Stabilization of Walls in Ferromagnetic Nanowires

Gilles Carbou

Université de Pau et des Pays de l'Adour Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 5142

Joint works with Abdelkader Al Sayed (UPPA), Stéphane Labbé (UJF-Grenoble) and David Sanchez (INSA-Toulouse)

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Plan

- Walls in constant-section wire
- One wall configurations for pinched nanowires
- Bent wires and junctions

Conclusion

イロン イロン イヨン イヨン

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic materials

Properties

- Spontaneous magnetization
- Magnetic field generated by the magnetization
- Formation of domains and domain walls

Industrial Applications

- Electromagnets
- Transformers
- Radar absorbing paints
- Mobile phones
- Modern Recording Devices

Gilles Carbou, UPPA

Stabilization of Walls in Ferromagnetic Nanowires

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic Nanowires : Applications

data storage

S. Parkin, M. Hayashi, L. Thomas, *Magnetic Domain-Wall Racetrack Memory*, Science **320** (2008)

logic

Allwood, Gang Xiong, M. D. Cooke, C. C.

イロト イポト イヨト イヨト

Faulkner, D. Atkinson, N. Vernier, R. P. Cowburn, Submicrometer Ferromagnetic NOT Gate and Shift Register, Science **296** (2002)

Ferromagnetic nanowires : properties

Easy axis in the direction of the wire \Rightarrow Formation of domains

For logic devices : presence of a domain wall or not \sim information T or F For data storage :

 $\bullet\,$ Length of the domains \sim length of the sequences of zeros or ones in the data

- Walls positions must be unchanged (reliability of the storage)
- Information is transported to the reading head by application of an electric current

Objectives

- Obtention and justification of equivalent simpler 1d-models for nanowires
- Description of walls configurations and walls dynamics
- Stability of walls configurations
- Study of geometrical effects : pinching, bend, junctions

Ferromagnetic nanowires : properties

Easy axis in the direction of the wire \Rightarrow Formation of domains

For logic devices : presence of a domain wall or not \sim information T or F For data storage :

 $\bullet\,$ Length of the domains \sim length of the sequences of zeros or ones in the data

- Walls positions must be unchanged (reliability of the storage)
- Information is transported to the reading head by application of an electric current

Objectives

- Obtention and justification of equivalent simpler 1d-models for nanowires
- Description of walls configurations and walls dynamics
- Stability of walls configurations
- Study of geometrical effects : pinching, bend, junctions

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Starting Point : 3d model

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m : \mathbb{R}^+_t \times \Omega_x \to \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz Equation

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H}) - (v \cdot \nabla)m - m \times (v \cdot \nabla)m$$

$$\mathcal{H} = -\partial_m \mathcal{E}(m) = A\Delta m + h_d(m) + H_a$$

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 - \int_{\Omega} H_a \cdot m$$

curl $h_d(m) = 0$, div $(h_d(m) + \overline{m}) = 0$

୨୯୯

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Starting Point : 3d model

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m : \mathbb{R}^+_t \times \Omega_x \to \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz Equation

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H}) - (v \cdot \nabla)m - m \times (v \cdot \nabla)m$$

$$\mathcal{H} = -\partial_m \mathcal{E}(m) = \mathbf{A} \Delta m + h_d(m) + H_a$$

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 - \int_{\Omega} H_a \cdot m$$

curl $h_d(m) = 0$, div $(h_d(m) + \overline{m}) = 0$

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Starting Point : 3d model

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m : \mathbb{R}^+_t \times \Omega_x \to \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz Equation

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H}) - (v \cdot \nabla)m - m \times (v \cdot \nabla)m$$

$$\mathcal{H} = -\partial_m \mathcal{E}(m) = A\Delta m + h_d(m) + H_a$$

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 - \int_{\Omega} H_a \cdot m$$

 $\operatorname{curl} h_d(m) = 0, \quad \operatorname{div} (h_d(m) + \overline{m}) = 0$

 $) \land (\bigcirc)$

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Starting Point : 3d model

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m : \mathbb{R}^+_t \times \Omega_x \to \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz Equation

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H}) - (v \cdot \nabla)m - m \times (v \cdot \nabla)m$$

$$\mathcal{H} = -\partial_m \mathcal{E}(m) = A\Delta m + h_d(m) + H_a$$

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 - \int_{\Omega} H_a \cdot m$$

curl $h_d(m) = 0$, div $(h_d(m) + \overline{m}) = 0$

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Starting Point : 3d model

Magnetic Moment

- Magnetic domain : $\Omega \subset \mathbb{R}^3$
- Magnetization described by the magnetic moment $m: \mathbb{R}^+_t imes \Omega_x o \mathbb{R}^3$

|m(t,x)| = 1 p. p.

