall

in
$$[\sigma_i - \frac{\delta}{2}, \sigma_i + \frac{\delta}{2}],$$

 $\mathbf{m}_{\varepsilon}(\theta, \sigma) = R_{\frac{\theta_i}{\varepsilon}} M_0 \left((-1)^{i+1} \frac{x - \sigma_i}{\varepsilon} \right)$

・ロット (雪) (日) (日)

2

Transition Zone

ln
$$[\sigma_i + \frac{\delta}{2}, \sigma_i + \delta]$$
,
Smooth connection

Quasi-solutions profiles

- Walls positions : $\sigma_1, \ldots, \sigma_K$ $0 < \delta < \sigma_1$ $\sigma_1 + \delta \le \sigma_2 - \delta$ $\sigma_K + \delta \le L$
- Walls angles : $\theta_1, \ldots, \theta_K$

Definition of $\mathbf{m}_{\varepsilon}(\theta, \sigma)$

In the domains	
$D_i = [\sigma_{i-1} + \delta, \sigma_i - \delta]$ $\mathbf{m}_{\varepsilon}(\theta, \sigma)(x) = (-1)^i e_1 \text{ dans } D_i$	

Central Zone of a wall	
in $[\sigma_i - \frac{\delta}{2}, \sigma_i + \frac{\delta}{2}],$ $\mathbf{m}_{\varepsilon}(\theta, \sigma) = R_{\frac{\theta_i}{\varepsilon}} M_0 \left((-1)^{i+1} \frac{x - \sigma_i}{\varepsilon} \right)$	

ヘロマ ヘボマ ヘビマ ヘロマ

Transition Zone

$$\ln [\sigma_i + \frac{\delta}{2}, \sigma_i + \delta],$$

Smooth connection

Metastability Results

Finite Nanowire with Small Exchange Length

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} (m_{2} \vec{e}_{2} + m_{3} \vec{e}_{3}) \end{split}$$

Metastability of Static solutions

We fix θ and σ . If the initial data is closed to $\mathbf{m}_{\varepsilon}(\theta, \sigma)$, then the solution remains close to $\mathbf{m}_{\varepsilon}(\theta, \sigma)$ on a long time interval $[0, e^{\frac{\delta}{4\varepsilon}}]$

Metastability Results

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + \frac{1}{\varepsilon} h_{a}\vec{e}_{1} \end{split}$$

With applied magnetic field

Initial data close to $\mathbf{m}_{\varepsilon}(\theta^{0},\sigma^{0})$

$$\begin{cases} \frac{d\theta_i^{ref}}{dt} = h(t, \sigma_i^{ref}(t)) \\ \frac{d\sigma_i^{ref}}{dt} = (-1)^{i+1}h(t, \sigma_i^{ref}(t)) \\ \sigma^{ref}(0) = \sigma^0, \ \theta^{ref}(0) = \theta^0 \end{cases}$$

ヘロト ヘヨト ヘヨト ヘヨト

э

Metastability Results

Finite Nanowire with Small Exchange Length

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + \frac{1}{\varepsilon} h_{a}\vec{e}_{1} \end{split}$$

With applied magnetic field

Initial data close to $\mathbf{m}_{\varepsilon}(\theta^{0}, \sigma^{0})$

$$\begin{cases} \frac{d\theta_i^{ref}}{dt} = h(t, \sigma_i^{ref}(t)) \\ \frac{d\sigma_i^{ref}}{dt} = (-1)^{i+1}h(t, \sigma_i^{ref}(t)) \\ \sigma^{ref}(0) = \sigma^0, \ \theta^{ref}(0) = \theta^0 \end{cases}$$

Meta-stability with general applied field |h| < 1The solution remains close to $\mathbf{m}_{\varepsilon}(\theta^{ref}, \sigma^{ref})$ on the time interval $[0, \frac{1}{\varepsilon}[.$
Metastability Results

Finite Nanowire with Small Exchange Length

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \varepsilon m_{xx} - \frac{1}{\varepsilon} (m_{2} \vec{e}_{2} + m_{3} \vec{e}_{3}) \end{split}$$

