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ARTICL E I NFO A BS TRACT 
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A semi analytic method is used in order to systematically compute stationary 3 D coupled convection 
diffusion in various parallel counter current configurations and evaluate their thermal significance. 
This semi analytic method permits a complete exploration of physiologically relevant parameter space 
associated with the bio heat transfer of parallel vessels bundles. We analyze thermal significance with 
various previously proposed criteria Optimal transfer configurations are found to depend on the vascular 
density and Peclet numbers. The relevance of these findings for bio heat modeling in tissues is discussed. 
1. Introduction 

Bio heat transfer is relevant in many physiological contexts 
such as thermoregulation, lypolysis, or thermo therapies among 
others. On the contrary to most heterogeneous medium, biological 
tissues are living dynamic structures. They experience both local 
convection inside vessels, diffusion in complex structures in addi 
tion with reaction rates inside tissue. The complexity of micro 
vasculature is a serious hindrance for exhaustively taking into 
account the role of the vascular exchanges in bio heat transfer. 
This is why various models have been proposed to approximately 
describe bio heat exchanges [1 5). This is especially true for con 
vection within parallel vessels, the relevance of which can be found 
in many physiological contexts (e.g. muscles, bones, etc ... ) [6 9). 
Quoting [9), 'since a considerable fraction of blood vessels are 
found in pairs vessel vessel heat transfer has generally been postu 
lated as one of the most important heat transfer mechanisms 
involved in determining the tissue temperature distributions' 
[10 12). This is why the case of parallel vessels bundles has 
received some attention [9,6 8). 

In a broader context heat t ransfer in tube bundles has also been 
previously investigated in the search for optimal transfer configu 
rations. For natural convection [13) found interesting scaling laws 
for optimal spacing between tubes. Furthermore, when some 
external forced flows is applied around the tube bundles (consid 
ered has solid sources) a rather important body of literature can 
be found, e.g. [14,15). Other more complex configuration for opti 
mal transfer has also been investigated such as trees [16) or for 
pulsated flows in tubes [17). 

An alternative approach to address and simplify heat transfer in 
tissue, is to realize that not every vessel participates to heat 
exchanges. This is indeed known that, from convection 
dominated arterial inlets, when progressing down into the vascular 
three, the heat flux (vessel to tissue) gradually shrinks downward 
so as to reach equilibrium with the surrounding tissue. This simpli 
fled picture, might not exactly tum out to be true is some extreme 
case, when the metabolic production and/or consumption inside 
the tissue produces temperature gradients associated with 'hot' 
heat sources or sinks. However, we will see in the following that, 
in most physiologically relevant situations, heat production/con 
sumption from the tissue metabolism has a negligible influence 
on heat fluxes. Hence, in most tissue heat transfer is mostly geo 
metrically (e.g., related to the size, shape, length and distances 
between vessels) and thermally(e.g., associated with the inlet, out 
let and relative blood flows) controlled. In this context, it is inter 
esting to be able to know, a priory, when a vessel will mainly 
equilibrate its heat exchanges with the surrounding tissue so as 
to be able to infer, which vessels are thermally significant. 

Thermal significance, has been discussed quite abundantly in 
the literature [18,4,19 23). Since, generically, the local transfer 



Nomenclature

Le tissue exchanger length
Ls period of the transverse tissue exchanger domain length
LH Le=Ra dimensionless vessels length
Ra arterial radius
Rv venous radius
R0 distance from the center of R a the bundle to the center

of vessels
aH ratio Ra=R0

/ pa2=2 vascular density
Xa arterial transverse fluid domain
Xv venous transverse fluid domain
Xt tissue transverse solid domain
X0

t tissue transverse sold domain at z 0
XLe

t tissue transverse sold domain at z Le
@Xext

a external arterial boundary (z � 0 and z � Le)
@Xext

v external venous boundary (z � 0 and z � Le)
kF fluid thermal conductivity
kT tissue thermal conductivity

c heat capacity
P metabolic heat production
Nua Nusselt number in artery
Nuv Nusselt number in vein
�a arterial effectiveness
‘eq thermal equilibrium length
q fluid density
Va arterial averaged blood velocity
Vv venous averaged blood velocity
Qa arterial blood flow
Qv venous blood flow
Pea Péclet number in artery
Pev Péclet number in vein
Ti temperature field of phase i
Ti average transverse temperature of phase i
T�1
i homogeneous temperature at � infinity of phase i

