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Ferromagnetic materials

Properties

Spontaneous magnetization

Magnetic field generated by the
magnetization

Formation of domains and domain walls

A. Aharoni, Introduction to the Theory of Ferromagnetism,
Oxford University Press, 1996

Industrial Applications

Electromagnets

Transformers

Radar absorbing paints

Mobile phones

Modern Recording Devices
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Ferromagnetic Nanowires : Applications

data storage

S. Parkin, M. Hayashi, L. Thomas, Magnetic
Domain-Wall Racetrack Memory, Science 320
(2008)

logic

D. A. Allwood, Gang Xiong, M. D. Cooke, C. C.
Faulkner, D. Atkinson, N. Vernier, R. P. Cowburn,
Submicrometer Ferromagnetic NOT Gate and Shift
Register, Science 296 (2002)
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Ferromagnetic nanowires : properties

Easy axis in the direction of the wire⇒ Formation of domains

For logic devices : presence of a domain wall or not ∼ information T or F
For data storage :

Length of the domains ∼ length of the sequences of zeros or ones in the data

Walls positions must be unchanged (reliability of the storage)
Information is transported to the reading head by application of an electric current

Objectives

Obtention and justification of equivalent simpler 1d-models for nanowires

Description of walls configurations and walls dynamics

Stability of walls configurations

Study of geometrical effects : pinching, bend, junctions
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Starting Point : 3d model

Magnetic Moment

Magnetic domain : Ω ⊂ R3

Magnetization described by the magnetic moment m : R+
t × Ωx → R3

|m(t , x)| = 1 p. p.

Constitutive Relation : B = H + m

Landau-Lifschitz Equation

∂m
∂t

= −m ×H−m × (m ×H)− (v · ∇)m −m × (v · ∇)m

H = −∂mE(m) = A∆m + hd (m) + Ha

E(m) =
A
2

∫
Ω
|∇m|2 +

1
2

∫
R3
|hd (m)|2 −

∫
Ω

Ha ·m

curl hd (m) = 0, div (hd (m) + m) = 0
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Starting Point : 3d model

Magnetic Moment

Magnetic domain : Ω ⊂ R3

Magnetization described by the magnetic moment m : R+
t × Ωx → R3

|m(t , x)| = 1 p. p.

Constitutive Relation : B = H + m

Landau-Lifschitz Equation

∂m
∂t

= −m ×H−m × (m ×H)− (v · ∇)m −m × (v · ∇)m

H = −∂mE(m) = A∆m + hd (m) + Ha

E(m) =
A
2

∫
Ω
|∇m|2 +

1
2

∫
R3
|hd (m)|2 −

∫
Ω

Ha ·m

Slonczewski model : v is related to the current density
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m : R+
t × Ωη → S2

∂m
∂t
−m ×

∂m
∂t

= −2m × Heff − (~v · ∇)m

Heff = A∆m + hd (m) + Ha

Ωη = [0, L]× B(0, η)

1 rescaling in the transverse variable in the weak formulation : fixed domain
Ω1 = [0, L]× B(0, 1)

2 η −→ 0
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Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

m : R+
t × [0, L]x → S2

∂m
∂t
−m ×

∂m
∂t

= −2m × Heff − (~v · ∇)m

Heff = A∆m + hd (m) + Ha

Wire assimilated to [0, L]e1

1d Exchange

Equivalent Demagnetizing Field : localization

Applied Magnetic Field Ha = ha~e1

Applied Electric Field ~v = v~e1
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Ferromagnetic nanowires : 1d model
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Exact Static Solutions

Model of Nanowire

m : R+
t × Ix → S2, I = R or I = [−L, L]

∂m
∂t

= −m × Heff −m × (m × Heff )

Heff = mxx −m2~e2 −m3~e3
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Exact Static Solutions

Model of Nanowire

m : R+
t × Ix → S2, I = R or I = [−L, L]

∂m
∂t

= −m × Heff −m × (m × Heff )

Heff = mxx −m2~e2 −m3~e3

Static Solutions : Domains

Domains : m = ±~e1.
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Exact Static Solutions

Model of Nanowire

m : R+
t × Ix → S2, I = R or I = [−L, L]

∂m
∂t

= −m × Heff −m × (m × Heff )

Heff = mxx −m2~e2 −m3~e3

Static Solutions : Walls

M(x) = Rϕ(x)

 sin θ(x)
cos θ(x)

0


Rϕ=

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


BC : θ → ±π/2 when x → ±∞

θ′(−L) = θ′(L) = 0
ϕ is constant

θ′′ + cos θ sin θ = 0

θ → ±π/2 when x → ±∞ or θ′(−L) = θ′(L) = 0
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Stability in Infinite Nanowire

Model of Nanowire

m : R+
t × Ix → S2, I = R

∂m
∂t

= m × Heff −m × (m × Heff )