With applied magnetic field

Initial data close to $\mathbf{m}_{\varepsilon}(\theta^{0}, \sigma^{0})$

$$\begin{cases} \frac{d\theta_i^{ref}}{dt} = h(t, \sigma_i^{ref}(t)) \\ \frac{d\sigma_i^{ref}}{dt} = (-1)^{i+1}h(t, \sigma_i^{ref}(t)) \\ \sigma^{ref}(0) = \sigma^0, \ \theta^{ref}(0) = \theta^0 \end{cases}$$

Meta-stability with constant applied field |h| < 1 *h* constant in the walls determined by σ^{ref} The solution remains close to $\mathbf{m}_{\varepsilon}(\theta^{ref}, \sigma^{ref})$ on the time interval $[0, e^{\frac{\delta}{4\varepsilon}}]$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

э

New Coordinates

2K-parameters family of static quasisolutions

$$\mathcal{M} = \{\mathbf{m}_{\varepsilon}(\theta, \sigma), \sigma_{i+1} - \sigma_i \geq 2\delta\}$$

New coordinates in a neighborhood of $\ensuremath{\mathcal{M}}$

$$m = \mathbf{m}_{\varepsilon}(\theta, \sigma) + w + \nu(w)\mathbf{m}_{\varepsilon}(\theta, \sigma)$$

• $\boldsymbol{w} \cdot \boldsymbol{m}_{\varepsilon}(\boldsymbol{\theta}, \sigma) = \boldsymbol{0}$

•
$$\nu(\xi) = \sqrt{1 - |\xi|^2} - 1$$

•
$$< w | \partial_{\sigma_i} \mathbf{m}_{\varepsilon}(\theta, \sigma) >= 0$$

• $< w | \partial_{\theta_i} \mathbf{m}_{\varepsilon}(\theta, \sigma) >= 0$

イロト イポト イヨト イヨト

 $\label{eq:Local inversion} \begin{array}{l} \mbox{Local inversion Theorem} \Longrightarrow \mbox{good parametrization of a neighborhood of \mathcal{M} which size} \\ \mbox{does not depend on ε} \end{array}$

Equation in the new coordinates

We describe m in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_j} \mathbf{m}_{\varepsilon}$ and $\partial_{\sigma_j} \mathbf{m}_{\varepsilon}$:

Equation for θ and σ

$$\frac{d\theta_i}{dt} = h(t,\sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i,\sigma_i,w)(w)$$
$$\frac{d\sigma_i}{dt} = (-1)^i h(t,\sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i,\sigma_i,w)(w)$$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

Equation for w

$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + l^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$

•
$$a_{\varepsilon} = \mathcal{O}(e^{-rac{\delta}{4\varepsilon}})$$

- Λ_ε linear operator
- *P*_ε linear operator coming from the applied magnetic field

•
$$l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{o}{4\varepsilon}})(w)$$

Equation in the new coordinates

We describe *m* in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_i} m_{\varepsilon}$ and $\partial_{\sigma_i} m_{\varepsilon}$:

Equation for θ and σ $\frac{d\theta_i}{dt} = h(t, \sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, w)(w)$ $\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, w)(w)$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

Equation for w $\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + l^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$

•
$$a_{\varepsilon} = \mathcal{O}(e^{-rac{\delta}{4\varepsilon}})$$

- Λ_ε linear operator
- P_{ε} linear operator coming from the applied magnetic field

・ロッ ・雪 ・ ・ ヨ ・ ・

•
$$l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})(w)$$

Equation in the new coordinates

We describe *m* in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_i} m_{\varepsilon}$ and $\partial_{\sigma_i} m_{\varepsilon}$:

Equation for θ and σ $\frac{d\theta_i}{dt} = h(t, \sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, w)(w)$ $\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, w)(w)$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

Equation for w $\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + l^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$

•
$$a_{\varepsilon} = \mathcal{O}(e^{-rac{\delta}{4\varepsilon}})$$

- Λ_ε linear operator
- P_{ε} linear operator coming from the applied magnetic field

・ロッ ・雪 ・ ・ ヨ ・ ・

•
$$l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})(w)$$

Equation in the new coordinates

We describe *m* in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_i} \mathbf{m}_{\varepsilon}$ and $\partial_{\sigma_i} \mathbf{m}_{\varepsilon}$:

Equation for θ and σ $\frac{d\theta_i}{dt} = h(t, \sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, w)(w)$ $\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, w)(w)$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

Equation for *w*
$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + I^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$

•
$$a_{\varepsilon} = \mathcal{O}(e^{-rac{\delta}{4\varepsilon}})$$

- Λ_ε linear operator
- *P*_ε linear operator coming from the applied magnetic field

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

•
$$l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})(w)$$

Equation in the new coordinates

We describe *m* in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_i} \mathbf{m}_{\varepsilon}$ and $\partial_{\sigma_i} \mathbf{m}_{\varepsilon}$:

Equation for θ and σ $\frac{d\theta_i}{dt} = h(t, \sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, w)(w)$ $\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, w)(w)$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

Equation for w

$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + l^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$
• $a_{\varepsilon} = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})$

- Λ_{ε} linear operator
- *P*_ε linear operator coming from the applied magnetic field

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

•
$$l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})(w)$$

• G^{ε} non linear part

Equation in the new coordinates

We describe *m* in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_i} \mathbf{m}_{\varepsilon}$ and $\partial_{\sigma_i} \mathbf{m}_{\varepsilon}$:

Equation for θ and σ $\frac{d\theta_i}{dt} = h(t, \sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, w)(w)$ $\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, w)(w)$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

- $a_{\varepsilon} = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})$
- Λ_ε linear operator
- *P*_ε linear operator coming from the applied magnetic field

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- $l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})(w)$
- G^ε non linear part

Equation in the new coordinates

We describe m in the new coordinates and we plug it in the Landau-Lifschitz

 $m(t) = \mathbf{m}_{\varepsilon}(\theta(t), \sigma(t)) + w(t) + \nu(w(t))\mathbf{m}_{\varepsilon}(\theta(t), \sigma(t))$

By taking the inner product with $\partial_{\theta_i} \mathbf{m}_{\varepsilon}$ and $\partial_{\sigma_i} \mathbf{m}_{\varepsilon}$:

Equation for θ and σ $\frac{d\theta_i}{dt} = h(t, \sigma_i) + a_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, w)(w)$ $\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + a_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, w)(w)$

Perturbation of the o.d.e. satisfied by $(\theta^{\rm ref},\sigma^{\rm ref})$

$$a^i_{arepsilon} = \mathcal{O}(e^{-rac{\delta}{4arepsilon}})$$

By substraction : equation on w

Equation for
$$w$$

 $\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + I^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$

•
$$a_{\varepsilon} = \mathcal{O}(e^{-rac{\delta}{4\varepsilon}})$$

- Λ_ε linear operator
- *P*_ε linear operator coming from the applied magnetic field

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

•
$$l_{\varepsilon}(w) = \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})(w)$$

• G^{ε} non linear part

Sketch of the proof

Equation for w

$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + I^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$

Coercivity of the linear part

$$\frac{d}{dt}\|w\|_{H_{\varepsilon}^1}^2+c\|w\|_{H_{\varepsilon}^2}^2\leq \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})+C\|w\|_{H_{\varepsilon}^2}^2\|w\|_{H_{\varepsilon}^1}$$

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > <

э

Sketch of the proof

Equation for w

$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + l^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$

Coercivity of the linear part

$$\frac{d}{dt}\|w\|_{H^1_{\varepsilon}}^2+c\|w\|_{H^2_{\varepsilon}}^2(1-C\|w\|_{H^1_{\varepsilon}})\leq \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})$$

$$\begin{array}{l} \text{While } \|w\|_{H^1_{\varepsilon}} \leq \frac{1}{2C}, \\ \\ \frac{d}{dt} \|w\|_{H^1_{\varepsilon}}^2 + c \|w\|_{H^1_{\varepsilon}}^2 \leq \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}}) \end{array}$$

m(t,z) $m_t(\theta, \sigma)$ w(t)

э

||w|| remains small

Sketch of the proof

Equation for w

$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + l^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$