i either arterial a (fluid), venous v (fluid) or tissue t
(solid) phases
rate from the fluid into the solid is found to abruptly decay from
the inlet along the longitudinal direction [24,25], it has been con
sidered that some exponential decay with typical decaying length
provide the typical length associated with thermal relaxation. This
phenomenological choice is indeed justified in the case of parallel
tube exchangers for which it is proven that generalized Graetz
decomposition with an infinite set of exponentially decaying
modes in the longitudinal direction holds [26 30]. Since thermal
significance has also been investigated with other criteria than
relaxation length, i. e arterial efficiency (Cf Section 2.4) we wish
to analyze and compare them so as to get a more comprehensive
analysis of the interest and validity of thermal significance.

Hence, in this paper, we analyze various distinct features of heat
transfer in vessels bundles, associated with thermal significance,
and optimal transfer using a quasi analytic approach previously
described in [29,30]. In Section 2 the set of governing equations
and their dimensionless formulation are provided. Some insights
about the parameters used and their physiological relevance is dis
cussed in Section 2.4. In Section 3 we first analyze unbalanced
counter current configuration for transfer. We first investigate
the influence of vessels radius in Section 3.1 so as to show that,
when vessels are few diameter apart, this parameter is intrinsically
irrelevant, being mainly taken care of by Péclet numbers ratio.
Then, we pursue the analysis of thermal significance through the
analysis of arterial effectiveness in Section 3.2 as well as thermal
equilibrium length in Section 3.3 versus relevant dimensionless
parameters. Finally we analyze heat transfer in Section 3.4 for
which optimal configurations are brought to the fore.
2. Governing problem and dimensionless formulation

2.1. Configuration under study

In this paper we wish to analyze the vessel/tissue transfer in
idealized bundles of parallel vessels, as depicted in Figs. 1 and 2.
The tissue/vessel system is modeled as a transversely infinite
exchanger into which a pattern of periodic parallel vessels trans
port heat. This choice has been made so as to gain insight into
the exchanges independently of the transverse boundary condi
tions as opposed to [30]. To be more precise on the terminology
that we will use in the following we will refer to the exchanger
region as the finite (but transversely periodic) domain within
0; Ls½ � � 0; Ls½ � � 0; Le½ � depicted in Fig. 1. Hence, the tissue model
under study has a finite extent in the longitudinal direction, but
needs boundary conditions for the heat at tubes inlets and outlets.
In order to circumvent the problem of arbitrarily setting such
boundary conditions at z 0 and z Le, we connect the finite tis
sue exchanger to infinite inlet and outlet reservoirs connecting
tubes, as in [28,30]. Hence three compartments are considered.
The inlets and outlets where convection diffusion arises in the ves
sels only, and the tissue exchanger.

As in [30], we consider laminar convection diffusion arising in a
fluid having constant properties. In the following we consider
tubular vessels having circular sections. The artery is considered
as the hot reference whilst the vein outlet provide the cold one
(most results hereby presented do not depend on this arbitrary
choice). Fully developed Poiseuille longitudinal velocity is pre

scribed in each vessels va va rð Þez 2Va 1 r=Rað Þ2
� �

ez and

vv vv rð Þez 2Vv 1 r=Rvð Þ2
� �

ezwhere Va respectively Vv

and Ra respectively Rv stands for the average velocity and
radius of the artery respectively vein and ez is the unit vector
along z direction. The ’hot’ arterial vessel refers to the tube with
homogeneous inlet temperature at plus infinity Tþ1

a and the ’cold’
vessel tube refers to the tube with homogeneous inlet temperature
at minus infinity T 1

v as represented on Fig. 1.
In most of the following we will consider unbalanced counter

current configuration where longitudinal velocities are different
such that Va P Vv since this is mostly what arises in most physio
logical contexts. In this work we investigate three family of geo
metrical parameters: the arterial and vein radius, their length
and their distances. Keeping with dimensionless geometrical
parameters this leads to radius ratio RH � Rv=Ra, vessel’s aspect
ratio LH � Le=Ra and the dimensionless distance between vessels
aH � Ra=R0. In the chosen configuration associated with periodic
bundles of vessels, the last parameter is directly related with the
vessels surface density also equals to the volumic vascular density,

i.e. vessel’s volume over total volume, denoted / 4pRH 2

LHs
2 (note that

this volumic vascular density also equals the transverse surfacic
vascular density, since the hereby considered configuration is
invariant along z direction). The relation between / & aH reads

