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Decision-making with uncertain data: Bayesian
linear programming approach
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Cedex, France
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E mail: tchangani@geii.iut tarbes.fr

This paper deals with decision making in a real time optimization context under uncertain data by
linking Bayesian networks (BN) techniques (for uncertainties modeling) and linear programming

(LP, for optimization scheme) into a single framework. It is supposed that some external events
sensed in real time are susceptible to give relevant information about data. BN consists in graphical
representation of probabilistic relationship between variables of a knowledge system and so permit

to take into account uncertainty in an expert system by bringing together the classical arti®cial
intelligence (AI) approach and statistics approach. They will be used to estimate numerical values of
parameters subjected to the in¯uence of random events for a linear programming program that
perform optimization process in order to select optimal values of decision variables of a certain real
time decision making system.

Keywords: Linear programming, Bayesian networks, decision making, decision support system, real
time optimization

1. Introduction and statement of the problem

1.1. Decision-making by mathematical

programming

Any organization, from a single person to a multi-

national company through small companies, factories,

etc., make always decisions (investment, resources

acquisition, production planning, etc.). Decisions are

made by choosing numerical values of some free

variables called decision variables or control variables

( production level for a given period, stock level,

investment budget level, etc.) in order to optimize

(minimize or maximize) some objectives (maximize

pro®t, minimize cost, minimize risk, etc.) when

respecting some constraints due to necessarily limita-

tion of available resources (budget limitation, lake of

quali®ed manpower, etc.) and some technical speci®-

cations. For instance, a production manager of a given

company must establish a production plan by choosing

the level of each item to be produced for a given period

(a day, a week or a month) using informations given by

commercial and/or marketing department; a project

manager must establish the planning of its crews

respecting social and labor laws constraints; a logistic

engineer must do the planning of reception dates of the

resources to be used in a production process according

to some requirements; and so on. These problems are

well formulated when all the parameters are speci®ed

by the so-called mathematical programming (also

known as optimization) problem in the literature.

Basically, a mathematical programming problem

consists of the following:

min =max
x

f �x�

G�x� � 0

x [d(R
n

8

>

<

>

:

�1�

where x [Rn
is decision variables vector,

G�x� : Rn ?R
m
is constraints vector, f �x� : Rn ?R



is the objective function to be optimized and d is the

admissible set of decision variables. Here R and R
d

denote the set of real numbers and the real space

vector of dimension d respectively. System (1) can

represent a wide range of practical problem in

engineering, social sciences, economics, management

sciences, etc. According to the nature of functions f,

G, the set d, and decision variables x, the problem is

known as linear programming, nonlinear program-

ming, integer programming, mix integer program-

ming, convex optimization, quadratic optimization

(see Dantzig, 1963; Gill et al., 1981; Hiriart-Urruty

and LemareÂchal, 1993; Luenberger, 1984;

Mangasarian, 1969; MoreÂ and Wright, 1993;

Nesterov and Nemiroski, 1994; Rockafellar, 1970;

Teghem, 1996; Winston, 1994; Wright, 1996 and

references therein for more details on theory,

classi®cation, algorithms, and applications).

In this paper we will consider the linear program-

ming problem, that is

min =max
x

cTx;

Ax � b ; x [d(R
n �2�

xmin � x � xmax
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where x [Rn
, A [Rm6n

is often called technical

matrix, c [Rn
is the objective vector, b [Rm

the

right-hand side vector, xmin, xmax [R
n
the lower and

the upper bound of decision variables, respectively.

This problem is well known and widely studied in the

literature in the theoretical view point as well as

practical view point. Very ef®cient algorithms now

exist to solve this problem ranging from classical

simplex (Dantzig, 1963) algorithm to recently interior

point algorithms (Nesterov and Nemiroski, 1994;

Wright, 1996).

But the ef®ciency of a decision-making process

based on former formulation is strongly related to the

reliability of model parameters (A, b, c, xmin and xmax).