Coercivity of the linear part

$$\begin{split} \frac{d}{dt} \|w\|_{\mathcal{H}^{1}_{\varepsilon}}^{2} + c\|w\|_{\mathcal{H}^{2}_{\varepsilon}}^{2}(1 - C\|w\|_{\mathcal{H}^{1}_{\varepsilon}}) &\leq \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}})\\ \text{While } \|w\|_{\mathcal{H}^{1}_{\varepsilon}} &\leq \frac{1}{2C},\\ \frac{d}{dt} \|w\|_{\mathcal{H}^{1}_{\varepsilon}}^{2} + c\|w\|_{\mathcal{H}^{1}_{\varepsilon}}^{2} &\leq \mathcal{O}(e^{-\frac{\delta}{4\varepsilon}}) \end{split}$$

э

)

||w|| remains small

Sketch of the proof

Equation for w

$$\partial_t w = a_{\varepsilon} + \Lambda_{\varepsilon} w + P_{\varepsilon} w + I^{\varepsilon} w + G^{\varepsilon}(w, \theta, \sigma)$$

||w|| remains small

Equation for
$$\theta$$
 and σ
$$\frac{d\theta_i}{dt} = h(t, \sigma_i) + \mathbf{a}_{\varepsilon}^1 + G_{\varepsilon}^1(\theta_i, \sigma_i, \mathbf{w})(\mathbf{w})$$
$$\frac{d\sigma_i}{dt} = (-1)^i h(t, \sigma_i) + \mathbf{a}_{\varepsilon}^2 + G_{\varepsilon}^2(\theta_i, \sigma_i, \mathbf{w})(\mathbf{w})$$

The perturbation of the reference equation remains small

(a)

Conclusion for this model

Good understanding of the dynamics of walls in a wire subject to an applied field

Quasi controlability of the walls'positions

Same kind of results with an electric current

It remains to describe :

- the collapse of two consecutive walls
- when a wall goes out the wire
- walls and domains formation

The walls move slowly but they move !!!!

・ロッ ・雪 ・ ・ ヨ ・ ・

Conclusion for this model

Good understanding of the dynamics of walls in a wire subject to an applied field

Quasi controlability of the walls'positions

Same kind of results with an electric current

It remains to describe :

- the collapse of two consecutive walls
- when a wall goes out the wire
- walls and domains formation

The walls move slowly but they move !!!!

Conclusion for this model

Good understanding of the dynamics of walls in a wire subject to an applied field

Quasi controlability of the walls'positions

Same kind of results with an electric current

It remains to describe :

- the collapse of two consecutive walls
- when a wall goes out the wire
- walls and domains formation

The walls move slowly but they move !!!!

э

Plan

Ferromagnetism

2 Domain Walls in Nanowires

3 Quasi-Solutions and Metastability

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire

・ロト ・聞 と ・ ヨ と ・ ヨ と

Pinched Wire

Size of the section : $\boldsymbol{\alpha}$

• $\alpha: \mathbb{R} \to \mathbb{R}^+, \mathcal{C}^{\infty},$

•
$$\alpha = 1$$
 outside $[-a, a]$,

•
$$\alpha(-x) = \alpha(x),$$

α non decreasing on [0, *a*]

Ferromagnetism Energy in pinched nanowire

$$E(m) = \frac{A}{2} \int_{I} \frac{\alpha(x)}{|\partial_{x}m|^{2}} dx + \frac{1}{4} \int_{I} \frac{\alpha(x)}{|m_{2}|^{2}} + |m_{3}|^{2} dx$$

Model of Nanowire

$$m: \mathbb{R}^+_t \times I_x \to S^2, \ I = \mathbb{R} \text{ or } I = [-L, L], \ L > a$$

$$\frac{\partial m}{\partial t} = m \wedge H_{\rm eff} - m \wedge (m \wedge H_{\rm eff})$$

$$H_{eff} = \frac{1}{\alpha(x)} \left(\partial_x (\alpha(x) \partial_x m) - \alpha(x) (m_2 \vec{e}_2 + m_3 \vec{e}_3) \right)$$