/ aHð Þ paH2

2 and is represented in Fig. 2.
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Fig. 1. Schematic layout of the elementary tissue geometry unit defining the tissue per-fused by vessels bundles and the various important parameters associated with it: 4 is 
the tissue/exchanger length, whilst I., is its period in transverse directions, both x and y. o?, d,' denote the tissues sectional areas on exchanger's edges respectively on z 0 
and z L, . 8't;' and &rr, denote the vessels sectional area outside the exchanger, i.e. within z e [-oo, OJ u [4 , +ooJ. T;"' and T .® are the temperature imposed in some 'far 
field' reservoir in arteries and veins. r. ® and r;» are the temper-ature resulting ( and thus numeriG11ly evaluated) from the exchange inside the tissue/exchanger and are not 
specified. 
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Fig . 2. Schematic layout of the transverse section of the tissue with periodic bundle 
of vessels. Ra and R. are the arterial and venous radius, Ro is the center-to-center 
distance between vessels and tissue. O. stands for the arterial, o. for the vein and 
0, for tissue domain's sectional area inside the tissue exchanger. I., is the period of 
the transverse domain in both x and y directions. The graph below shows the 
relation between transverse normalized distance ex and the vascular density 
,J, =*' / 2. 
2.2. Governing problem 

Then, we write the stationary thermal energy balance in three 
dimensions as 

pcv • VT It ,H 0 in vessels 

k7 !l.T P in solid 
(1) 

with kF being the fluid conductivity, k7 the tissue one, p the fluid 
density, c the heat capacity and P the metabolic heat production 
inside the tissue [9]. The above problem reads more explicitly for 
longitudinally invariant velocity convection v v(x,y) e,., 

pcv(x,y)a,T kF(a;+a;+ti,) T 0 in vessels 

k7 (a; +a; +a;)T P in solid 
(2) 

Then continuity of temperature and fluxes at vessels/tissue 
interfaces an. (for artery surface ) and an. (for vein surface ), that 
we note here an.,v read as 

(3) 
Tlao.,. Tlao, 

kF a.Tian.,. k7 a.Tian, 

On the external part of the exchanger configuration, i.e. for z ~ 0 or 
z ~ L, we consider homogeneous Neumann conditions as in [30] 

(4) 

For the edges of the tissue domain on z 0 and z Le we con 
sider homogeneous adiabatic Neumann conditions, 

(5) 

At infinity, in the artery tube section 0a and in the vein section nv, 
temperatures are imposed 

Tl0.(x,y,z -+ +oo) 

Tl0 . (x,y,z -+ oo) 
T:'° 
T_"", 

(6) 
2.3. Dimensionless fonnulation 

Following previous studies (e.g. [31 ]), Jet us now use dimen 
sionless variable with * index defined as x R,,x* ,Y R.y*, 
z R,,z* ,L, L*R,, , Va 2 V0 v: , Vv 2 V .v!, and 

_T __ T~_,- T Tv'"' 
T.+00 T00 +T_, T 00 • 

V a V 

(7) 

Now, using the dimensionless position ~* (x* ,y*) in the (x,y ) 
plane (2) now reads 

( a;. + a; .. + a;.) r* 0, in Vessels 

(a;.+ a; .. + a;. ) r* P* , in Tissue 
(8) 

with, Peclet number being Pea.,, 2pcVa,vRa,v/t, and dimensionless 
metabolic source term 



PH PR2

kt Tþ1
a T 1

v
� � : ð9Þ

At the interface between vessels @Xv and tissue edge @Xt inside the
exchangers one has continuity of temperature and fluxes

THj@XH
a;v

THj@XH
t

kF@nT
Hj@XH

a;v
kT@nT

Hj@XH
t
:

ð10Þ

Due to the choice of dimensionless temperature the imposed
cold and hot sources verify

THjXH
a
nH; zH ! þ1� �

THþ1
a 1 in arterial inlet

THjXH
v
nH; zH ! 1� �

TH 1
v 1 in venous inlet

ð11Þ
Table 1
Physiological values used for Péclet computation assuming that c 3651 J/(kg	
C),
kF 0:51 W/(m	
C) and q 1046 kg/m3 [32].