• Constitutive Relation : B = H + m

Landau-Lifschitz Equation

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H} - m \times (m \times \mathcal{H}) - (\mathbf{v} \cdot \nabla)m - m \times (\mathbf{v} \cdot \nabla)m$$

$$\mathcal{H} = -\partial_m \mathcal{E}(m) = A\Delta m + h_d(m) + H_a$$

$$\mathcal{E}(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |h_d(m)|^2 - \int_{\Omega} H_a \cdot m$$

Slonczewski model : v is related to the current density

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m:\mathbb{R}^+_t imes\Omega_\eta o S^2$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$
$$H_{eff} = A\Delta m + h_d(m) + H_a$$

$$\Omega_{\eta} = [0, L] \times B(0, \eta)$$

Prescaling in the transverse variable in the weak formulation : fixed domain Ω₁ = [0, L] × B(0, 1)
 η → 0

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{X} \to S^{2}$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$

$$H_{eff} = A\Delta m + h_{d}(m) + H_{a}$$

• Wire assimilated to [0, L]e1

- Id Exchange
- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$
$$H_{eff} = A\Delta m + h_{d}(m) + H_{a}$$

• Wire assimilated to [0, L]e1

Id Exchange

- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$
$$H_{eff} = Am_{xx} + h_{d}(m) + H_{a}$$

• Wire assimilated to [0, L]e1

Id Exchange

- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$\begin{split} m : \mathbb{R}_t^+ \times [0, L]_x &\to S^2 \\ \frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m \\ H_{eff} = Am_{xx} + h_d(m) + H_a \end{split}$$

- Wire assimilated to $[0, L]e_1$
- Id Exchange
- Equivalent Demagnetizing Field : localization

$$h_d(m) = -\frac{1}{2}(m_2\vec{e}_2 + m_3\vec{e}_3)$$

- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v \vec{e}_1$

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$

$$H_{eff} = Am_{xx} - \frac{1}{2}(m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + H_{a}$$

- Wire assimilated to [0, L]e₁
- Id Exchange
- Equivalent Demagnetizing Field : localization

$$h_d(m) = -\frac{1}{2}(m_2\vec{e}_2 + m_3\vec{e}_3)$$

- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v \vec{e}_1$

Physical Context Walls in constant-section wire

One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{\text{eff}} - (\vec{v} \cdot \nabla)m$$

$$H_{\text{eff}} = Am_{xx} - \frac{1}{2}(m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + H_{a}$$

- Wire assimilated to [0, L]e₁
- Id Exchange
- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v \vec{e}_1$

Physical Context Walls in constant-section wire

One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$

$$H_{eff} = Am_{xx} - \frac{1}{2}(m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + \frac{h_{a}\vec{e}_{1}}{2}$$

- Wire assimilated to [0, L]e₁
- Id Exchange
- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v \vec{e}_1$

Physical Context Walls in constant-section wire One wall configurations for pinched nanowires

> Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - (\vec{v} \cdot \nabla)m$$

$$H_{eff} = Am_{xx} - \frac{1}{2}(m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + h_{a}\vec{e}_{1}$$

- Wire assimilated to [0, L]e₁
- Id Exchange
- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m : \mathbb{R}_{t}^{+} \times [0, L]_{x} \to S^{2}$$
$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - v \partial_{x} m$$
$$H_{eff} = Am_{xx} - \frac{1}{2}(m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) + h_{a}\vec{e}_{1}$$

- Wire assimilated to [0, L]e₁
- Id Exchange
- Equivalent Demagnetizing Field : localization
- Applied Magnetic Field $H_a = h_a \vec{e}_1$
- Applied Electric Field $\vec{v} = v\vec{e}_1$

Walls in constant-section wire One wall configurations for pinched nanowires Bent wires and junctions Conclusion

Ferromagnetic nanowires : 1d model

Landau-Lifschitz-Gilbert Equation

$$m: \mathbb{R}^+_t \times [0, L]_X \to S^2$$

$$\frac{\partial m}{\partial t} - m \times \frac{\partial m}{\partial t} = -2m \times H_{eff} - v \partial_x m$$
$$H_{eff} = Am_{xx} - \frac{1}{2}(m_2 \vec{e}_2 + m_3 \vec{e}_3) + h_a \vec{e}_1$$