In practice these parameters are subjected to

uncertainties and are provided most of time by experts

from different domains ( production managers, spe-

cialists of marketing, logistic engineers, etc.). These

specialists are not able, most of time, to give precise

values of these parameters without relating them to

some external random event E. For a production

system where x consists in quantities of different

items to be produced, the objective vector, c, may be

provided by commercial or marketing specialists

according to their knowledge of the market in terms

of: the prize of product Pwill be high (amoney units),

low (b money units), medium (g money units), etc. if

the event E is observed. This formulation is useless for

the decision maker in terms of solving the problem (2)

and so it is necessary to have a model that translate

these uncertainties in numerical values. There are two

main ways to take into account the problems of

uncertainties: fuzzy logic theory approach that deals

with imprecise (vagueness) variables or events and

probability theory that is concerned with precise

events but subjected to randomness. Next paragraph is

devoted to this modeling problem.

1.2. Bayesian linear programming approach

The uncertainties we are dealing with in this paper are

that due to randomness of some parameters as

opposed to vagueness. Classical approach to dealing

with randomness in linear programming problems is

the so called stochastic programming approach (see

Teghem, 1996, and references therein). This approach

is essentially based on ``here and now'' paradigm,

that is optimization problems must be solved with a

priori probability distribution of random parameters

without taking into account possible occurrence of

some events that could give information on these

parameters. Here we will consider the existence of

possible events (or parameters) whose observation

may give an idea of actual values of parameters of the

problem. The mathematical tool used to deal with this

causality relationship is Bayesian networks (BN). BN

(Becker and NaõÈm, 1999; Jensen, 1999) are tools that

can put together probabilistic causal relationships

between parameters and events. This tool permits one

to integrate uncertainty into an expert knowledge

systems in terms of probability of occurrence of an

event knowing that some particular event occurred.

BN seems to be particularly interesting as they are

able to derive a priori unknown relationship (Becker

and NaõÈm, 1999) between variables; they can be used

to estimate the parameters of system (2) subjected to

the occurrence of some events. When this approach is

used to estimate parameters of a linear programming

problem, we will refer to as Bayesian linear

programming. Bayesian linear programming model

is well suited in the context of real time decision

making where events that have signi®cant effect on

particular parameters of linear programming model



can be known with a good prec1s10n ( presence of 
concurrents on the market of a product, reliabili ty of 
production resource, weather of the day, etc.). 
Furthermore a decision systems support (DSS) based 
on Bayesian approach in real time production 
planning for instance can easily integrate different 
functional components of an enterprise such as 
reliability analysis (Tchangani, 200 1) of production 
resources and marketing. 

The remainder of the paper is organized as follows: 
in the second section a rapid presentation of BN is 
given including algorithms and existing software . The 
third section is devoted to the process of linking 
Bayesian network and linear programming into a 
s ingle framework in order to solve a decision making 
problem under uncertain data. The last section shows 
the use of the developed method by considering two 
simple examples. 

2. Rapid presentation of BN 

2.1. Definition of BN 

BN derive from convergence of statistical methods 
that permit one to go from information (data) to 
knowledge ( probabili ty Jaws, relationship between 
variables, ... ) and arti fic ial intelligence (AI) that 
permit computers to deal with knowledge (not only 
information) (see, for example, Becker and Nai"m, 
1999). The terminology BN comes from the works by 
Bayes ( 1763 / 1958) in the eighteenth century. Its 
actual development is due to Pearl (1988). The main 
purpose of BN is to integrate uncertainty in expert 
system. Indeed, an expert, most of time, has only an 
approximative knowledge of the system that he or she 
formulates in terms like: A has an influence on B; if B 
is observed, there exists a great chance that C occurs; 
and so on. In the other hand, there are data (e.g., 
measurements) that contain some information which 
must be transformed into causali ty between variables. 
Thanks to probability, BN will solve this duali ty 
problem. 

BN consists in a graphical representation of 
causality relationship between a cause and its effects. 
Figure l means that A is the cause and Bits effect. But 
as this causali ty relationship is not strict, the next step 
is to quantify it by giving the probability of 
occurrence of B when A is realized. So a BN consists 
of an oriented graph where nodes represent variables 

Fig. 1. Causalily relationship in BN. 

and oriented arcs represent the causali ty relationship 
and a set of some probabilities. The rigorous 
definition of a BN is given below: 

Definition 1 (Jensen, 1999) 
A Bayesian network consists of the following. 

• A set X of variables and a set of directed edges 
between variables. 