Physiological context D lð m) V (mm/s) Pe

Human retina (venous bifurcations)
[33]

125.9 ±
26.44

8.63 ±
2.33

8.5 ±
3.81

Dog mesenteric [34]
Main venous branches 2511.89 6.31 118.68
Terminal veins 1445.44 5.58 60.4
Venules 32.11 0.29 0.07
Main artery branches 1063.33 33.11 263.66
Terminal branches 611.88 35.21 161.33
Arterioles 22.22 1.36 0.23
2.4. Dimensionless parameters and thermally significant numbers

Dimensionless formulation thus brings seven different dimen
sionless parameters: two hot and cold Péclet numbers

Pea;v 2qcVa;vRa;v=k
F , the conductivity ratio between the tissue

and the blood kT=kF , vessels aspect ratio LH Le=Ra, vessels radius
ratio RH Rv=Ra, dimensionless distance aH Ra=R0 and finally the
dimensionless metabolic rate PH PR2=kt Tþ1

a T 1
v

� �
. In order to

more closely delimit physiologically relevant parameter space, we

prescribe a conductivity ratio kT=kF 1, since it is generally very
close to one in most tissues [32]. Furthermore, using data obtained
from [9] for muscle where kt 0:5 W K 1 m 1;R 500 lm,
Tþ1
a 37 
C, assuming outlet venous temperature Tþ1

v 35 
C, as
well as P 675 W m 3 for hypothermia and P 97000 W m 3

for hyperthermia, we found the following range: PH

1:7 10 4 2:4 10 2.
Hence, in the following we neglect the influence of the meta

bolic source term PH. The significant parameter space dimension
is thus five, rather than seven, associated with Pea; Pev ; L

H;aH and
RH. Hence, we mainly focus our interest toward physiologically rel
evant parameters for which Pev is fixed at various value between 5
to 20, whilst varying Peabetween 5 to several hundreds. We
explore the effect of LH;aHand RH on the vessels thermally signifi
cance as well as heat transfer.

Three additional dimensionless parameter of interest are also
resulting from the considered configuration for evaluation of
thermal significance. Let us first define spatial averaging (more
precisely dimensionless surface averaging) using notation
Ti

R
Xi
TdXi=

R
Xi
dXi, with index i a;v; t respectively associated

with Xa the arterial, Xv venous and Xt tissue domain’s transverse
sections, as depicted in Fig. 2. Then, the arterial efficiency �a has
been defined and used [18,4,19 21],

�a
TaH zH 0ð Þ TtH zH 0ð Þ

TH;þ1
a TH; 1

v

TaH zH 0ð Þ TtH zH 0ð Þ
2

ð12Þ

Secondly, thermal significance has also been related to the expo
nential decay of the temperature along vessels [22,23] through
the vessels thermal equilibrium length ‘Heq. It is here defined as
the length for which the average temperature decays by an expo
nential factor from the arterial entrance (here in zH LH)

TH
t ‘Heq

� �
1 e 1� �

TH
t LH
� �

: ð13Þ

For this parameter to be independent of longitudinal length it must
be expressed as a fraction of the exchanger’s length, we will thus
consider the ratio ‘Heq=L

H

Thirdly, we consider the vessel’s surface heat flux through the
Nusselt number derived from dimensionless formulation as in [30]

Nua;v 2
Z LH

0
dzH

Z
@Xa;v

@nHT
HdXa;v ð14Þ

where @Xa;v is the edge of arterial and vein (which are circles) and
d@Xa;v is the integration element along those edges.