Ferromagnetism Energy

$$\mathcal{E}(m) = \frac{A}{2} \int_{I} |\partial_{x}m|^{2} dx + \frac{1}{4} \int_{I} (|m_{2}|^{2} + |m_{3}|^{2}) dx - \int_{I} h_{a}m_{1}$$

イロト イポト イヨト イヨト

э

Plan

- 2 Walls in constant-section wire
 - One wall configurations for pinched nanowires
- Bent wires and junctions

Conclusion

イロン イロン イヨン イヨン

Exact Static Solutions

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2}, \, I = \mathbb{R} \text{ or } I = [-L, L] \\ &\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff}) \\ &H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} \end{split}$$

<ロト <回 > < 三 > < 三 > -

э

Exact Static Solutions

Model of Nanowire

 $m : \mathbb{R}_{t}^{+} \times I_{x} \to S^{2}, I = \mathbb{R} \text{ or } I = [-L, L]$ $\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff})$ $H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3}$

Static Solutions : Domains

Domains : $m = \pm \vec{e}_1$.

ヘロト ヘヨト ヘヨト ヘヨト

э

Exact Static Solutions

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2}, \, I = \mathbb{R} \text{ or } I = [-L, L] \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ H_{eff} &= m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} \end{split}$$

Static Solutions : Walls
•
$$M(x) = R_{\varphi(x)} \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix}$$

 $R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$
• BC : $\theta \to \pm \pi/2$ when $x \to \pm \infty$
 $\theta'(-L) = \theta'(L) = 0$

<ロ> <同> <同> < 同> < 同> 、

э

- φ is constant
- $\theta'' + \cos\theta\sin\theta = 0$
- $\theta \to \pm \pi/2$ when $x \to \pm \infty$ or $\theta'(-L) = \theta'(L) = 0$

S

Exact Static Solutions

Model of Nanowire

$$m : \mathbb{R}_{t}^{+} \times I_{x} \to S^{2}, I = \mathbb{R} \text{ or } I = [-L, L]$$

 $\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff})$
 $H_{eff} = m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3}$

•
$$M(x) = R_{\varphi(x)} \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix}$$

 $R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$
• BC : $\theta \to \pm \pi/2$ when $x \to \pm \infty$
 $\theta'(-L) = \theta'(L) = 0$

• φ is constant

•
$$\theta^{\prime\prime} + \cos \theta \sin \theta = 0$$

• $heta
ightarrow \pm \pi/2$ when $x
ightarrow \pm \infty$ or heta'(-L) = heta'(L) = 0

Stability in Infinite Nanowire

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2}, \ I = \mathbb{R} \\ \frac{\partial m}{\partial t} &= m \times H_{\text{off}} - m \times (m \times H_{\text{off}}) \\ H_{\text{eff}} &= m_{xx} - m_{2}\vec{e}_{2} - m_{3}\vec{e}_{3} \end{split}$$

Static Solution

$$M_0(x) = \begin{pmatrix} \tanh x \\ \frac{1}{\cosh x} \\ 0 \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > .

G. Carbou, S. Labbé, *Stability for Static wall in a ferromagnetic Nanowire*, Discrete Contin. Dyn. Syst. Ser. B 6 (2006)

Stability of the constant profiles but not asymptotic stability

 $m(t, x) \rightarrow R_{\varphi_{\infty}} M_0(x - \sigma_{\infty})$ when $t \rightarrow \infty$

G. Carbou, S. Labbé, E. Trélat, Control of travelling walls in a ferromagnetic nanowire, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 51–59

Controlability of the wall position by the mean of the applied field

Stability in Infinite Nanowire

Model of Nanowire

 $m: \mathbb{R}^+_t \times I_x \to S^2, \ I = \mathbb{R}$

$$\frac{\partial m}{\partial t} = m \times H_{eff} - m \times (m \times H_{eff})$$

 $\mathit{H}_{eff} = \mathit{m}_{xx} - \mathit{m}_2 \vec{\mathit{e}}_2 - \mathit{m}_3 \vec{\mathit{e}}_3$

Static Solution

$$M_0(x) = \begin{pmatrix} \tanh x \\ \frac{1}{\cosh x} \\ 0 \end{pmatrix}$$

G. Carbou, S. Labbé, *Stability for Static wall in a ferromagnetic Nanowire*, Discrete Contin. Dyn. Syst. Ser. B 6 (2006)