Pinched Wire

Size of the section : $\boldsymbol{\alpha}$

• $\alpha: \mathbb{R} \to \mathbb{R}^+, \mathcal{C}^{\infty},$

•
$$\alpha(-x) = \alpha(x),$$

α non decreasing on [0, *a*]

Ferromagnetism Energy in pinched nanowire

$$E(m) = \frac{A}{2} \int_{I} \frac{\alpha(x)}{|\partial_{x}m|^{2}} dx + \frac{1}{4} \int_{I} \frac{\alpha(x)}{|m_{2}|^{2}} + |m_{3}|^{2} dx$$

Model of Nanowire

$$m: \mathbb{R}^+_t \times I_x \to S^2, \ I = \mathbb{R} \text{ or } I = [-L, L], \ L > a$$

$$\frac{\partial m}{\partial t} = m \wedge H_{eff} - m \wedge (m \wedge H_{eff})$$

$$H_{\text{eff}} = \partial_{xx}m + \frac{\alpha'}{\alpha}\partial_{x}m - (m_2\vec{e}_2 + m_3\vec{e}_3)$$

Infinite Pinched Wire

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}, \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \partial_{xx}m + \frac{\alpha'}{\alpha} \partial_{x}m - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) \end{split}$$

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

- Existence of a profile for one wall
- Asymptotically stable for the position

(日)

Finite Pinched Wire

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [-L, L]_{x} \to S^{2}, \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= \partial_{xx} m + \frac{\alpha'}{\alpha} \partial_{x} m - (m_{2} \vec{e}_{2} + m_{3} \vec{e}_{3}) \\ \partial_{x} m(t, -L) &= \partial_{x} m(t, L) = 0 \end{split}$$

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

- Existence of a profile for one wall for $L \ge \pi/2$
- Asymptotically stable in the position if L is large enough

Existence of profiles

•
$$M(x) = R_{\varphi(x)} \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix}$$

 $R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$
• BC : $\theta \to \pm \pi/2$ when $x \to \pm \infty$
 $\theta'(-L) = \theta'(L) = 0$

• φ is constant

•
$$\theta'' + \frac{\alpha'}{\alpha} \partial_x \theta + \cos \theta \sin \theta = 0$$

•
$$\left((\theta')^2 - \cos^2\theta\right)' = -2\frac{\alpha'}{\alpha}(\theta')^2$$

・ロト ・聞 と ・ ヨ と ・ ヨ と

æ

Stability

Pinched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= m \wedge H_{eff} - m \wedge (m \wedge H_{eff}) \\ H_{eff} &= m_{xx} + \frac{\alpha'}{\alpha} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \\ \text{Boundary Conditions} \end{split}$$

Wall Profile

$$M_{0}(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix}$$
$$\theta'' + \frac{\alpha'}{\alpha} \theta' + \cos \theta \sin \theta = 0$$
$$BC : \theta \to \pm \pi/2 \text{ when } x \to \pm \infty$$
$$\theta'(-L) = \theta'(L) = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stability of M_0 , asymptotic stability for the position of the wall?

If $||m(t = 0) - M_0||_{H^1(\mathbb{R})}$ is small, then

- for all time, $||m(t) M_0||_{H^1(\mathbb{R})}$ remains small,
- m(t) tends to $R_{\theta_{\infty}}(M_0)$ when t tends to $+\infty$.

Mobile Frame

Difficulty : geometrical constraint |m| = 1 satisfied by the perturbations

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2 M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2}$$

$$M_0(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} \qquad M_1(x) = \begin{pmatrix} -\cos \theta(x) \\ \sin \theta(x) \\ 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for *i*

 $r : \mathbb{R}_{l}^{+} \times I_{x} \to \mathbb{R}^{2}$ $\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $L_{1}(r) = -\partial_{xx}r - \frac{\alpha'}{\alpha}\partial_{x}r + (\sin^{2}\theta - \cos^{2}\theta)r$ $L_{2}(r) = -\partial_{xx}r - \frac{\alpha'}{\alpha}\partial_{x}r + (\sin^{2}\theta - (\theta')^{2})r$

Exact Solution

 M_0 for LL \sim 0 for the new system

Stability of 0?

< ロ > < 同 > < 回 > < 回 > .