2.4.1. Biological relevance of the parameter choices
Since most studies related to bioheat do not consider dimen

sionless numbers, it is interesting to evaluate values arterial and
venous Péclet on different physiological contexts. Table 1 provides
these figures evaluated from thermal measurements performed on
two species in different organs. Péclet values range from 0.23 to
263.66 for the arterial part of the circulation and from 0.07 to
118.68 for the venous one. Typical ratio between arterial and
venous range from 2.22 to 3.29. In most of the results presented
in forthcoming sections, we considered venous Péclet Pev 5
and 10 associated with the small/intermediate part of the circula
tion. This choice is also motivated by trying to infer the influence of
venous Péclet on other parameters by doubling its value. Further
more, the arterial to venous Péclet range is chosen between 1 to 20.
This is higher than in the reported values of Table 1 but one has to
born in mind that these measurements are obviously limited, and
do not cover the entire range of physiologically relevant situations
(e.g. arterioles and arteries vasodilate so as to increase blood flow
leading to higher Péclet ratios). In any case, studying the limit of
high Péclet ratio is interesting to understand the asymptotic
behavior of vascular bundles.

Finally it is interesting to mention that vessels density / in most
tissues rarely reach values larger than 20%, except for special con
texts. Nevertheless, it can be locally very large in the proximity of
arterial and venule pairs. For being able to describe both generic
situations and special cases, the values chosen for / and a are illus
trated Fig. 2.

2.5. General comments on the formulation and numerical method

The details of the numerical method used in this contribution
has already been detailed in [28], as well as briefly described and
used in [30]. [30] also provides several numerical validations of
the method. The main idea of the numerical approach is to sepa
rate the whole problem into three distinct Graetz problems respec
tively associated with inlet tubes, outlet tubes and the exchanger
(containing both tissue and fluid domains). Each Graetz problem
follows a different expression of the dimensionless temperature
field since there is a different spectral decomposition. The ampli
tudes of Graetz are then coupled together into a linear system
which is set so as to ’match’ the continuity of temperature and
fluxes at the exchanger inlets and outlets. A detailed description
of the method can be found in [28]. Let us just recall the theoretical



expressions of the dimensionless temperature fields in each 
domain. For sake of simplicity we will just write the expressions 
for one arterial and one venous domains although there are four 
of each in our configuration. 

T"'W ,z*) I:xtT~(t )e-ttz* +xnrn ({*)eJ.,,(z* L*) z* € [O,L*] 
N' 

T"' ({* ,z*) x;; + I:x~t~({*)eµt (z* t*) vein z* ;;;,: L* 
N• 

T"' (~*,z*) ~ + I::x.u.W)eY, z* artery z* ,;;; O 
N• 

T"' (~*,z*) r: 00 + L }ntn (~*)e11n 1
" vein z* ,;;; O 

N' 

T"' (~* ,z*) r;+00 + I::x~u~(~*)eYt(z* t*) artery z* ;;;,: L* 
N' 

(15) 

with x; amplitudes of modes, T;, t; and u; eigenvectors, ,1,; , µ;and 
Y; eigenvalues respectively of exchanger domain, venous domain 
and arterial domain. 

As previously mentioned, dimensionless inlet temperatures 
r:+oo and r; 00 values are respectively 1 et 1 and unknowns 
x0,~ are computed by the method as respectively the homo 
geneous temperature fields at minus infinity for the arterial vessels 
and plus infinity for the venous vessels. 
3. Results 

3.1. Influence of venous radius 

Here, we first expose how vessel's radius influences heat trans 
fer. Fig. 3 provides the arterial transfer rate dependence versus the 
arterial to venous Peclet ratio Pea / Pev, whilst other parameters 
being prescribed. We investigate two different parameters that 
are fixed through change of radius variation. We first fix the venous 
Peclet number Pev as compared to a reference simulation with 
R!"' K:,1 / Ra 1 in Fig. 3a. We then fix, the flux ratio 

Q* = Q./Q':1 (PevRv)!( Pe':1R':1) is kept constant in Fig. 3b. In 

the later, a master curve for transfer is observed over a rather large 
range of Peclet ratio Pea / Pev, reaching a late plateau for large 
Pe,, / Pev values, having a weak dependence on R* (8% variations 
are observed in Fig. 3b when varying R* by 100%). As expected, 
for a given vessel length aspect ratio L*, transfer effectiveness sat 
urates when increasing the arterial Peclet number, so as to reach a 
plateau for which there is no gain for transfer in increasing blood 
flow further. The value of this plateau is related to L*, but is also 
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a) Pe,.f Pev b