• Each state has a finite set of mutual exclusive 
states. 

• The variables together with the directed edge 
form a directed acyclic graph. 

• To each variable X; with parents' contained in 
the set C(X;), there is attached a conditional 
probability table P(X;/C(X;)) .2 

Following assumptions (Becker and Nai"m, 1999) are 
added for mathematically convenience. 

( l ) Subjective probabilities (that used by an expert 
to describe relationship between variables) are 
considered as mathematical probabilities 

(2) Frequencies (table of measures for example) 
are considered as mathematical probabilities 

(3) The causality graph is representative of some 
probability Jaw. 

2.2. Algorithms and software related to BN 

2.2. l. Algorithms 

The main purpose of BN is to propagate a certain 
knowledge of the state of one or more part icular nodes 
through the network so that one can get how the 
beliefs of the expert in the BN will change. So, given a 
BN it returns to compute the following conditional 
probability 

P(X;/Y) where Y C X,X;iY 

Using the properties of chains, trees, networks, d
separation concept (see Jensen, 1999), and the 
properties of conditional probabilities algorithms are 
derived that propagate a certain knowledge in the BN. 
For example for chain of length 11, if X; is downstream 
of Xi but not a direct relative, then 



P�Xi=Xj� �
X

Xi 1

P�Xi=Xi 1�P�Xi 1=Xj�

If Xi 1 is a direct relative of Xj then stop if not

decompose P�Xi 1=Xj� as previously. For other forms

(trees, general networks), it is more complicated but

there exist algorithms based on other well-known

algorithms of networks such as: maximum ¯ow, short

path, maximal weight trees, etc. For more information

one can consult specialized literature as Becker and

NaõÈm (1999), Jensen (1999) and references therein.

2.2.2. Learning

BN constitutes a mode of knowledge representation

funded on the description of relationship between

variables in a given domain. If we consider knowl-

edge as relationship between variables and informa-

tion as the fact of a given situation, then the inference

is the way to go from knowledge model to conclusion

by computing some probabilities. The problem then is

how to compute a knowledge model in order to use it

in the future? This can be done in different ways: by

expert knowledge that is known as knowledge

acquisition, by doing experiences and measuring

some data that will be used to ®t some model, that

is statistical or Bayesian approach. We will brie¯y

recall in the following the two last cases. These two

methods consider the best approximation in some

sense of distribution of probabilities (frequencies of

some events). The two fundamental components in

BN are relationships between variables represented by

arcs that we will refer to as the structure of the BN and

the conditional probabilities referred to as parameters.

Learning process is then to compute these two

components. If the structure is known a priori,

statistics and Bayesian analysis can be used to

determine the parameters. In other hand the same

techniques can be used to choose the best structure in

some ``sense'' among a given set of structures. These

two techniques will be reviewed in the following

sections.

Notations

For a given BN with nodes �Xi�1� i� n, we have:

* the structure of the BN (acyclic directed graph),
* Y, the parameters set of the BN,
* D, base of examples considered for learning,
* n, number of nodes,
* ri, the number of states of Xi,

* qi, the number of states of the parents of Xi

considered as a node,
* Ni;j;k, the number of examples in D for which Xi

is in the state k knowing that its parents are in

the state j,
* yi;j;k, the probability that the node Xi is in the

state k knowing that its parents are in the state j

yi; j; k � P�Xi � xki =C�Xi� � S
j
i�

where S
j
i [ Si (the set of all mutual exclusive

state of C�Xi� ).

Learning process is then to compute the parameters

and/or the structure of the BN in order to optimize

some measure of the distribution of the base of

examples D. The main measure used in the literature

is the likelihood or log-likelihood of the distribution

and so learning process is to compute components that

maximize this likelihood function.

De®nition 2

The likelihood of a probability distribution P funded

on N observations of X is given by

L�P;N� �
Y

x [X

P�x�N�x�

where N(x) is the frequency of x, and the log-

likelihood is

L�P;N� � ÿ
X

x [X

N�x� log�P�x��

Based on these functions some learning algorithms

can be derived.

