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3d model

Properties

Spontaneous magnetization

Magnetic field generated by the
magnetization

Formation of domains and domain walls

Stuart S. P. Parkin, Masamitsu Hayashi, Luc
Thomas, Magnetic Domain-Wall Racetrack
Memory, Science 320 (2008)
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Magnetic Moment

Magnetic domain : Ω ⊂ R3

Magnetization described by the magnetic moment m : R+
t × Ωx → R3

|m(t , x)| = 1 p. p.

Constitutive Relation : B = H + m

Landau-Lifschitz

∂m
∂t

= −m ∧ Heff −m ∧ (m ∧ Heff )

Heff = − ∂mE

preserves the saturation constraint
|m| = 1

Precession term (makes m move
around He)

Damping term (aligns m with Heff )

Energy Decreasing

Ferromagnetism Energy

E(m) =
A
2

∫
Ω
|∇m|2dx +

1
2

∫
R3
|Hd (m)|2dx −

1
2

∫
Ω

(ξ ·m)2
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Applied Magnetic or Electric Field

Landau-Lifschitz

∂m
∂t

= −m ∧ Heff −m ∧ (m ∧ Heff )

Heff = A∆m + Hd (m) + Φanis(m)

Action of an Applied Magnetic Field

Ha : applied magnetic field

Zeeman Energy

−
∫

Ω
Happ ·m dx

Action of an Applied Electric Field

v : Electric Current

Transport Term

v · ν = 0 on ∂Ω
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Domains and Domain Walls

Organization of the magnetization :

domains (in which m is almost constant)

domain walls (microstructures in which we observe stiff variations of m)
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Domains and Domain Walls in nanowires

Organization of the magnetization :

domains (in which m is almost constant)

domain walls (microstructures in which we observe stiff variations of m)

Goal : describe walls dynamics in ferromagnetic nanowires
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Nanowires model

Landau-Lifschitz Equation

m : R+
t × Ω→ S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = A∆m + Hd (m)

Ω = [0, L]× B(0, η)

η −→ 0
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Nanowires model

Landau-Lifschitz Equation

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = A∆m + Hd (m)

Fil assimilated to [0, L]e1

1d Exchange

Equivalent Demagnetizing Field : H(m) = −m2~e2 −m3~e3
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Nanowires model

Landau-Lifschitz Equation

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )− v∂x m −m ∧ v∂x m
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Nanowires model

Landau-Lifschitz Equation

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )− v∂x m −m ∧ v∂x m

Heff = ε2mxx −m2~e2 −m3~e3 + ha~e1

Goal : describe walls dynamics in this model
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Exact Static Solutions for Infinite Nanowires

Infinite Nanowire

m : R+
t × Rx → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = mxx −m2~e2 −m3~e3

Static Solution

M0(x)=

 th x
1/ch x

0

 ,

Rθ=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


-/+ wall :M(x) = Rθ (M0(x − σ))
+/- wall :M(x) = Rθ (M0(−(x − σ)))

-/+ wall +/- wall

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire



Ferromagnetism
Domain Walls in Nanowires

Quasi-Solutions and Metastability
Stabilization by pinching

Exact Solutions with Applied Magnetic Field

Infinite Nanowire

m : R+
t × Rx → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = mxx −m2~e2 −m3~e3 + ha~e1

Moving Solution

M0(x)=

 th x
1/ch x

0

 ,

Rθ=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


-/+ wall :M(x) = Rha t (M0(x + hat))
+/- wall :M(x) = Rha t (M0(−(x − hat)))

-/+ wall, magnetic field along ~e1 +/- wall, magnetic field along ~e1
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Stability Results

Infinite Nanowire with Applied Magnetic Field

m : R+
t × Rx → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = mxx −m2~e2 −m3~e3 + ha~e1

G. Carbou, S. Labbé, Stability for Static wall in a ferromagnetic Nanowire, Discrete
Contin. Dyn. Syst. Ser. B 6 (2006)

Stability for wall profiles for small applied field

R. Jizzini, Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic
field, J. Differential Equations 250 (2011)

Stability Threshold : |ha| < 1

G. Carbou, S. Labbé, E. Trélat, Control of travelling walls in a ferromagnetic nanowire,
Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 51–59

Controlability of the wall position by the mean of the applied field
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Stability Results

Infinite Nanowire with Applied Electric Field

m : R+
t × Rx → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )− v∂x m −m ∧ v∂x m

Heff = mxx −m2~e2 −m3~e3

R. Jizzini, in preparation

Stability of the exact solutions
Stability Threshold : |v | < 2
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Drawbacks of these works on exact solutions