Fig. 3 . Arterial Nusselt number versus Peclet ratio Pea/ Pe. compared to reference sim
(Pe. w:t 10), {b) fixed dimensionless venous 0ux Q* "' Q./Q':' (Pe . R.)/(W:'K:
observed. especially at moderate Peclet ratio. 
related to the thermal equilibrium length ieq subsequently studied 
in Section 3.3. This observation indicates that the influence of R* 
can be recasted into the Peclet ratio Pea / Pe. variations, as long as 
Q* is prescribed. Hence, one can reduce parameter space dimen 
sion by one, from fifth to four since the dependance with R* is slave 

to a given value Q* = Q./Q. Pea /(Pe. R* ). We now further 
examinate thermal significance and heat transfer effectiveness 
dependance with Pea ,Pe. ,rx* and L*. 
3.2. Arterial effectiveness evaluation 

Considering that average temperature is a fi gure of interest, the 
arterial effectiveness €a defined in (12) provides an estimate of the 
relaxation toward equilibrium between vessels and tissues. The 
greater €a , the larger the exchanges, and the better thermal effec 
tiveness. Hence, similarly with the heat transfer performances, this 
average effectiveness €a monotonically levels off for increasing 
arterial convection. In Fig. 4, for fixed Pe. , as Pea increases over a 
wide range, €a grows toward a systematic saturation for highly 
convective transfer regime. Not surprisingly the precise value of 
venous Peclet number Pe. does not influence much the saturated 
values of €a, since an uppermost gain of 20% is observed comparing 
Fig. 4a b for twice a value in Pev (same comment applies to the 
comparison of Fig. 4c & d. This result can be explained by the fact 
that tissue/vessels exchanges are dominated by arterial/tissue 
fluxes rather than venous/tissues ones when the arterial Peclet 
Pe,, is much larger than venous one (i.e. when Pea / Pev » 1 ). If true, 
this interpretation implies that, for almost equilibrated situations 
when Pea/ Pev is close to one, the precise value of Pev should mat 
ter. This is confirmed by the observation that the corresponding €a 
almost doubles for twice a value in Pe. when Pea/ Pev ~ 1 compar 
ing Fig. 4a b as well as Fig. 4c & d. Now considering the sensitivity 
of the arterial effectiveness €a to the vessels aspect ratio L*, one can 
note that when L* is multiplied by four comparing Fig. 4a & c or 
similarly Fig. 4b & d, €a barely changes by more than 20% over 
the all range of Peclet ratio. It is interesting to note that, the unsen 
sitivity of €a to L* drastically increases as rx* augments. Indeed, in 
the most 'diluted' case, when rx* 0.2, one can clearly observe a 
change between bullet curves of Fig. 4a & c. However, for larger 
values of rx*, changes in €a from Fig. 4a c and Fig. 4b d are very 
weak. This can be explained by the existence of heat transfer 
"screening length" associated with the transverse distance 
between vessels, given by dimensionless number rx*. As rx* 
decreases, the t ransverse length between vessels becomes the pre 
dominant length scale for transfer, which 'screens' the influence of 
longitudinal length. 
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This interpretation of the results of Fig. 4 are comforted by 
Fig. 5. When increasing r:x* from r:x* 0.2 in Fig. Sa & b to 
r:x* 0.5 in Fig. Sc & d, one can clearly see the unsensitivity of 
the arterial effectiveness € a to L*. We now wish to compare param 
eter sensitivity over the same range of parameters for the thermal 
equilibrium length ieq-
3.3. Thennal equilibrium length evaluation 

Effective equilibrium length (13) is evaluated in Fig. 6 over the 
same parameter range as in Fig. 4. 