Stability of the constant profiles but not asymptotic stability

 $m(t, x) \rightarrow R_{\varphi_{\infty}} M_0(x - \sigma_{\infty})$ when $t \rightarrow \infty$

G. Carbou, S. Labbé, E. Trélat, *Control of travelling walls in a ferromagnetic nanowire*, Discrete Contin. Dyn. Syst. Ser. S **1** (2008), no. 1, 51–59

Controlability of the wall position by the mean of the applied field

Stability in finite Nanowire

G. Carbou, S. Labbé, *Stabilization of walls for nano-wires of finite lenght*, ESAIM Control Optim. Calc. Var. 18 (2012)

- One wall in a finite wire : centered in the middle of the wire
- This solution is unstable

イロト イポト イヨト イヨト

Stability in finite Nanowire

G. Carbou, S. Labbé, *Stabilization of walls for nano-wires of finite lenght*, ESAIM Control Optim. Calc. Var. 18 (2012)

- One wall in a finite wire : centered in the middle of the wire
- This solution is unstable

Stability in non pinched wires

The position of walls is unstable or non asymptotically stable

 \Longrightarrow

The data storage is not reliable

Stabilization by Pinching

(a)

э

Stability in non pinched wires

The position of walls is unstable or non asymptotically stable

The data storage is not reliable

Stabilization by Pinching

Gilles Carbou, UPPA Stabilization of Walls in Ferromagnetic Nanowires

イロト イポト イヨト イヨト

э

Stability in non pinched wires

The position of walls is unstable or non asymptotically stable

 \implies

The data storage is not reliable

Stabilization by Pinching

э.

Plan

- Walls in constant-section wire
- One wall configurations for pinched nanowires
- Bent wires and junctions

5 Conclusion

(a)

Pinched Wire

$$\Omega_{\eta} = \{(x, y, z), \ x \in I, \ y^2 + z^2 < \eta^2(\rho(x))^2\}$$

Radius of the section : ρ

- $\rho: \mathbb{R} \to \mathbb{R}^+, \mathcal{C}^{\infty},$
- *ρ* = 1 outside [-*a*, *a*],

•
$$\rho(-x) = \rho(x)$$
,

- ρ non decreasing on [0, a]
- $\mathbf{s}(x) = \text{area of the section}$ = $\pi(\rho(x))^2$

< ロ > < 同 > < 回 > < 回 > .

• By rescaling : fixed domain $\Omega_1=\{(x,y,z),\;x\in I,\;y^2+z^2<(
ho(x))^2\}$

• $\eta \rightarrow$ 0 in the weak formulation

Pinched Wire

$$\Omega_{\eta} = \{(x, y, z), \ x \in I, \ y^2 + z^2 < \eta^2(\rho(x))^2\}$$

Radius of the section : ρ

- $\rho: \mathbb{R} \to \mathbb{R}^+, \mathcal{C}^{\infty},$
- *ρ* = 1 outside [-a, a],

•
$$\rho(-x) = \rho(x)$$
,

• ρ non decreasing on [0, a]

•
$$\mathbf{s}(x) = \text{area of the section}$$

= $\pi(\rho(x))^2$

イロト イポト イヨト イヨト

- By rescaling : fixed domain $\Omega_1 = \{(x, y, z), x \in I, y^2 + z^2 < (\rho(x))^2\}$
- $\eta \rightarrow 0$ in the weak formulation

Pinched Wire

$$\Omega_{\eta} = \{(x, y, z), \ x \in I, \ y^2 + z^2 < \eta^2(\rho(x))^2\}$$

Radius of the section : ρ

- $\bullet \ \rho: \mathbb{R} \to \mathbb{R}^+, \, \mathcal{C}^\infty,$
- *ρ* = 1 outside [-*a*, *a*],
- $\rho(-x) = \rho(x),$
- ρ non decreasing on [0, a]
- $\mathbf{s}(x) = \text{area of the section}$ = $\pi(\rho(x))^2$

< ロ > < 同 > < 回 > < 回 >

$$m: \mathbb{R}^+_t \times I_x \to S^2, \ I = \mathbb{R} \text{ or } I = [-L, L], L > a$$

Ferromagnetism Energy in pinched nanowire

$$E(m) = \frac{A}{2} \int_{I} \mathbf{s}(x) |\partial_{x}m|^{2} dx + \frac{1}{4} \int_{I} \mathbf{s}(x) (|m_{2}|^{2} + |m_{3}|^{2}) dx - \int_{I} \mathbf{s}(x) h_{a}m_{1}$$

