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Ferromagnetic materials

Properties

@ Spontaneous magnetization

@ Magnetic field generated by the
magnetization

@ Formation of domains and domain walls

Industrial Applications

@ Electromagnets

@ Transformers

@ Radar absorbing paints

@ Mobile phones

@ Modern Recording Devices
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One wall

Ferromagnetic Nanowires : Applications

data storage
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(2008)
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Fig. 1. (A) Schematic of an all-metallc ferro-
magnetic NOT gate and directions of ellptical
magnetic field components, H, and A, (B 1o E)
o
W Wy Diagrams describing the operating concept of
T-gate magnetization reversal by illustrat-
b ing sikcesie magreiation dwre‘a;‘ons (ar)
W fows) and domain wall positions (thick line)
1 haciad WY within a NOT gate that undergoes domain wall
0G0 006 Gi2 ois injection and is subject to a fotating magnetic
Time (5) field.

D. A. Allwood, Gang Xiong, M. D. Cooke, C. C.
Faulkner, D. Atkinson, N. Vernier, R. P. Cowburn,
Submicrometer Ferromagnetic NOT Gate and Shift
Register, Science 296 (2002)
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Ferromagnetic nanowires : properties

Easy axis in the direction of the wire = Formation of domains

For logic devices : presence of a domain wall or not ~ information T or F
For data storage :
@ Length of the domains ~ length of the sequences of zeros or ones in the data

@ Walls positions must be unchanged (reliability of the storage)
@ Information is transported to the reading head by application of an electric current
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Ferromagnetic nanowires : properties

Easy axis in the direction of the wire = Formation of domains

For logic devices : presence of a domain wall or not ~ information T or F
For data storage :
@ Length of the domains ~ length of the sequences of zeros or ones in the data

@ Walls positions must be unchanged (reliability of the storage)
@ Information is transported to the reading head by application of an electric current

Objectives

@ Obtention and justification of equivalent simpler 1d-models for nanowires
@ Description of walls configurations and walls dynamics

@ Stability of walls configurations

@ Study of geometrical effects : pinching, bend, junctions
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Starting Point : 3d model

Magnetic Moment

@ Magnetic domain : Q C RS
@ Magnetization described by the magnetic moment m : Rf x Qx — R3

[m(t, x)| =1p.p.

@ Constitutive Relation : B = H -+ m

v

Landau-Lifschitz Equation

om
ot

=—mxH-—-mx(MxH)—(v-V)m—mx(v-V)m

H = —0mE(mM) = AAm + hg(m) + Ha

A 1
emy=5 [1VmP 3 [ ipa(m) — [ Hoem
Q R3 Q
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Starting Point : 3d model

Magnetic Moment

@ Magnetic domain : Q C RS
@ Magnetization described by the magnetic moment m : Rf x Qx — R3

[m(t, x)| =1p.p.

@ Constitutive Relation : B = H -+ m

v

Landau-Lifschitz Equation

om
ot

=—mxH-—-mx(MxH)—(v-V)m—mx(v-V)m
H = —0mE(mM) = AAm + hy(m) + Ha

A 1
emy=Z [1Vmf+ 3 [ ipa(m)P— [ Haem
Q JR3 Q

curl hg(m) =0, div (hy(m) + ) =0
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Starting Point : 3d model

Magnetic Moment

@ Magnetic domain : Q c R®
@ Magnetization described by the magnetic moment m : Rt* x Qx — R3

[m(t, x)| = 1p. p.
@ Constitutive Relation: B=H + m )
Landau-Lifschitz Equation
om
ﬁ:—m><7-L—m><(m><?{)f(v4v)mfmx(v-V)m

H = —0mE(M) = AAm + hg(m) + Ha

A 1
em =5 [1vme 3 [ ira(mpE ~ [ Hawm

Slonczewski model : v is related to the current density

A,
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m:Rf x Q, — S?
%—T—mx%—T:—meHeff—(V-V)m
Her = AAm + hg(m) + Ha

Qy =0, L] x B(0,n)
@ rescaling in the transverse variable in the weak formulation : fixed domain
Q¢ =[0,L] x B(0, 1)
Q@n—0
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]y — S?
— —MX — = —2MmX Hgy — (V- V)m

Her = AAm + hg(m) + Ha

@ Wire assimilated to [0, L]ey
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?
— —MX — = —2MmX Hgy — (V- V)m

Her = AAmM + hg(m) + Ha

@ Wire assimilated to [0, L]ey
@ 1d Exchange
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?
— —MX — = —2MmX Hgy — (V- V)m

Hetr = Amixx + hg(m) + Ha

@ Wire assimilated to [0, L]ey
@ 1d Exchange
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m:R} x[0,L]x — S?
— —mMX — = —2mX Hey — (V- V)m

Hesr = Amxx + hg(m) + Ha

@ Wire assimilated to [0, L]ey
@ 1d Exchange
@ Equivalent Demagnetizing Field : localization

1 . .
hg(m) = *é(mzez + m3és3)
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?