Heff = mxx −m2~e2 −m3~e3

Static Solution

M0(x) =

 tanh x
1

cosh x
0



G. Carbou, S. Labbé, Stability for Static wall in a ferromagnetic Nanowire, Discrete
Contin. Dyn. Syst. Ser. B 6 (2006)

Stability of the constant profiles but not asymptotic stability

m(t , x)→ Rϕ∞M0(x − σ∞) when t →∞

G. Carbou, S. Labbé, E. Trélat, Control of travelling walls in a ferromagnetic nanowire,
Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 51–59

Controlability of the wall position by the mean of the applied field
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Stability in finite Nanowire

Model of Nanowire

m : R+
t × Ix → S2, I = [−L, L]

∂m
∂t

= m × Heff −m × (m × Heff )

Heff = mxx −m2~e2 −m3~e3

θ′(−L) = θ′(L) = 0

Static Solution

M0(x) =

 sin θ(x)
cos θ(x)

0

, θ′′ + cos θ sin θ = 0

G. Carbou, S. Labbé, Stabilization of walls for nano-wires of finite lenght, ESAIM
Control Optim. Calc. Var. 18 (2012)

One wall in a finite wire : centered in the middle of the wire

This solution is unstable
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Stability in non pinched wires

The position of walls is unstable or non asymptotically stable

=⇒

The data storage is not reliable

Stabilization by Pinching
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Pinched Wire

Ωη = {(x , y , z), x ∈ I, y2 + z2 < η2(ρ(x))2}

Radius of the section : ρ

ρ : R→ R+, C∞,

ρ = 1 outside [−a, a],

ρ(−x) = ρ(x),

ρ non decreasing on [0, a]

s(x) = area of the section
= π(ρ(x))2

By rescaling : fixed domain Ω1 = {(x , y , z), x ∈ I, y2 + z2 < (ρ(x))2}
η → 0 in the weak formulation
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Pinched Wire

Ωη = {(x , y , z), x ∈ I, y2 + z2 < η2(ρ(x))2}

Radius of the section : ρ

ρ : R→ R+, C∞,

ρ = 1 outside [−a, a],

ρ(−x) = ρ(x),

ρ non decreasing on [0, a]

s(x) = area of the section
= π(ρ(x))2

m : R+
t × Ix → S2, I = R or I = [−L, L], L > a

Ferromagnetism Energy in pinched nanowire

E(m) =
A
2

∫
I
s(x)|∂x m|2dx +

1
4

∫
I
s(x)(|m2|2 + |m3|2)dx −

∫
I
s(x)ham1
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Dynamic model of pinched wire

m : R+
t × Ix → S2, I = R or I = [−L, L], L > a

s(x) = area of the section

Ferromagnetism Energy in pinched nanowire

E(m) =
A
2

∫
I
s(x)|∂x m|2dx +

1
4

∫
I
s(x)(|m2|2 + |m3|2)dx −

∫
I
s(x)ham1

Model of pinched Nanowire

s(x)
∂m
∂t

= −m × Heff −m × (m × Heff )− v∂x m − vm × ∂x m

Heff = A∂x (s(x)∂x m)−
s(x)

2
(m2~e2 + m3~e3) + s(x)ha~e1

v(x) =

∫
y2+z2≤ρ(x)2

v(x , y , z) · ~e1dy dz
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Dynamic model of pinched wire

m : R+
t × Ix → S2, I = R or I = [−L, L], L > a

s(x) = area of the section

Ferromagnetism Energy in pinched nanowire

E(m) =
A
2

∫
I
s(x)|∂x m|2dx +

1
4

∫
I
s(x)(|m2|2 + |m3|2)dx −

∫
I
s(x)ham1

Model of pinched Nanowire

s(x)
∂m
∂t

= −m × Heff −m × (m × Heff )− v∂x m − vm × ∂x m

Heff = A∂x (s(x)∂x m)−
s(x)

2
(m2~e2 + m3~e3) + s(x)ha~e1

v(x) =

∫
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Dynamic model of pinched wire

m : R+
t × Ix → S2, I = R or I = [−L, L], L > a

s(x) = area of the section

Ferromagnetism Energy in pinched nanowire

E(m) =
A
2

∫
I
s(x)|∂x m|2dx +

1
4

∫
I
s(x)(|m2|2 + |m3|2)dx −

∫
I
s(x)ham1

Model of pinched Nanowire

∂m
∂t

= −m ×Heff −m × (m ×Heff )−
v
s
∂x m −

v
s

m × ∂x m

Heff = A∂xx m + A
s′

s
∂x m −

1
2

(m2~e2 + m3~e3) + ha~e1

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires



Physical Context
Walls in constant-section wire

One wall configurations for pinched nanowires
Bent wires and junctions

Conclusion

Pinched Wire with vanishing applied field and current

Model of Nanowire

m : R+
t × I → S2,

∂m
∂t

= −m ×Heff −m × (m ×Heff )