G. Carbou, S. Labbé, Stabilization of walls for nano-wires of finite lenght, ESAIM
Control Optim. Calc. Var. 18 (2012)

One wall in a finite wire : centered in the middle of the wire

This solution is unstable

S. Labbé, Y. Privat, E. Trélat, Stability properties of steady-states for a network of
ferromagnetic nanowires, submitted

Several walls in a finite wire : periodically situated

Unstability

Exact solutions : impossible to describe complex distributions of domain walls
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Goal : description of K walls complex configurations in finite wire subject to an
applied magnetic field or an electric current

Key idea : taking into account the smallness of the exchange coefficient
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Finite Nanowire with Small Exchange Length

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = εmxx −
1
ε

(
m2~e2 + m3~e3) +

1
ε

ha~e1

ε2 : small exchange coefficient. TIme rescaling : long time behaviour

We build a 2K -parameters family of quasi-solutions describing all the
configurations with K walls

We prove that the solution of the Landau-Lifschitz equation remains close to this
manifold of almost solutions during an exponentially long time
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Related Work

J. Carr, R. L. Pego, Metastable patterns in solutions of ut = ε2uxx − f (u), Comm. Pure
Appl. Math. 42 (1989)

f (u) = F ′(u)

Description of phase transitions

Construction of quasi-solutions

These quasi-solutions remain ”stables” on a very
long time e

C
ε

We will use Carr and Pego’s methods (geometric methods, see also Hale and Fusco)

the problem is vectorial

the problem is quasilinear

we are able to make the walls move
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Quasi-solutions profiles

Walls positions : σ1, . . . , σK
0 < δ < σ1
σ1 + δ ≤ σ2 − δ
σK + δ ≤ L

Walls angles : θ1, . . . , θK

Definition of mε(θ, σ)

In the domains

Di = [σi−1 + δ, σi − δ]

mε(θ, σ)(x) = (−1)i e1 dans Di

Central Zone of a wall

in [σi −
δ

2
, σi +

δ

2
],

mε(θ, σ) = R θi
ε

M0

(
(−1)i+1 x − σi

ε

)

Transition Zone

In [σi +
δ

2
, σi + δ],

Smooth connection
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Metastability Results

Finite Nanowire with Small Exchange Length

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = εmxx −
1
ε

(m2~e2 + m3~e3)

Metastability of Static solutions

We fix θ and σ. If the initial data is closed to mε(θ, σ), then the solution remains close
to mε(θ, σ) on a long time interval [0, e

δ
4ε ]

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire



Ferromagnetism
Domain Walls in Nanowires

Quasi-Solutions and Metastability
Stabilization by pinching

Metastability Results

Finite Nanowire with Small Exchange Length

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = εmxx −
1
ε

(m2~e2 + m3~e3) +
1
ε
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With applied magnetic field

Initial data close to mε(θ0, σ0)



dθref
i

dt
= h(t , σref

i (t))

dσref
i

dt
= (−1)i+1h(t , σref

i (t))

σref (0) = σ0, θref (0) = θ0
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Metastability Results

Finite Nanowire with Small Exchange Length

m : R+
t × [0, L]x → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = εmxx −
1
ε

(m2~e2 + m3~e3) +
1
ε

ha~e1

With applied magnetic field

Initial data close to mε(θ0, σ0)



dθref
i

dt
= h(t , σref

i (t))

dσref
i

dt
= (−1)i+1h(t , σref

i (t))

σref (0) = σ0, θref (0) = θ0

Meta-stability with general applied field

|h| < 1

The solution remains close to mε(θref , σref ) on
the time interval [0, 1

ε
[.
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Initial data close to mε(θ0, σ0)



dθref
i

dt
= h(t , σref

i (t))

dσref
i

dt
= (−1)i+1h(t , σref

i (t))

σref (0) = σ0, θref (0) = θ0

Meta-stability with constant applied field

|h| < 1
h constant in the walls determined by σref

The solution remains close to mε(θref , σref ) on
the time interval [0, e

δ
4ε [
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New Coordinates

2K -parameters family of static quasisolutions

M = {mε(θ, σ), σi+1 − σi ≥ 2δ}

New coordinates in a neighborhood ofM

m = mε(θ, σ) + w + ν(w)mε(θ, σ)

w ·mε(θ, σ) = 0

ν(ξ) =
√

1− |ξ|2 − 1

< w |∂σi mε(θ, σ) >= 0

< w |∂θi mε(θ, σ) >= 0

Local inversion Theorem =⇒ good parametrization of a neighborhood ofM which size
does not depend on ε
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Equation in the new coordinates

We describe m in the new coordinates and we plug it in the Landau-Lifschitz

m(t) = mε(θ(t), σ(t)) + w(t) + ν(w(t))mε(θ(t), σ(t))

By taking the inner product with ∂θi mε

and ∂σi mε :