Dynamic model of pinched wire

- $m: \mathbb{R}^+_t \times I_x \to S^2$, $I = \mathbb{R}$ or I = [-L, L], L > a
- **s**(*x*) = area of the section

Ferromagnetism Energy in pinched nanowire

$$E(m) = \frac{A}{2} \int_{I} \mathbf{s}(x) |\partial_{x}m|^{2} dx + \frac{1}{4} \int_{I} \mathbf{s}(x) (|m_{2}|^{2} + |m_{3}|^{2}) dx - \int_{I} \mathbf{s}(x) h_{a}m_{1}$$

Model of pinched Nanowire

$$\mathbf{s}(x)\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff}) - \mathbf{v}\partial_x m - \mathbf{v}m \times \partial_x H_{eff}$$
$$H_{eff} = A\partial_x(\mathbf{s}(x)\partial_x m) - \frac{\mathbf{s}(x)}{2}(m_2\vec{e}_2 + m_3\vec{e}_3) + \mathbf{s}(x)h_a\vec{e}_1$$
$$\mathbf{v}(x) = \int_{y^2 + z^2 \le \rho(x)^2} v(x, y, z) \cdot \vec{e}_1 \, dy \, dz$$

(a)

Dynamic model of pinched wire

- $m: \mathbb{R}^+_t \times I_x \to S^2$, $I = \mathbb{R}$ or I = [-L, L], L > a
- **s**(*x*) = area of the section

Ferromagnetism Energy in pinched nanowire

$$E(m) = \frac{A}{2} \int_{I} \mathbf{s}(x) |\partial_{x}m|^{2} dx + \frac{1}{4} \int_{I} \mathbf{s}(x) (|m_{2}|^{2} + |m_{3}|^{2}) dx - \int_{I} \mathbf{s}(x) h_{a}m_{1}$$

Model of pinched Nanowire

$$\begin{split} \mathbf{s}(x) \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) - \mathbf{v} \partial_x m - \mathbf{v} m \times \partial_x m \\ H_{eff} &= A \partial_x (\mathbf{s}(x) \partial_x m) - \frac{\mathbf{s}(x)}{2} (m_2 \vec{e}_2 + m_3 \vec{e}_3) + \mathbf{s}(x) h_a \vec{e}_1 \\ \mathbf{v}(x) &= \int_{y^2 + z^2 \le \rho(x)^2} v(x, y, z) \cdot \vec{e}_1 dy dz \end{split}$$

Dynamic model of pinched wire

•
$$m: \mathbb{R}^+_t \times I_x \to S^2$$
, $I = \mathbb{R}$ or $I = [-L, L], L > a$

• **s**(*x*) = area of the section

Ferromagnetism Energy in pinched nanowire

$$E(m) = \frac{A}{2} \int_{I} \mathbf{s}(x) |\partial_{x}m|^{2} dx + \frac{1}{4} \int_{I} \mathbf{s}(x) (|m_{2}|^{2} + |m_{3}|^{2}) dx - \int_{I} \mathbf{s}(x) h_{a}m_{1}$$

Model of pinched Nanowire

$$\frac{\partial m}{\partial t} = -m \times \mathcal{H}_{eff} - m \times (m \times \mathcal{H}_{eff}) - \frac{\mathbf{v}}{\mathbf{s}} \partial_x m - \frac{\mathbf{v}}{\mathbf{s}} m \times \partial_x m$$
$$\mathcal{H}_{eff} = A \partial_{xx} m + A \frac{\mathbf{s}'}{\mathbf{s}} \partial_x m - \frac{1}{2} (m_2 \vec{e}_2 + m_3 \vec{e}_3) + h_a \vec{e}_1$$

(a)

Pinched Wire with vanishing applied field and current

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I \to S^{2}, \\ \frac{\partial m}{\partial t} &= -m \times \mathcal{H}_{eff} - m \times (m \times \mathcal{H}_{eff}) \\ \mathcal{H}_{eff} &= \partial_{xx}m + \frac{\mathbf{s}'}{\mathbf{s}} \partial_{x}m - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) \end{split}$$

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

- Existence of a profile for one wall
- Asymptotically stable for the position

ヘロト ヘヨト ヘヨト ヘヨト

Pinched Wire with vanishing applied field and current

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times \mathbb{R}_{x} \to S^{2}, \\ \frac{\partial m}{\partial t} &= -m \times \mathcal{H}_{eff} - m \times (m \times \mathcal{H}_{eff}) \\ \mathcal{H}_{eff} &= \partial_{xx}m + \frac{\mathbf{s}'}{\mathbf{s}} \partial_{x}m - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) \end{split}$$