— —mMX — = -2mX Hey — (V- V)m

1 = ~
Hefr = Amyx — é(mzez 4F m383) + Ha

@ Wire assimilated to [0, L]ey
@ 1d Exchange
@ Equivalent Demagnetizing Field : localization

1 . .
hg(m) = *é(mzez + m3és)
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?

— —MX — = —2MmX Heyp — (V- V)m

1 N =
Heft = Amiyx — E(mzeg + m3€3) + Ha

@ Wire assimilated to [0, L]ey

@ 1d Exchange

@ Equivalent Demagnetizing Field : localization
@ Applied Magnetic Field Hy = h,é&;
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?

— —MX — = —2MmX Heyp — (V- V)m

1 . - -
Hefr = Amxx — E(mzez + m3&3) + haé;

@ Wire assimilated to [0, L]ey

@ 1d Exchange

@ Equivalent Demagnetizing Field : localization
@ Applied Magnetic Field Hy = h,é&;
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?

e ~ .
Hefr = Amxx — E(mzez + m3€3) + haéy

Wire assimilated to [0, L]eq

1d Exchange

Equivalent Demagnetizing Field : localization
Applied Magnetic Field Hy = h,&;

Applied Electric Field vV = v&,
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]x — S?

— —mMX — = —2m X Hegg — vOxm

e ~ .
Hefr = Amxx — E(mzez + m3€3) + haéy

Wire assimilated to [0, L]eq

1d Exchange

Equivalent Demagnetizing Field : localization
Applied Magnetic Field Hy = h,&;

Applied Electric Field vV = v&,
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m: Ry x [0, L]y — S?
om om

T m x T —2m X Hgff — vOxm

1 o o .
Hefr = Amixx — §(m292 + m3€3) + haé;

v

Ferromagnetism Energy

A 1
em) = 5 [1omPa+ 2 [(moft+ Imaf)ai— [ pam

\
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Exact Static Solutions

Model of Nanowire

m:Rf x k= S%, I=Rorl=[-L,1]
om
at
Heft = Mxx — M€, — m3 63

= —m X Hggr — M x (M X Heg)

Gilles Carbou, UPPA
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Exact Static Solutions

Model of Nanowire

m:Rf x k= S%, I=Rorl=[-L,1]
om
at
Heft = Mxx — M€, — m3 63

Static Solutions : Domains

= —m X Het — m X (M X Heg) Domains : m = +é;.

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Exact Static Solutions

Static Solutions : Walls

Model of N A Sin@(x)
oL O a0 e ° M(x)= H(P(X)<COSI9(X)

m:Rf x Iy — 82 I=Rorl=[-L,L] 0

om 1 0 0

—— = —m X Hgyg — m X (M X Heg) R,=[ 0 cose —sinp

ot 0 sinp cose

Hefr = mxx — mp€; — mzé3 @ BC:6 — +m/2 when x — oo

§'(—L)=0'(L) =0

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires



Physical Context
Walls in constant-section wire

One wall ations for pi

Bent wires and junctions
Conclusion

Exact Static Solutions

Model of Nanowire

m:Rf x = S%, I=Rorl=[-L,1]
om
ot

Heft = Mxx — Mp€, — m3&3

= —m X Heg — m x (M X Heg)

@ ( is constant
@ 0" +cosfsind =0

Static Solutions : Walls

sin 6(x)

o M(x)= Rw(x)(cos 9(x)>
0

1 0 0
R,=| 0 cosyp —sing
0 sinp cose
@ BC:60 — £n/2 when x — £o0
0'(—L)=6'(L)=0

@ 0 —» tw/2when x — oo ord'(—L)=6'(L)=0

==

Gilles Carbou, UPPA
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Stability in Infinite Nanowire

Model of Nanowire

Static Solution

m:Rf x Iy — 8%, I=R

0
£=m><Heff—m><(m><Heff)

Heft = Myx — Ma& — m3é3
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Stability in Infinite Nanowire