Equation for θ and σ

dθi

dt
= h(t , σi ) + a1

ε + G1
ε(θi , σi ,w)(w)

dσi

dt
= (−1)i h(t , σi ) + a2

ε + G2
ε(θi , σi ,w)(w)

Perturbation of the o.d.e. satisfied by
(θref , σref )

ai
ε = O(e−

δ
4ε )

By substraction : equation on w

Equation for w

∂t w = aε + Λεw + Pεw + lεw + Gε(w , θ, σ)

aε = O(e−
δ
4ε )

Λε linear operator

Pε linear operator coming from the
applied magnetic field

lε(w) = O(e−
δ
4ε )(w)

Gε non linear part
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Sketch of the proof

Equation for w

∂t w = aε + Λεw + Pεw + lεw + Gε(w , θ, σ)

Coercivity of the linear part

d
dt
‖w‖2

H1
ε

+ c‖w‖2
H2
ε
≤ O(e−

δ
4ε ) + C‖w‖2

H2
ε
‖w‖H1

ε
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∂t w = aε + Λεw + Pεw + lεw + Gε(w , θ, σ)

Coercivity of the linear part

d
dt
‖w‖2

H1
ε

+ c‖w‖2
H2
ε

(1− C‖w‖H1
ε

) ≤ O(e−
δ
4ε )

While ‖w‖H1
ε
≤ 1

2C ,
d
dt
‖w‖2

H1
ε

+ c‖w‖2
H1
ε
≤ O(e−

δ
4ε )

‖w‖ remains small
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Sketch of the proof

Equation for w

∂t w = aε + Λεw + Pεw + lεw + Gε(w , θ, σ)

‖w‖ remains small

Equation for θ and σ

dθi

dt
= h(t , σi ) + a1

ε + G1
ε(θi , σi ,w)(w)

dσi

dt
= (−1)i h(t , σi ) + a2

ε + G2
ε(θi , σi ,w)(w)

The perturbation of the reference
equation remains small
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Conclusion for this model

Good understanding of the dynamics of walls in a wire subject to an applied field

Quasi controlability of the walls’positions

Same kind of results with an electric current

It remains to describe :

the collapse of two consecutive walls

when a wall goes out the wire

walls and domains formation

The walls move slowly but they move ! ! ! !
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Plan

1 Ferromagnetism

2 Domain Walls in Nanowires

3 Quasi-Solutions and Metastability

4 Stabilization by pinching
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Pinched Wire

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Size of the section : α

α : R→ R+, C∞,

α = 1 outside [−a, a],

α(−x) = α(x),

α non decreasing on [0, a]

Ferromagnetism Energy in pinched nanowire

E(m) =
A
2

∫
I
α(x)|∂x m|2dx +

1
4

∫
I
α(x)(|m2|2 + |m3|2)dx

Model of Nanowire

m : R+
t × Ix → S2, I = R or I = [−L, L], L > a

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff =
1

α(x)

(
∂x (α(x)∂x m)− α(x)(m2~e2 + m3~e3)

)
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t × Ix → S2, I = R or I = [−L, L], L > a
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Infinite Pinched Wire

Model of Nanowire

m : R+
t × Rx → S2,

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = ∂xx m +
α′

α
∂x m − (m2~e2 + m3~e3)

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

Existence of a profile for one wall

Asymptotically stable for the position
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Finite Pinched Wire

Model of Nanowire

m : R+
t × [−L, L]x → S2,

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = ∂xx m +
α′

α
∂x m − (m2~e2 + m3~e3)

∂x m(t ,−L) = ∂x m(t , L) = 0

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

Existence of a profile for one wall for L ≥ π/2

Asymptotically stable in the position if L is large enough
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Existence of profiles

M(x) = Rϕ(x)

 sin θ(x)
cos θ(x)

0


Rϕ=

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


BC : θ → ±π/2 when x → ±∞

θ′(−L) = θ′(L) = 0

ϕ is constant

θ′′ +
α′

α
∂xθ + cos θ sin θ = 0(

(θ′)2 − cos2 θ
)′

= −2
α′

α
(θ′)2
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Stability

Pinched Nanowire

m : R+
t × Ix → S2

∂m
∂t

= m ∧ Heff −m ∧ (m ∧ Heff )

Heff = mxx +
α′

α
mx −m2~e2 −m3~e3

Boundary Conditions

Wall Profile

M0(x) =

 sin θ(x)
cos θ(x)

0


θ′′ +

α′

α
θ′ + cos θ sin θ = 0

BC : θ → ±π/2 when x → ±∞

θ′(−L) = θ′(L) = 0

Stability of M0, asymptotic stability for the position of the wall ?