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

- Existence of a profile for one wall
- Asymptotically stable for the position

・ロッ ・雪 ・ ・ ヨ ・ ・

Pinched Wire with vanishing applied field and current

Model of Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times [-L, L] \to S^{2}, \\ \frac{\partial m}{\partial t} &= -m \times \mathcal{H}_{eff} - m \times (m \times \mathcal{H}_{eff}) \\ \mathcal{H}_{eff} &= \partial_{xx}m + \frac{\mathbf{s}'}{\mathbf{s}} \partial_{x}m - (m_{2}\vec{e}_{2} + m_{3}\vec{e}_{3}) \end{split}$$

G. Carbou, D. Sanchez, Stability of walls for pinched nano-wires, in preparation

- Existence of a profile for one wall for $L \ge \pi/2$
- Asymptotically stable for the position if L is large enough

Existence of profiles

•
$$M(x) = R_{\varphi(x)} \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix}$$

 $R_{\varphi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$
• BC : $\theta \to \pm \pi/2$ when $x \to \pm \infty$
 $\theta'(-L) = \theta'(L) = 0$

•
$$\varphi$$
 is constant
• $\theta'' + \frac{\mathbf{s}'}{\mathbf{s}} \partial_x \theta + \cos \theta \sin \theta = 0$
• $\left((\theta')^2 - \cos^2 \theta \right)' = -2 \frac{\mathbf{s}'}{\mathbf{s}} (\theta')^2$

Stability

Pinched Nanowire

 $m : \mathbb{R}_{t}^{+} \times I_{x} \to S^{2}$ $\frac{\partial m}{\partial t} = -m \times H_{eff} - m \times (m \times H_{eff})$ $\mathcal{H}_{eff} = m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3}$ Boundary Conditions

Wall Profile
$$M_0(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix}$$
 $\theta'' + \frac{\mathbf{s}'}{\mathbf{s}} \theta' + \cos \theta \sin \theta = 0$ BC : $\theta \to \pm \pi/2$ when $x \to \pm \infty$ $\theta'(-L) = \theta'(L) = 0$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Stability of M₀, asymptotic stability for the position of the wall?

If $||m(t=0) - M_0||_{H^1(\mathbb{R})}$ is small, then

- for all time, $||m(t) M_0||_{H^1(\mathbb{R})}$ remains small,
- m(t) tends to $R_{\theta_{\infty}}(M_0)$ when t tends to $+\infty$.

Mobile frame

Geometrical constraint |m| = 1

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2} M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2$$
$$M_0(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} \qquad M_1(x) = \begin{pmatrix} -\cos \theta(x) \\ \sin \theta(x) \\ 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for *i*

 $r : \mathbb{R}_{t}^{+} \times I_{x} \to \mathbb{R}^{2}$ $\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{non linear}$ $L_{1}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\theta - \cos^{2}\theta)r$ $L_{2}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\theta - (\theta')^{2})r$

Exact Solution

 M_0 for LL \sim 0 for the new system

Stability of 0?

Mobile frame

Geometrical constraint |m| = 1

We describe the perturbations in the mobile frame

$$m(t,x) = \sqrt{1 - |r(t,x)|^2} M_0(x) + r_1(t,x) M_1(x) + r_2(t,x) M_2$$
$$M_0(x) = \begin{pmatrix} \sin \theta(x) \\ \cos \theta(x) \\ 0 \end{pmatrix} \qquad M_1(x) = \begin{pmatrix} -\cos \theta(x) \\ \sin \theta(x) \\ 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

New Equations for r

$$r : \mathbb{R}_{l}^{+} \times I_{x} \to \mathbb{R}^{2}$$

$$\partial_{t}r_{1} = -L_{1}(r_{1}) - L_{2}(r_{2}) + \text{ non linear}$$

$$\partial_{t}r_{2} = L_{1}(r_{1}) - L_{2}(r_{2}) + \text{ non linear}$$

$$L_{1}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\theta - \cos^{2}\theta)r$$

$$L_{2}(r) = -\partial_{xx}r - \frac{\mathbf{s}'}{\mathbf{s}}\partial_{x}r + (\sin^{2}\theta - (\theta')^{2})r$$

Exact Solution

 M_0 for LL \sim 0 for the new system

Stability of 0?