Statistical learning of parameters

According to previous notations, one can show that,

the log-likelihood function is given by a function FD

of Y:

FD�Y� � ÿ
X

n

i� 1

X

qi

j� 1

X

ri

k� 1

Ni; j; k log�yi; j; k�

and the problem of learning is to choose Y in order to

maximize FD�Y�.

Statistical learning of the structure

Here the problem consists of choosing the BN that

give the best approximation of the base of examples.

And the previous methodology can be used to this

end. The problem is that without some constraints this

can lead to a highly interconnected networks; so one



support system with uncertain data. As presented in

Section 1, the data of the decision process are matrix

A, and vectors b, c, xmin, xmax. These data may depend

randomly on environmental variables or events. The

objective vector c may depend on some variables of

the market; technical matrix A and resource limitation

vector b as well as bounds xmin, xmax may depend on

market and/or some technical variables such failure of

machines, transportation's modes, availability of

specialized crews and so on in the context of

production planning for instance. In the following

paragraph a model of these random parameters will be

derived.

3.1. Modeling of parameters A, b, c, xmin, xmax

The parameters A, b, c, xmin, xmax are random variables

as effects of random environmental events. These

events can be of different nature as they act on

parameters of different nature. For instance, events

that have an effect on the change of the prize (e.g.,

entrance of a new supplier) are not the same as events

that may change the time of execution of a particular

task (failure of a machine) in a factory. But for the

sake of simplicity we will regroup these causes in the

same set denoted by E � fEigi� 1;N where N is the

total number of identi®ed events. These events

constitute the top level of the Bayesian network. To

give a model of parameters, we consider that each

entry of matrix A and each entry of vectors b, c, xmin,

xmax is a random variable that can take a ®nite number

of states and each state is associated with a numerical

values, that is

aij [ akij

n

k� 1;naij

; 1 � i � n; 1 � j � m

bi [ bki
�

k� 1;nbi
; 1 � i � m

ci [ cki
�

k� 1;nci
; 1 � i � n

xmin;i [ xkmin;i

n

k� 1;nxmin;i

; 1 � i � n

xmax;i [ xkmax;i

n

k� 1;nxmax;i

; 1 � i � n

where naij , nbi , nci , nxmin;i
, nxmax;i

are number of states for

the corresponding coef®cient respectively and one can

have, for example, naij=naip for j=p. We will suppose

also that parameters do not have causal relationship

between them (they depend only on top level events,

E) whereas the causes can have relationship between

each other, that is C�Ei�(E ( possibly empty), and

must pay attention and add some constraints in order
to eliminate for example connections with insignif-
icant probabilities.

Bayesian learning of parameters
Let consider a BN with ®xed structure and parameters

Y and let P�Y; X1; X2; . . . ; Xn� be the joint probability 
law of parameters Y and variables �Xi�i � 1;n and let D 
be the associated base of examples; then the formula

of Bayesian learning is

P�Y=D� � P�D=Y�P�Y�

At this stage different learning algorithms can be
derived. For instance, the maximum a posteriori is to
choose Y in order to maximize the previous

expression. If there is no a priori knowledge on Y,

that is, one considers P(Y) to be uniform, this is
equivalent to maximum likelihood approach. Other
methods can be found in Becker and NaõÈm (1999) and
references therein.

Bayesian learning of structure
The Bayesian learning of structure lies on the same

principles as parameters learning (see Becker and
NaõÈm, 1999, for more).

2.2.3. Existing BN software
The computation of parameters and the computation

of prediction given that some events occur by hand
can be heavy if the BN is large (many variables
interconnected). To overcome this and because of
great use of BN in many domain such as: data-mining,

diagnostics, planning, banks, ®nance and defense
(Becker and NaõÈm, 1999; Jensen, 1999) to name few,
some softwares are developed to aid in quick

modelling and analysis of BN. The leader in this
domain is probably the company Hugin that develop a
graphical oriented software Hugin Explorer. A free
version Hugin Lite is available for download from the
website of the company; Microsoft proposes MSBN, a
graphical tool for constructing networks. For more

information on the developer related to BN, one can
consult Becker and NaõÈm (1999).

3. Bayesian linear programming

This section is devoted to the methodology of

bringing together BN and linear programming in a
single framework in order to develop a decision



C�6�(E, where6 can represent any coef®cient of

parameters A, b, c, xmin, xmax.