A similar qualitative trend is found. For fixed venous Peclet 
number Pe •. transfer effectiveness associated with t:/L* in Fig. 6 
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increases with the arterial Peclet number Pea, so as to reach a pla 
teau (obviously as long as 4q/ L* < 1). However, since i';q / L* evalu 
ates a dimensionless thermal balance length, the value of the 
plateau displays a clear dependance with both the transverse 
dimensionless distance between vessels, r:1.* , and vessel's aspect 
ratio L*. For moderate L* in Fig. Ga & b, t';q / L* first levels down 
as r:1.* increases, then reaches a minimum and increases again. 
However, a different trend is found when L* is larger (four times 
more) in Fig. Ge & d, so that the larger the transverse distance 
(i.e. the smaller r:1.* ), the smaller i';q / L*. This obseivation is corn 
farted, whilst presenting a slightly different shape in the results 
given in Fig. 7. 

When increasing r:1.* from r:1.* 0.2 in Fig. 7a & b to r:1.* 0.5 in 
Fig. 7c & d, the dependance with L* of the dimensionless thermal 
equilibrium length t';q / L* indeed differs. For small r:1.* 0.2, i.e. 

large transverse distance between vessels (Fig. 7a & b)), t';q/ L* first 

levels down as L* increases, so as to reach a minimal value, but 
increases again for large L* value. This is due to the presence of a 
minimum in L* as highlighted on figures Fig. 7c & d for a given 
Peclet ratio Pea/ Pev = 4. On the contrary, for dense vessels bundles 
r:1.* 0.5 (Fig. 7e & f), the thermal equilibrium length i';q / L* mono 

tonically increases with L*, i.e. the larger L*, the greater the ratio 
i';q / L* so as to reach a plateau in the arterial convectively domi 
nated regime. This observation indicates that when the longitudi 
nal aspect ratio of vessels L* is much greater than the 
dimensionless transverse typical distance 2/ r:1.*, then, the thermal 
equilibrium length is mainly controlled by L* and increases with it. 

Taking these results together, one can distinguish three differ 
ent regimes: (i) either the vessels have large aspect ratio L* and 
then the denser the bundle, the larger i';q/ L*, (ii) either the vessel 
bundle is diluted and then the larger the aspect ratio, the larger 
i';q / L*, (iii) either both aspect ratio and vascular density are mod 
erate and a local sub optimum exists in term of L* and r:1.*. Thermal 
equilibrium length ratio optimum is for example illustrated on 
Fig. 7c and d. Lastly, it can be noted on both Figs. 6 and 7 that 
the venous Peclet Pev has a low influence on i';q / L*: doubling its 

value mostly results in a 20% variation of t';q / L*. As opposed to 
the arterial effectiveness study on previous section, this observa 
tion is true on every range of arterial to venous Peclets ratio 
Pea / Pev, even close to unity. 
3.4. Arterial Nusselt evaluation 

Let us now analyse the heat transfer in the same range of 
parameters as in the two previous sections. Fig. 8 presents the Nus 
sett number versus the arterial to venous Peclet number ratio. 
Depending on r:1.* and L*, two regimes are observed: (i) for moder 
ature value of L*, the Nusselt monotonically increases with Pea 
(whatever Pev value) towards reaching a plateau in the convec 
tively dominated regime Pea/ Pev » 1 (as for example found in 
[30]), (ii ) for L* » 1 & L* » 2/ r:1., the Nusselt first increases with 
Pea, but after reaching a maximum, it gently decreases down. 

The optimal Peclet ratio Pea/ Pevlopr is mostly found moderate, 
whereas weakly depending on geometrical parameters. For exam 
pie in Fig. 8d for r:1. 0.5 ,Pea / Pevlopr ~ 4 whilst for 
r:1.* 0.6, Pea/ Pevlopr ~ 3. Furthermore, as expected, Fig. 8 shows 
that heat transfer is greater for tight vessel bundles (i.e. 
r:1.* O.5,O.Gi This results is expected since the transverse temper 
ature gradient between veins and arteries are greater in this case. 

Fig. 9 more clearly illustrates these two regimes and their 
dependance with r:1.* and L*. The optimal Peclet ratio Pea / Pevlopr 
depends on L*, as can be seen when comparing Fig. 9a, b & c, where 
one can observe that, in the limit L* » 1,Pea / Pevlopr becomes clo 
ser and closer to unity. Also, the peak associated with the optimal 
value is much clearly identifiable in the L* » 1 limit. Again in 
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Fig. 9, one can see that the heat transfer is lower when vessels are 
far apart (i.e. for low rx* values). 