If ‖m(t = 0)−M0‖H1(R) is small, then

for all time, ‖m(t)−M0‖H1(R) remains small,

m(t) tends to Rθ∞ (M0) when t tends to +∞.
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Mobile Frame
Difficulty : geometrical constraint |m| = 1 satisfied by the perturbations

We describe the perturbations in the mobile frame

m(t , x)=
√

1− |r(t , x)|2M0(x) + r1(t , x)M1(x) + r2(t , x)M2

M0(x) =

 sin θ(x)
cos θ(x)

0

 M1(x) =

 − cos θ(x)
sin θ(x)

0

 M2 =

 0
0
1


New Equations for r

r : R+
t × Ix → R2

∂t r1 = −L1(r1)− L2(r2) + non linear
∂t r2 = L1(r1)− L2(r2) + non linear

L1(r) = −∂xx r −
α′

α
∂x r + (sin2 θ − cos2 θ)r

L2(r) = −∂xx r −
α′

α
∂x r + (sin2 θ − (θ′)2)r

Exact Solution

M0 for LL ∼ 0 for the
new system

Stability of 0 ?
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Properties of the linearized : L2

On L2(R), weighted scalar product :

〈u|v〉 =

∫
R
α(x)u(x)v(x) dx ,

L2 = −
1
α
∂x (α∂x ) + (sin2 θ0 − (θ′0)2) =⇒ L2 is self-adjoint for 〈|〉 .

〈L2u|v〉 = 〈`u|`v〉 , with ` = ∂x + θ′ tan θ

L2 ≥ 0, Ker L2 = R(cos θ)

Valid whatever the configurations of the wire (several pinched zones)

for one wall, on (cos θ)⊥, L2 ≥ 1

Invariance by rotation =⇒ 0 is an eigenvalue of the linearized
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Properties of the linearized : L1

L1 = L2 + (θ′)2 − cos2 θ

Key point : L1 ≥ 0 ?

Infinite nanowire without pinching : L1 = L2, L1 ≥ 0. Stability
Finite nanowire without pinching : L1 = L2 − c. Bad sign, unstability for the
position
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Properties of the linearized : L1

L1 = L2 + (θ′)2 − cos2 θ

Infinite wire : (θ′)2 − cos2 θ > 0 on Ker L2 =⇒ L1 > 0
Short finite wire : (θ′)2 − cos2 θ ≤ 0 =⇒ Unstability
Long finite wire : (θ′)2 − cos2 θ > 0 on a sufficiently large zone =⇒ L1 > 0

Gilles Carbou, UPPA Walls Dynamics in a Ferromagnetic Nanowire



Ferromagnetism
Domain Walls in Nanowires

Quasi-Solutions and Metastability
Stabilization by pinching

Conclusion for pinched wires

Pinching stabilizes the wall position

Open Questions :

more general geometry for pinching

wire with several pinched zones

effects of a magnetic applied field or an electric current on the walls in narrowing
wires
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New unknown

Problem : Zero is an eigenvalue of the linearized

θ 7→ RθM0(x) one parameter family of solutions for LL

Rθ(x) =

 RθM0(x) ·M1(x)

RθM0(x) ·M2



r(t,x)= R(θ(t)) + w(t , x)

x 7→ R(θ)(x) stationary solution
w2 in (cos θ)⊥

Equations for w and θ

θ et σ : R+ → R, w : R+ → R× (cos θ)⊥

∂tσ = A1(t , θ,w)(w)

∂t w1 = −L1(w1)− L2(w2) + non linear
∂t w2 = L1(w1)− L2(w2) + non linear

To be proved

w → 0
θ remain small
θ → θ∞
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Rθ(x) =

 RθM0(x) ·M1(x)

RθM0(x) ·M2



r(t,x)= R(θ(t)) + w(t , x)

x 7→ R(θ)(x) stationary solution
w2 in (cos θ)⊥

Equations for w and θ

θ et σ : R+ → R, w : R+ → R× (cos θ)⊥

∂tσ = A1(t , θ,w)(w)

∂t w1 = −L1(w1)− L2(w2) + non linear
∂t w2 = L1(w1)− L2(w2) + non linear

To be proved

w → 0
θ remain small
θ → θ∞
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Variational Estimates

Equations for w , θ

θ : R+ → R, w : R+ → R× (cos θ)⊥

∂tθ = A(t , θ,w)(w)

∂t w1 = −L1(w1)− L2(w2) + non linear
∂t w2 = L1(w1)− L2(w2) + non linear

By coercivity of the linearized, w is exponentially decreasing

∂tθ is integrable

Stability of M0, asymptotic stability modulo rotation
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Conclusion : pinching stabilize the position of walls

Open Questions :

more general geometry for pinching

wire with several pinched zones

effects of a magnetic applied field or an electric current on the walls in narrowing
wires
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