Properties of the linearized : L2

On $L^2(\mathbb{R})$, weighted scalar product :

$$\langle u | v \rangle = \int_{\mathbb{R}} \mathbf{s}(x) u(x) v(x) \, dx,$$

$$L_{2} = -\frac{1}{\mathbf{s}}\partial_{x}(\mathbf{s}\partial_{x}) + (\sin^{2}\theta_{0} - (\theta_{0}')^{2}) \implies L_{2} \text{ is self-adjoint for } \left\langle \left| \right\rangle.$$
$$\left\langle L_{2}u \right| v \right\rangle = \left\langle \ell u \right| \ell v \right\rangle, \qquad \text{with } \ell = \partial_{x} + \theta' \tan \theta$$

 $L_2 \ge 0$, Ker $L_2 = \mathbb{R}(\cos \theta)$

- Valid whatever the configurations of the wire (several pinched zones)
- for one wall, on $(\cos \theta)^{\perp}$, $L_2 \ge 1$
- Invariance by rotation \implies 0 is an eigenvalue of the linearized

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

-

Properties of the linearized : L_1

$$L_1 = L_2 + (\theta')^2 - \cos^2 \theta$$

Key point : $L_1 \ge 0$?

- Infinite nanowire without pinching : $L_1 = L_2$, $L_1 \ge 0$. Stability
- Finite nanowire without pinching : $L_1 = L_2 c$. Bad sign, unstability for the position

Properties of the linearized : L_1

$$L_1 = L_2 + (\theta')^2 - \cos^2 \theta$$

- Infinite wire : $(\theta')^2 \cos^2 \theta > 0$ on Ker $L_2 \implies L_1 > 0$
- Short finite wire : $(\theta')^2 \cos^2 \theta \le 0 \implies$ Unstability
- Long finite wire : $(\theta')^2 \cos^2 \theta > 0$ on a sufficiently large zone $\implies L_1 \ge 0$

ъ

New unknown

Invariance by rotation \Longrightarrow Zero is an eigenvalue of the linearized

$$\gamma \mapsto R_{\gamma} M_0(x)$$
 family of solutions for LL, where $R_{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{pmatrix}$

$$\mathcal{R}_{\gamma}(x) = \begin{pmatrix} R_{\gamma}M_0(x) \cdot M_1(x) \\ R_{\gamma}M_0(x) \cdot M_2 \end{pmatrix} \text{ static solutions for the } r\text{-equation}$$

New coordinates $r(t, x) = \mathcal{R}_{\gamma(t)} + w(t, x)$ $w_{2} \text{ in } (\cos \theta)^{\perp}$

<ロ> <同> <同> <同> < 同> < 同>

э

New unknown

Equations for w and γ

$$\begin{split} \gamma : \mathbb{R}^+ &\to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \gamma &= A_1(t, \gamma, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{split}$$

To be proved	
$w \rightarrow 0$	
γ remains small	
$\gamma o \gamma_{\infty}$	

Variational Estimates

Equations for w, γ

$$\begin{split} \gamma : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \gamma &= A(t, \gamma, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{split}$$

By coercivity of the linearized, w is exponentially decreasing

 $\partial_t \gamma$ is integrable

Stability of M₀, asymptotic stability modulo rotation

The wall is pined at the pinched zone

ヘロト ヘヨト ヘヨト ヘヨト

Variational Estimates

Equations for w, γ

$$\begin{split} \gamma : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \gamma &= A(t, \gamma, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{split}$$

By coercivity of the linearized, w is exponentially decreasing

 $\partial_t \gamma$ is integrable

Stability of M_0 , asymptotic stability modulo rotation

The wall is pined at the pinched zone

・ロッ ・雪 ・ ・ ヨ ・ ・

э

Variational Estimates

Equations for w, γ

 $\begin{aligned} \gamma : \mathbb{R}^+ \to \mathbb{R}, \quad w : \mathbb{R}^+ \to \mathbb{R} \times (\cos \theta)^{\perp} \\ \partial_t \gamma &= A(t, \gamma, w)(w) \\ \partial_t w_1 &= -L_1(w_1) - L_2(w_2) + \text{ non linear} \\ \partial_t w_2 &= L_1(w_1) - L_2(w_2) + \text{ non linear} \end{aligned}$

By coercivity of the linearized, w is exponentially decreasing

 $\partial_t \gamma$ is integrable

Stability of M_0 , asymptotic stability modulo rotation

The wall is pined at the pinched zone

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

э

Pinched wire with small applied field

Pinched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{1} \end{split}$$

Boundary Conditions

Constant-section wire : precessional regime

$$m(t,x) = R_{h_a t} M_0(x + h_a t)$$

Pinched wire :

For small h_a : the wall does not move, remains in the pinching (static solution), its profile is planar.