Remark 1

Notice that some of the previous coef®cients may not

depend on external events, that is, they are known

with certainty. From now,6will generically repre-

sent any coef®cients of parameters A, b, c, xmin, xmax.

The next section shows how one can bring BN and

linear programming together through three principal

units.

3.2. Different units in Bayesian linear

programming

The link between BN and linear programming can be

organized around three principal units: BN unit,

parameters selection unit and the linear programming

unit. The two ®rst units are related to causal

relationships and uncertainties modeling whereas the

last one is a pure computation unit. A fourth unit

called decision maker (DM) is added to analyze the

obtained solution and decide if it is acceptable or

some modi®cations in the uncertainties modelling

process must be considered.

3.2.1. BN unit (BNU)

In BNU, one will construct causal relationships

between external random events Ei [E and para-

meters A, b, c, xmin, xmax of the system. The main

purpose of this unit is to propagate the information of

occurrence of particular events fEig(E in the

Bayesian network in order to modify the belief on

parameters. It will then compute following condi-

tional probabilities:

P 6 � 6k=E
ÿ �

; 1 � k � n6

This knowledge in terms of probabilities will be used

to select in some manner appropriate parameters to be

used in the optimization process. The following

paragraph will consider some procedures to choose

these parameters.

3.2.2. Parameters selection unit (PSU)

Once the previous conditional probabilities are

computed, the parameters selection unit will use

these informations to select particular value for

coef®cients of A, b, c, xmin, xmax using some

procedures. This unit may need an expert knowledge

in order to derive a meaningful procedure of

parameters selection. Let us present some possible

procedures for parameters selection.

Mean value procedure: This procedure is probably

the ®rst idea one may have for selecting parameters.

Indeed, it considers the mean values of each

components of parameters A, b, c, xmin, xmax according

to probabilities computed by the BNU, namely

6 �
X

n6

k� 1

P 6 � 6k=E
ÿ �

6k

where6 is a generic parameter that can represent any

coef®cients of A, b, c, xmin, xmax.

Pessimistic/optimistic procedure: The mean value

procedure is not necessarily the appropriate one.

According to con®dence one has in its experts, one

can privilege a pessimistic or an optimistic behavior

by selecting parameters that present minimum or

maximum probability of occurrence, that is

6 � argmax =min
6k

P 6 � 6
k=E

ÿ �	

Remark 2

The two previous procedures can be combined. That is

one procedure can be used for each group of

parameters. Even in the case of second procedure,

min approach can be used for a group of parameter

whereas max procedure will be applied for another

group. Of course, one can imagine other strategies for

selecting parameters.

3.2.3. Linear programming unit (LPU)

This unit will use the previous selected coef®cients to

perform the optimization process. As mentioned in the

introduction, linear programming is a well established

subject nowadays and there are many solvers and

modeling software devoted to it. For problems with

less dimension one can use the function linprog of

Matlab Optimization Toolbox. Other software com-

bining modeling languages and a broad range of

solvers are: GAMS, AMPL, MPL, MP XPress, etc.; or

one can write its proper code. For more information on

linear programming in general, see MoreÂ and Wright

(1993) or visit the NEOS website at http://www-

neos.mcs.anl.gov/neos/ where many informations can

be found.



3.2.4. Summary

Figure 2 shows the synopsis of the method described

previously. Experts of different domains concerned by

the decision making process (for instance, commer-

cial, maintenance, logistic) will supply the BNU by

evidence of different events E; BNU will propagate

these evidence to compute different conditional

probabilities, P 6 � 6k=E
ÿ �

and send them to PSU

that will select the best value for6 according to the

procedure implemented. These values are supplied to

LPU that will compute the optimal decision (or

control) variables x� and show it to decision maker

(DM). DM will ®nally decide if this solution is

acceptable or some adjustments are necessary in BNU

and/or PSU.

4. Applications

In this section, the applicability of previous approach

is considered through some small but instructive

applications that arise in the domain of marketing or

production planning.