Heff = ∂xx m +
s′

s
∂x m − (m2~e2 + m3~e3)

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

Existence of a profile for one wall

Asymptotically stable for the position
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Pinched Wire with vanishing applied field and current

Model of Nanowire

m : R+
t × Rx → S2,

∂m
∂t

= −m ×Heff −m × (m ×Heff )

Heff = ∂xx m +
s′

s
∂x m − (m2~e2 + m3~e3)

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

Existence of a profile for one wall

Asymptotically stable for the position
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Pinched Wire with vanishing applied field and current

Model of Nanowire

m : R+
t × [−L, L]→ S2,

∂m
∂t

= −m ×Heff −m × (m ×Heff )

Heff = ∂xx m +
s′

s
∂x m − (m2~e2 + m3~e3)

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

Existence of a profile for one wall for L ≥ π/2

Asymptotically stable for the position if L is large enough

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires



Physical Context
Walls in constant-section wire

One wall configurations for pinched nanowires
Bent wires and junctions

Conclusion

Existence of profiles

M(x) = Rϕ(x)

 sin θ(x)
cos θ(x)

0


Rϕ=

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


BC : θ → ±π/2 when x → ±∞

θ′(−L) = θ′(L) = 0

ϕ is constant

θ′′ +
s′

s
∂xθ + cos θ sin θ = 0(

(θ′)2 − cos2 θ
)′

= −2
s′

s
(θ′)2

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires



Physical Context
Walls in constant-section wire

One wall configurations for pinched nanowires
Bent wires and junctions

Conclusion

Stability

Pinched Nanowire

m : R+
t × Ix → S2

∂m
∂t

= −m × Heff −m × (m × Heff )

Heff = mxx +
s′

s
mx −m2~e2 −m3~e3

Boundary Conditions

Wall Profile

M0(x) =

 sin θ(x)
cos θ(x)

0


θ′′ +

s′

s
θ′ + cos θ sin θ = 0

BC : θ → ±π/2 when x → ±∞

θ′(−L) = θ′(L) = 0

Stability of M0, asymptotic stability for the position of the wall ?

If ‖m(t = 0)−M0‖H1(R) is small, then

for all time, ‖m(t)−M0‖H1(R) remains small,

m(t) tends to Rθ∞ (M0) when t tends to +∞.
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Mobile frame
Geometrical constraint |m| = 1

We describe the perturbations in the mobile frame

m(t , x)=
√

1− |r(t , x)|2M0(x) + r1(t , x)M1(x) + r2(t , x)M2

M0(x) =

 sin θ(x)
cos θ(x)

0

 M1(x) =

 − cos θ(x)
sin θ(x)

0

 M2 =

 0
0
1


New Equations for r

r : R+
t × Ix → R2

∂t r1 = −L1(r1)− L2(r2) + non linear
∂t r2 = L1(r1)− L2(r2) + non linear

L1(r) = −∂xx r −
s′

s
∂x r + (sin2 θ − cos2 θ)r

L2(r) = −∂xx r −
s′

s
∂x r + (sin2 θ − (θ′)2)r

Exact Solution

M0 for LL ∼ 0 for the
new system

Stability of 0 ?
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L1(r) = −∂xx r −
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s
∂x r + (sin2 θ − cos2 θ)r
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Properties of the linearized : L2

On L2(R), weighted scalar product :〈
u
∣∣∣v〉 =

∫
R

s(x)u(x)v(x) dx ,

L2 = −
1
s
∂x (s∂x ) + (sin2 θ0 − (θ′0)2) =⇒ L2 is self-adjoint for

〈∣∣∣〉.〈
L2u
∣∣∣v〉 =

〈
`u
∣∣∣`v〉, with ` = ∂x + θ′ tan θ

L2 ≥ 0, Ker L2 = R(cos θ)

Valid whatever the configurations of the wire (several pinched zones)

for one wall, on (cos θ)⊥, L2 ≥ 1

Invariance by rotation =⇒ 0 is an eigenvalue of the linearized
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Properties of the linearized : L1

L1 = L2 + (θ′)2 − cos2 θ

Key point : L1 ≥ 0 ?