Mobile Frame

Difficulty : geometrical constraint |m| = 1 satisfied by the perturbations

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2} M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2$$

$$M_0(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} \qquad M_1(x) = \begin{pmatrix} -\cos \theta(x) \\ \sin \theta(x) \\ 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for *i*

 $r: \mathbb{R}_{t}^{+} \times I_{x} \to \mathbb{R}^{2}$ $\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $L_{1}(r) = -\partial_{xx}r - \frac{\alpha'}{\alpha}\partial_{x}r + (\sin^{2}\theta - \cos^{2}\theta)r$ $L_{2}(r) = -\partial_{xx}r - \frac{\alpha'}{\alpha}\partial_{x}r + (\sin^{2}\theta - (\theta')^{2})r$

Exact Solution

 M_0 for LL \sim 0 for the new system

Stability of 0?

< ロ > < 同 > < 回 > < 回 > .

Mobile Frame

Difficulty : geometrical constraint |m| = 1 satisfied by the perturbations

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2} M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2$$

$$M_0(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} \qquad M_1(x) = \begin{pmatrix} -\cos \theta(x) \\ \sin \theta(x) \\ 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for r

$$r : \mathbb{R}_{l}^{+} \times I_{x} \to \mathbb{R}^{2}$$

$$\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$$

$$\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$$

$$L_{1}(r) = -\partial_{xx}r - \frac{\alpha'}{\alpha}\partial_{x}r + (\sin^{2}\theta - \cos^{2}\theta)r$$

$$L_{2}(r) = -\partial_{xx}r - \frac{\alpha'}{\alpha}\partial_{x}r + (\sin^{2}\theta - (\theta')^{2})r$$

Exact Solution

 M_0 for LL \sim 0 for the new system

Stability of 0?

Properties of the linearized : L2

On $L^2(\mathbb{R})$, weighted scalar product :

.

$$\langle u|v\rangle = \int_{\mathbb{R}} \alpha(x)u(x)v(x) dx,$$

$$L_2 = -\frac{1}{\alpha}\partial_x(\alpha\partial_x) + (\sin^2\theta_0 - (\theta'_0)^2) \implies L_2 \text{ is self-adjoint for } \langle | \rangle.$$

$$\langle L_2 u | v \rangle = \langle \ell u | \ell v \rangle$$
, with $\ell = \partial_x + \theta' \tan \theta$

 $L_2 \geq 0$, Ker $L_2 = \mathbb{R}(\cos \theta)$

- Valid whatever the configurations of the wire (several pinched zones)
- for one wall, on $(\cos \theta)^{\perp}$, $L_2 \geq 1$
- Invariance by rotation \implies 0 is an eigenvalue of the linearized

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of the linearized : L_1

$$L_1 = L_2 + (\theta')^2 - \cos^2\theta$$

Key point : $L_1 \ge 0$?

- Infinite nanowire without pinching : $L_1 = L_2$, $L_1 \ge 0$. Stability
- Finite nanowire without pinching : $L_1 = L_2 c$. Bad sign, unstability for the position

Properties of the linearized : L_1

$$L_1 = L_2 + (\theta')^2 - \cos^2\theta$$

- Infinite wire : $(\theta')^2 \cos^2 \theta > 0$ on Ker $L_2 \implies L_1 > 0$
- Short finite wire : $(\theta')^2 \cos^2 \theta \le 0 \implies$ Unstability
- Long finite wire : $(\theta')^2 \cos^2 \theta > 0$ on a sufficiently large zone $\implies L_1 \ge 0$

Conclusion for pinched wires

Pinching stabilizes the wall position

Open Questions :

- more general geometry for pinching
- wire with several pinched zones
- effects of a magnetic applied field or an electric current on the walls in narrowing wires

・ロッ ・雪 ・ ・ ヨ ・ ・

э

New unknown

Problem : Zero is an eigenvalue of the linearized

 $\theta \mapsto R_{\theta}M_0(x)$ one parameter family of solutions for LL

$$\mathcal{R}_{\theta}(x) = \begin{pmatrix} R_{\theta} M_0(x) \cdot M_1(x) \\ R_{\theta} M_0(x) \cdot M_2 \end{pmatrix}$$

$$\begin{split} \mathsf{r}(\mathsf{t},\mathsf{x}) &= \mathsf{R}(\theta(t)) + w(t,x) \\ x &\mapsto \mathcal{R}(\theta)(x) \text{ stationary solution} \\ w_2 \text{ in } (\cos \theta)^{\perp} \end{split}$$