Construction of the solution by implicit function theorem

Pinched wire with small applied field

Pinched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{1} \end{split}$$

Boundary Conditions

Constant-section wire : precessional regime

$$m(t,x) = R_{h_a t} M_0(x + h_a t)$$

Pinched wire :

For small h_a : the wall does not move, remains in the pinching (static solution), its profile is planar.

Construction of the solution by implicit function theorem

Pinched wire with small applied field

Pinched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} + h_{a} \vec{e}_{1} \end{split}$$

Boundary Conditions

Constant-section wire : precessional regime

$$m(t,x) = R_{h_a t} M_0(x + h_a t)$$

Pinched wire :

For small h_a : the wall does not move, remains in the pinching (static solution), its profile is planar.

Construction of the solution by implicit function theorem

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Pinched wire with small current

Pinched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) - \frac{\mathbf{v}}{\mathbf{s}} \partial_{x} m - \frac{\mathbf{v}}{\mathbf{s}} m \times \partial_{x} m \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \\ \end{split}$$
Boundary Conditions

Pinched wire :

- the wall remains in the pinching
- non planar configuration
- the profile turns around the wire

<ロト <回 > < 三 > < 三 > -

Pinched wire with small current

Pinched Nanowire

$$\begin{split} m &: \mathbb{R}_{t}^{+} \times I_{x} \to S^{2} \\ \frac{\partial m}{\partial t} &= -m \times H_{eff} - m \times (m \times H_{eff}) - \frac{\mathbf{v}}{\mathbf{s}} \partial_{x} m - \frac{\mathbf{v}}{\mathbf{s}} m \times \partial_{x} m \\ \mathcal{H}_{eff} &= m_{xx} + \frac{\mathbf{s}'}{\mathbf{s}} m_{x} - m_{2} \vec{e}_{2} - m_{3} \vec{e}_{3} \\ \text{Boundary Conditions} \end{split}$$

Pinched wire :

- the wall remains in the pinching
- non planar configuration
- the profile turns around the wire

Plan

- Walls in constant-section wire
- One wall configurations for pinched nanowires

Bent wires and junctions

5 Conclusion

イロト イポト イヨト イヨト

Model of wires junction

Model of junction of k wires

Wire $i : [0, L_i] \vec{u}_i$

$$\begin{split} m^{i} : \mathbb{R}_{t}^{+} \times [0, L_{i}]_{X} \to S^{2} \\ \frac{\partial m^{i}}{\partial t} &= -m^{i} \times H^{i}_{eff}(m^{i}) - m^{i} \times (m^{i} \times H^{i}_{eff}(m^{i})), \end{split}$$

Gilles Carbou, UPPA

$$H^i_{eff}(m^i) = \partial_{xx}m^i + (m^i \cdot \vec{u}_i)\vec{u}_i$$

Homegeneous Neumann BC at the ends

Junction conditions : $m^1(t,0) = \ldots = m^k(t,0)$

Bent nanowire

・ロン ・回 と ・ ヨン ・ ヨン

Bent nanowire

Bent nanowire

Asymptotically stable Unstable

Bent nanowire

Gilles Carbou, UPPA Stabilization

Stabilization of Walls in Ferromagnetic Nanowires

Stabilizing junction

On $\mathbb{R}\vec{e}_1$, $H_{eff}(m^h) = \partial_{xx}m^h + m_1^h\vec{e}_1$ $M^h = (\tanh x, 1/\cosh x, 0)$ On $[0, L]\vec{e}_2$, $H_{eff}(m^v) = \partial_{xx}m^v + m_2^v\vec{e}_2$ $M^v = (0, 1, 0)$

(a)

Asymptotic Stability

- On the vertical part : asymptotic stability (as for one domain)
- On the horizontal part : stability of a domain wall in an infinite wire
- Junction condition (continuity) : we gain asymptotic stability on the horizontal wire

Plan

- Walls in constant-section wire
- One wall configurations for pinched nanowires
- Bent wires and junctions

イロン イロン イヨン イヨン

Conclusion : notches, bends and junctions can stabilize walls positions

Open Questions :

- wire with several pinched zones
- threshold current for walls depinning?
- Dynamics of walls in pinched wire ?

(a)