Model of Nanowire

Static Solution

m:Rf x Iy — 8%, I=R

0
FT:mXHeff_mX(mXHeff)

Heft = Myx — Mp€ — m3 63

G. Carbou, S. Labbé, Stability for Static wall in a ferromagnetic Nanowire, Discrete
Contin. Dyn. Syst. Ser. B 6 (2006)

Stability of the constant profiles but not asymptotic stability

m(t, x) = Rpoo Mo(X — 0c) When t — oo

G. Carbou, S. Labbé, E. Trélat, Control of travelling walls in a ferromagnetic nanowire,

Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 51-59

Controlability of the wall position by the mean of the applied field

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Stability in finite Nanowire

Static Solution

sin0(x)
Mo(x) =| cosf(x) |, 0" +cosfsind =0

Model of Nanowire

m:R x l — 8%, 1=[-L,1] 0

%:mXHeﬁ—mX(mXHeif)

S
Hefr = Mxx — M2€2 — M3€3 ¥//\§J
o(-D)=0(L)=0 =
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Stability in finite Nanowire

Static Solution

sin 6(x)
Mo(x) =| cosf(x) |, 0" +cosfsind =0

Model of Nanowire

m:R x l — 8%, 1=[-L,1] 0

%:mXHeff_mX(mXHeff)

B
Hetr = Mxx — Ma€, — m3€; ‘?\XJ
0(~L) = 0/(L) = 0 =

G. Carbou, S. Labbé, Stabilization of walls for nano-wires of finite lenght, ESAIM

Control Optim. Calc. Var. 18 (2012)
@ One wall in a finite wire : centered in the middle of the wire
@ This solution is unstable

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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The position of walls is unstable or non asymptotically stable
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Stability in non pinched wires

The position of walls is unstable or non asymptotically stable

—

The data storage is not reliable

Stabilization by Pinching

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Pinched Wire

@ p:R— Rt Co°,
p = 1outside [—a, g,
p(=x) = p(x),
p non decreasing on [0, a]

s(x) = area of the section
= m(p(x))?

Qy =A{(x,y,2), x € I, y? + 22 <17 (p(x))?}

Gilles Carbou, UPPA ilization of Walls in F
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Pinched Wire

@ p:R— Rt Co°,
@ p = 1outside [—a, 4],
0 p(=x) = p(x),

Q, ={(x,y,2), x €1, y? + 22 < n?(p(x))?} @ p non decreasing on [0, 4]
@ s(x) = area of the section
= m(p(x))?

@ By rescaling : fixed domain Q¢ = {(x,y, 2), x € I, y? + 22 < (p(x))?}
@ 1 — 0in the weak formulation

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Pinched Wire

@ p:R— RF,C>,
p = 1 outside [—a, a],
p(=x) = p(x),
p non decreasing on [0, a]

s(x) = area of the section
= m(p(x))?

Qn = {(X,y7Z)7 X € I7 y2 +22 < WZ(P(X))Z}

m:R x Ik — S? I=Rorl=[-LL],L>a

Ferromagnetism Energy in pinched nanowire

E(m) = 5 [[sColoxmiax+ 5 ['sGo(mal? + maf2)ax ~ [ 's(:)hamy

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Dynamic model of pinched wire

e m:R/ x Il — 8% I=Rorl=[-LL],L>a
@ s(x) = area of the section

Ferromagnetism Energy in pinched nanowire

== /s(x)\axm| ax + - / X)(|mg|? + |ma|?)dx — /Is(x)ham1

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Dynamic model of pinched wire

o m:Rf xIk— S I=Rorl=[-LL],L>a
@ s(x) = area of the section

Ferromagnetism Energy in pinched nanowire

E(m) = 5 [s0ioamPax+ 3 [s0mel? + malZ)ok— [ s(xpam

Model of pinched Nanowire

s(x)%—r:7 = —m X Hgt — M X (M X Hgft) — VOxm — vm X Oxm
s(x)
2
v(x) = / V(x,y,2) - 81dy dz
y2+22<p(x)?

Hefr = ABX(S(X)axm) = (m2§2 + m3é3) + S(X)haé1

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Dynamic model of pinched wire

o m:Rf xIx— S% I=Rorl=[-LL,L>a
@ s(x) = area of the section

Ferromagnetism Energy in pinched nanowire

E(m) = 5 [s00iosmPax+ 3 [s0Imal? + mafZ)ak — [ s(xham

Model of pinched Nanowire

|
N

om
ot , ]

S = = =
Hefr = Adxxm + A;@Xm = 5(m2e2 + m383) + haé

v
=—MX Her — M X (M X Hegr) — g(’)Xm— gm><8,(m

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Pinched Wire with vanishing applied field and current

Model of Nanowire

m:Rf x [ — S,
om
ot

= —m X Hefr — M X (M X Herr)

s’ - -
Hefr = Oxxm + gaxm — (Mo + m38s3)