Equations for w and θ θ et σ : $\mathbb{R}^+ \to \mathbb{R}$, $w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp}$ $\partial_t \sigma = A_1(t, \theta, w)(w)$ $\partial_t w_1 = -L_1(w_1) - L_2(w_2)$ + non linear $\partial_t w_2 = L_1(w_1) - L_2(w_2)$ + non linear

To be proved

```
w \to 0
\theta remain smal
\theta \to \theta_{\infty}
```

< ロ > < 同 > < 回 > < 回 > .

New unknown

Problem : Zero is an eigenvalue of the linearized

 $\theta \mapsto R_{\theta}M_0(x)$ one parameter family of solutions for LL

$$\mathcal{R}_{\theta}(x) = \begin{pmatrix} R_{\theta} M_0(x) \cdot M_1(x) \\ R_{\theta} M_0(x) \cdot M_2 \end{pmatrix}$$

$$\begin{split} \mathsf{r}(\mathsf{t},\mathsf{x}) &= \mathsf{R}(\theta(t)) + w(t,x) \\ x &\mapsto \mathcal{R}(\theta)(x) \text{ stationary solution} \\ w_2 \text{ in } (\cos \theta)^{\perp} \end{split}$$

Equations for w and θ θ et σ : $\mathbb{R}^+ \to \mathbb{R}$, $w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp}$ $\partial_t \sigma = A_1(t, \theta, w)(w)$ $\partial_t w_1 = -L_1(w_1) - L_2(w_2)$ + non linear $\partial_t w_2 = L_1(w_1) - L_2(w_2)$ + non linear

To be proved

```
w \to 0
\theta remain smal
\theta \to \theta_{\infty}
```

< ロ > < 同 > < 回 > < 回 > .

New unknown

Problem : Zero is an eigenvalue of the linearized

 $\theta \mapsto R_{\theta}M_0(x)$ one parameter family of solutions for LL

$$\mathcal{R}_{\theta}(x) = \begin{pmatrix} R_{\theta} M_0(x) \cdot M_1(x) \\ R_{\theta} M_0(x) \cdot M_2 \end{pmatrix}$$

$$\begin{split} \mathsf{r}(\mathsf{t},\mathsf{x}) &= \mathsf{R}(\theta(t)) + w(t,x) \\ x &\mapsto \mathcal{R}(\theta)(x) \text{ stationary solution} \\ w_2 \text{ in } (\cos \theta)^{\perp} \end{split}$$

Equations for w and θ

 $\begin{aligned} \theta & \text{et } \sigma : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^\perp \\ \partial_t \sigma &= A_1(t, \theta, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{aligned}$

To be proved

$$w \rightarrow 0$$

 θ remain small
 $\theta \rightarrow \theta_{\infty}$

Variational Estimates

Equations for w, θ

 $\begin{aligned} \theta : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \theta &= A(t, \theta, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{aligned}$

By coercivity of the linearized, w is exponentially decreasing

 $\partial_t \theta$ is integrable

Stability of M₀, asymptotic stability modulo rotation

(日)

Variational Estimates

Equations for w, θ

 $\begin{aligned} \theta : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \theta &= A(t, \theta, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{aligned}$

By coercivity of the linearized, w is exponentially decreasing

 $\partial_t \theta$ is integrable

Stability of M₀, asymptotic stability modulo rotation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variational Estimates

Equations for w, θ

 $\begin{aligned} \theta : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \theta &= A(t, \theta, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{aligned}$

By coercivity of the linearized, w is exponentially decreasing

 $\partial_t \theta$ is integrable

Stability of M_0 , asymptotic stability modulo rotation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Conclusion : pinching stabilize the position of walls

Open Questions :

- more general geometry for pinching
- wire with several pinched zones
- effects of a magnetic applied field or an electric current on the walls in narrowing wires

(a)