Infinite nanowire without pinching : L1 = L2, L1 ≥ 0. Stability
Finite nanowire without pinching : L1 = L2 − c. Bad sign, unstability for the
position
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Properties of the linearized : L1

L1 = L2 + (θ′)2 − cos2 θ

Infinite wire : (θ′)2 − cos2 θ > 0 on Ker L2 =⇒ L1 > 0
Short finite wire : (θ′)2 − cos2 θ ≤ 0 =⇒ Unstability
Long finite wire : (θ′)2 − cos2 θ > 0 on a sufficiently large zone =⇒ L1 > 0
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New unknown

Invariance by rotation =⇒ Zero is an eigenvalue of the linearized

γ 7→ RγM0(x) family of solutions for LL, where Rγ =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ


Rγ(x) =

 RγM0(x) ·M1(x)

RγM0(x) ·M2

 static solutions for the r -equation

New coordinates

r(t , x) = Rγ(t) +w(t , x)

w2 in (cos θ)⊥
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New unknown

New coordinates

r(t , x) = Rγ(t) +w(t , x)

w2 in (cos θ)⊥

Equations for w and γ

γ : R+ → R, w : R+ → R× (cos θ)⊥

∂tγ = A1(t , γ,w)(w)

∂t w1 = −L1(w1)− L2(w2) + non linear
∂t w2 = L1(w1)− L2(w2) + non linear

To be proved

w → 0
γ remains small
γ → γ∞
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Variational Estimates

Equations for w , γ

γ : R+ → R, w : R+ → R× (cos θ)⊥

∂tγ = A(t , γ,w)(w)

∂t w1 = −L1(w1)− L2(w2) + non linear
∂t w2 = L1(w1)− L2(w2) + non linear

By coercivity of the linearized, w is exponentially decreasing

∂tγ is integrable

Stability of M0, asymptotic stability modulo rotation

The wall is pined at the pinched zone
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Pinched wire with small applied field

Pinched Nanowire

m : R+
t × Ix → S2

∂m
∂t

= −m × Heff −m × (m × Heff )

Heff = mxx +
s′

s
mx −m2~e2 −m3~e3 + ha~e1

Boundary Conditions

Constant-section wire : precessional regime

m(t , x) = Rha t M0(x + hat)

Pinched wire :

For small ha : the wall does not move, remains in the pinching (static solution), its
profile is planar.

Construction of the solution by implicit function theorem
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Pinched wire with small applied field

Pinched Nanowire

m : R+
t × Ix → S2

∂m
∂t

= −m × Heff −m × (m × Heff )

Heff = mxx +
s′

s
mx −m2~e2 −m3~e3 + ha~e1

Boundary Conditions

Constant-section wire : precessional regime

m(t , x) = Rha t M0(x + hat)

Pinched wire :

For small ha : the wall does not move, remains in the pinching (static solution), its
profile is planar.

Construction of the solution by implicit function theorem
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Pinched wire with small current

Pinched Nanowire

m : R+
t × Ix → S2

∂m
∂t

= −m × Heff −m × (m × Heff )−
v
s
∂x m −

v
s

m × ∂x m

Heff = mxx +
s′

s
mx −m2~e2 −m3~e3

Boundary Conditions

Pinched wire :

the wall remains in the pinching

non planar configuration

the profile turns around the wire
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Pinched wire with small current

Pinched Nanowire

m : R+
t × Ix → S2

∂m
∂t

= −m × Heff −m × (m × Heff )−
v
s
∂x m −

v
s

m × ∂x m

Heff = mxx +
s′

s
mx −m2~e2 −m3~e3

Boundary Conditions

Pinched wire :

the wall remains in the pinching

non planar configuration

the profile turns around the wire
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Model of wires junction

Model of junction of k wires

Wire i : [0, Li ]~ui

mi : R+
t × [0, Li ]x → S2

∂mi

∂t
= −mi × H i

eff (mi )−mi × (mi × H i
eff (mi )),

H i
eff (mi ) = ∂xx mi + (mi · ~ui )~ui

Homegeneous Neumann BC at the ends

Junction conditions :

m1(t , 0) = . . . = mk (t , 0)
k∑

i=1

si∂x mi (t , 0) = 0
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Bent nanowire
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Bent nanowire

Asymptotically stable Unstable
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Bent nanowire

Asymptotically stable Unstable

Key Point : positiveness of L1 = −∂xx + f.,γ

L = −∂xx + f ≥ 0, f (x) = 2tanh 2x − 1
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Stabilizing junction

On R~e1, Heff (mh) = ∂xx mh + mh
1
~e1

Mh = (tanh x , 1/cosh x , 0)

On [0, L]~e2, Heff (mv ) = ∂xx mv + mv
2
~e2

Mv = (0, 1, 0)

Asymptotic Stability

On the vertical part : asymptotic stability (as for one domain)

On the horizontal part : stability of a domain wall in an infinite wire

Junction condition (continuity) : we gain asymptotic stability on the horizontal wire
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Conclusion : notches, bends and junctions can stabilize walls positions

Open Questions :

wire with several pinched zones

threshold current for walls depinning ?

Dynamics of walls in pinched wire ?

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires


	Physical Context
	Walls in constant-section wire
	One wall configurations for pinched nanowires
	Bent wires and junctions
	Conclusion