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Pinched Wire with vanishing applied field and current

Model of Nanowire
m: Ry x Ry — S?,

om

ﬁz—mXHeff—mX(mXHeff)

s’ - -
Hefr = Oxxm + ;me — (Mo + m38s3)

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

@ Existence of a profile for one wall
@ Asymptotically stable for the position

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Pinched Wire with vanishing applied field and current

Model of Nanowire
m:R x [-L, L] — S?,

om

EZ—mXHeff—mX(mXHeff)

s’ - =
Het = Oxxm + gaxm — (M2€z + m3é€s3)

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

@ Existence of a profile for one wall for L > 7 /2
@ Asymptotically stable for the position if L is large enough

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Existence of profiles

sin 6(x)
M(x) = )| cos 0(x)
0
1 0 0
R,=[ 0 cosy —sing
0 sinp cose
@ BC:0 — +xw/2when x — oo
0'(—L)=26'(L)y=0

Gilles Carbou, UPPA

@ o is constant

s/
e 0+ ;8X9+cosesin9 =0

o (0 - cos? 0)' - —2%(0’)2

—

x%

Stabilization of Walls in Ferromagnetic Nanowires
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Stability

Pinched Nanowire ieliene

sin 6(x
mIR?’ Xlx—>82 Mo(X)= (COSH((X)))
0

%:_mXHeff_mX(mXHeff) .

s B B 0”+§0/+cosesin9=0
Heff = Mxx + —Mx — Mr€ — Mz€3

S BC : 0 — +n/2 when x — +oo
Boundary Conditions ) 0/(—L) = 0'(L) = 0

Stability of My, asymptotic stability for the position of the wall ?

If ||[m(t =0) — Mo|| 1 () is small, then
o for all time, ||m(t) — Mol ;1 () remains small,

@ m(t) tends to Ry__ (Mp) when ¢ tends to +oo.

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Mobile frame

Geometrical constraint [m| = 1

We describe the perturbations in the mobile frame

\/ 2M0 X)+f1(t X)’V’1(X) —‘rfg(t X)’V’g

sin 6(x) —cos 0(x) 0
Mo(x) = 0039 (x) My (x sin0(x) My=1| O
0 1

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires
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Mobile frame

Geometrical constraint [m| = 1
We describe the perturbations in the mobile frame

m(t,x)=+1/1—|r(t,x)|2Mo(x) + r1 (t, XMy (x) + ra(t, X)Mo

sin 6(x) —cos 0(x) 0
Mo(x) = (cos@(x)) My (x) = ( sing(x) ) My = < 0 >
0 0 1

New Equations for r

r:Rf x Iy — R?

Exact Solution

d¢ry = —Ly(r1) — La(r2) + non linear
i My for LL ~ O for the
= [ — L | 0
Otra 1(r1) — Lp(r2) + non linear ey
s’ .
Li(r) = Ot — - 0xr + (sin? 6 — cos? §)r Stability of 02

!/
Lo(r) = —8xxr — %6xr + (sin? 0 — (0")2)r

v
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Properties of the linearized : L,

On L?(R), weighted scalar product :
<u’v> = /Rs(x)u(x)v(x) ax,
L, = f;ax(sax) + (sin 6y — (85)%) = Ly is self-adjoint for <‘>
<L2u’v> - <€U‘€V>, With £ = 8 + 0/ tan 6

L, >0, Kerly,=R(cos?h)

@ Valid whatever the configurations of the wire (several pinched zones)
@ for one wall, on (cos 6)*, Lp > 1
@ Invariance by rotation = 0 is an eigenvalue of the linearized
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Properties of the linearized : L4

Ly = Lo+ (68")2 —cos? 9

Key point: Ly > 07?

@ Infinite nanowire without pinching : Ly = Lp, Ly > 0. Stability
@ Finite nanowire without pinching : L1 = L, — c¢. Bad sign, unstability for the
position
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Properties of the linearized : L4

Ly = Lo+ (68")2 —cos? 9

Ziﬁ\
) A
N

by &f

NV

@ Infinite wire : (') —cos?0 > 0onKer L, = L; >0
@ Short finite wire : (§")? — cos?§ < 0 = Unstability
@ Long finite wire : (8’)2 — cos? # > 0 on a sufficiently large zone = Ly >0
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New unknown

Invariance by rotation =—- Zero is an eigenvalue of the linearized

1 0 0
v +— RyMy(x) family of solutions for LL, where R, = [0 cosy —siny
0 siny cos~y

Ry Mo(X) - My (x)
R~(x) = static solutions for the r-equation
Ry Mo(x) - Mp

New coordinates

f(t, X) = R’y(t) + W(tv X)