Now considering the influence of venous Peclet number, it can 
be similarly noted that doubling i eq / L* increases the arterial Nus 
selt alike. This is because the venous vessel drive thermal trans 
verse gradients thus increasing its Peclet number. 

4. Discussion 

The results presented in the previous section perform a system 
atic parametric exploration of thermally significance from two 
viewpoints. First, the 'averaged' viewpoint for which the arterial 
efficiency €a is evaluated. Secondly, a more local and physical view 
point associated with thermal equilibrium length. In both case, we 
found that thermal efficiency saturates when reaching the 
convectively dominated regime Pea/ Pev » 1. These findings are 
consistent with the expectation that thermal exchanges are 'geo 
metrically' limited, so that, beyond the limit where Pea/ Pev ~ 8, 
there is no further gain in increasing the flow for enhancing the 
exchanges. 

Nevertheless, the dependance with vessel aspect ratio L* and 
dimensionless transverse distance 2/ rx* slightly differs between 
both viewpoints. We found that for small distances between ves 
sels, i.e. when 2/ rx* ,::; 4, the arterial efficiency €a very weakly 
depends on the vessel aspect ratio L*, whereas on the contrary, 
when 2/ rx* » 1, it does, being greater for moderate vessel aspect 
ratio L*. This result might be due to the fact that, for small distance 
between vessels, i.e. relatively tight vessels bundles, L* » 2/ rx* an 
homogenized limit is reached for an effective heat transfer to be 
reached. From this limit, the bundle behaves as a single 'average' 
tube into which the efficiency saturates with L*: there is no gain 
in effi ciency when increasing vessel length further in this regime. 
Similar homogenized regime is found for thermal equilibrium 
length e: / L* which saturates toward a plateau value on the 

Pea/ Pev » 1 limit for L* » 2/ rx* and dense bundles (rx* ~ ✓2/2). 
On the contrary, in the limit of 'dilute' vessels bundle, i.e. rx « 1, 
& L* ,,; 2/ rx*, we found a minimum value for i';q/L* corresponding 
to a sub optimal exchange between vessels and tissue. 

Now considering the transfer evaluated from Nusselt numbers, 
two regimes have been found: (i) in the case where vessels are suf 
ficiently far (more than four diameter apart), the Nusselt number 
monotonically but moderately increases with arterial Peclet num 
ber, so as to saturate as Pea/Pev » 1 (reminiscent of what has been 
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found in [30]); (ii ) in the opposite configuration of very closed ves 
sels (less than two diameter apart), the Nusselt number display on 
optimal value for moderate Peclet number ratio only when the 
aspect ratio of the vessels are large enough (L* » 2/ a*). Neverthe 
less, in this second regime, the further decay of the heat echanges 
when increasing Pe,, / Pe. is quite weak, so that only ten to fifteen 
percent of the optimal Nusselt value is lost when Peclet number 
ratio is set to ten time its optimal value. The physiological signifi 
cance of both regimes is interesting to discuss. The configuration 
associated with the first regime is relevant to many arterio 
venous pairs in muscles or bones, for which the Peclet number 
ratio is large. This regime shows that increasing the Peclet ratio 



more than five time is useless for increasing heat transfer further.
Hence, this regime specifies the range of ’physiological relevant’
arterial and venous Péclet ratio for which the tissue is capable of
heat regulation. The second regime is more relevant to dense cap
illary beds for which the Péclet number ratio is more moderate.
Obviously, the considered configuration is very idealised compared
to real capillary beds. Nevertheless, this configuration shows
that, in the relevant physiological range of parameters, i.e.
Pea=Pevwithin 2 5½ �, optimal transfer is indeed reached. This is
consistent with the established fact that vessel/tissue exchanges
are dominant at capillary scale.

5. Conclusions

This paper analyzes heat transfert in parallel tube bundles, for
tissue heat transfer modelling. Considering a semi analytical
approach using generalized Graetz mode decomposition, the effect
of geometrical and thermal parameters is systematically investi
gated in the relevant sets of dimensionless parameters. We found
that the combination of both vascular density and aspect ratio of
vessels influences markedly both thermal significance as well as
transfer regimes.
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