Wy in (cos 0)+
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New unknown

New coordinates

r(t, x) = Ry +w(t, x)

W, in (cos )+

I
(8,

Equations for w and ~

To be proved

v:Rt 5 R, w:RT — R x (cosf)t

w—0
By = A(t, v, w)(w) ~ remains small
Otwy = —Ly(wy) — Lp(w2) + non linear Y = Yoo

Owe = Li(wy) — Lo(wa) + non linear
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Variational Estimates

Equations for w, v

v:Rt >R, w:R" —Rx(cosd)*
at’}’ = A(t’ e W)(W)

Orwy = —Ly(wq) — Lo(we) + non linear
Owe = Ly(wy) — Lo(wa) + non linear
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Variational Estimates

Equations for w, v

v:Rt >R, w:R" —Rx(cosd)*
at’}’ = A(t’ e W)(W)

Orwy = —Ly(wq) — Lo(we) + non linear
Owe = Ly(wy) — Lo(wa) + non linear

By coercivity of the linearized, w is exponentially decreasing

Oy is integrable
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Variational Estimates

Equations for w, v

v:Rt >R, w:R" —Rx(cosd)*
at’}’ = A(t’ e W)(W)

Orwy = —Ly(wq) — Lo(we) + non linear
Owe = Ly(wy) — Lo(wa) + non linear

By coercivity of the linearized, w is exponentially decreasing

Oy is integrable

Stability of My, asymptotic stability modulo rotation

The wall is pined at the pinched zone
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Pinched wire with small applied field

Pinched Nanowire

m:R x Iy — S?
om

E:—mXHeff—mx(mxHeff)

s’ - - ~
Hetr = Mxx + 3 M — M8z — M3 + haé

Boundary Conditions
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Pinched wire with small applied field

Pinched Nanowire

m:R x Iy — S?
om
E:—mXHeff—mx(mxHeff)

s’ = = =
Heff = Mxx + ;mx — mMye — mMze3 + haéq

Boundary Conditions

Constant-section wire : precessional regime

m(t, X) = RhatMO(X + hat)
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Pinched wire with small applied field

Pinched Nanowire

m:R x Iy — S?
om

E:—mXHeff—mx(mxHeff)

s’ ~ ~ ~
Hefr = Mxx + 3 Mx = M2€2 — M3€3 + haé;

Boundary Conditions

Constant-section wire : precessional regime
m(t, x) = RptMo(x + hat)

Pinched wire :

For small h, : the wall does not move, remains in the pinching (static solution), its
profile is planar.

Construction of the solution by implicit function theorem
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Pinched wire with small current

Pinched Nanowire

m:RS x Iy — S?
om

\' \"
— = —m X Hgif — m x (M X Hgf) — —Oxm — —m x Oxm
ot eff ( eff) SX s X

S/
Hefr = Mxx + ;mx — M€ — M3€3

Boundary Conditions
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Pinched wire with small current

Pinched Nanowire

m:RS x Iy — S?
om
ot

!

S = =
Hefr = Mxx + ;mx — M€ — M3€3

Boundary Conditions

v v
= —mM X Hegr — m X (M X Heggr) — —0xm — —m x 9xm
s S

Pinched wire :

@ the wall remains in the pinching
@ non planar configuration
@ the profile turns around the wire
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Model of wires junction

Model of junction of k wires

Wire i : [O, L,‘]ﬁ,‘

m R x [0, Lj]x — S? Junction conditions :
i : ! - ’ 1 e
887”; = —m x Hiy(m) — m x (m x Hi,(m)), m(£,0) =... = m(t,0)

> " sioxm/(t,0) =0

Higr(m') = dem’ + (m' - G)) i=1

Homegeneous Neumann BC at the ends
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Asymptotically stable

Unstable
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Bent nanowi

Asymptotically stable Unstable

Key Point : positiveness of Ly = —0xx + f. 5
L= —8x +f >0, f(x) = 2tanh2x — 1
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Stabilizing junction

On Réy, Heff(mh) = Ol + mfé}
M" = (tanh x, 1/cosh x, 0)

On [0, L]€2, Her(m¥) = 8xxm” + mi&;
MY = (0,1,0)

Asymptotic Stability

@ On the vertical part : asymptotic stability (as for one domain)
@ On the horizontal part : stability of a domain wall in an infinite wire
@ Junction condition (continuity) : we gain asymptotic stability on the horizontal wire
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Conclusion : notches, bends and junctions can stabilize walls positions

Open Questions :

@ wire with several pinched zones
@ threshold current for walls depinning ?

@ Dynamics of walls in pinched wire ?
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