4.1. Example

This application is adapted from an example

considered in page 727 of Winston (1994). It concerns

a newspaper vendor that must determine each day

how many papers to order. The vendor is sure to sell

between 6 and 10 papers every day. This problem was

formulated in terms of state-of-the-world decision-

making problem in Winston (1994) and different

criteria (Maximin Reward, Maximax Reward,

Minimax Regret and Expected Value) was used to

make decision considering that each possibility

(number of papers demanded) is equally likely.

Figure 3 gives the rewards matrix of this example.

This decision problem can be formulated as a

binary value programming by considering decision

variables to be xi � 1 �i� 6; . . . ; 10� if action i

(number of papers ordered) is decided and 0

otherwise. One can see from the reward matrix that

if the state of the world (that is the demand) is known

then the action that maximizes the reward is

determined. Actually, if the demand j [ f6; 7; 8; 9;
10g is observed, the optimal action is to order i� j

papers. Now let us modify equally likely hypothesis of

Winston (1994) and consider that the vendor has

identi®ed some events that have a great in¯uence on

the demand, namely the day of the week (Sunday

excluded) and the weather. In terms of BN, we have

Fig. 4 where the variable demand has two parents,

Day that consists in six states (Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday) and Weather

that, we suppose, has three states (Sunshine, Cloudy,

Raining). Demand is a variable with ®ve states

�D1 � 6;D2 � 7;D3 � 8;D4 � 9;D5 � 10�. Let sup-
pose that from experience the vendor establishes that

conditional probabilities for demand according to the

day of the week and the weather are given by Fig. 5.3

Fig. 3. Rewards matrix.

Fig. 2. Synopsis of decision making by Bayesian linear program

ming approach.

E 
BNU ie--- Expert1, 

P(x=>l !E) 

rsu 

A, b, c, -"m111. xm,, 

LPU 

* 
X 

IJM 

OK 

Papers demanded 
P'aper, ordei:ed 

G 7 s 9 10 
6 30 30 30 30 30 

7 10 35 35 35 35 
8 - 10 15 -10 -10 40 
9 -30 - 5 20 45 45 
10 -50 -25 Cl 25 50 



This model is then introduced in a BN software Hugin

Lite for simulation (Fig. 6). From evidence on the day

and weather Hugin Lite will propagate this knowledge

to determine probability of each state of demand.

Then demand is selected by mean or max probability

procedure. For instance, for a sunshine Saturday (see

Fig. 6) Hugin Lite gives the following results:

Demand D1�6� D2�7� D3�8� D4�9� D5�10�

Probability 0.0 0.0 0.1 0.2 0.7

Maximum probability procedure will recommend

that demand will be 10 and mean procedure gives 9.6

that is close to 10, so demand will be taken to be 10

and so is the order. From Monday to Friday and a

sunshine weather we have the following results.

Demand D1�6� D2�7� D3�8� D4�9� D5�10�

Probability 0.1 0.2 0.4 0.2 0.1

Here the mean procedure and the max procedure

lead to the same value of 8. Of course, other

combination can be simulated.

4.2. Example 2

Here we consider a small production planning

problem. A company is specialized in the production

of two products P1 and P2. A unit of P1 is sold for 25

money units and a unit of P2 is sold for 35 money

units. A commercial study shows that demand X1 and

Fig. 4. BN of newspaper vendor problem.

Demand 

Wc .. 11he.r Sunshine 
Day MLindny Tuesday Wednesday Th1irsday Friduy Smurclay 

1)1 0.1 0.1 (), I 0,1 0.1 () 

D2 0.1 0.1 ll.2 0..2 0.2 n 
D3 tl.4 0.4 .0.4 tJ.4 0.4 0.1 
D~ 0.1 0.2 0.2 0.2 0.2 0.2 

D5 0.1 0.1 0.1 0.1 o.r 0.7 

Wc:uher Cloudy 
Day Ml1nday Tucsdny Wednesday Thumlay Friday St11urclay 

0 1 0.4 0.4 0.4 0.4 0.4 0.3 
02 03 0.] 0.3 0.3 0.J 0.3 
D3 0.2 0.2 0.2 0 .2 0.1 0.2 

D4 0.1 0.1 0.1 0.1 0.1 0.1 
DS 0 0 0 0 0 0.1 

Wemher Rai11ing 
Day Monday Tuesday Wednesday Thu.rsd:ty 1% ..lay Smurduy 

DI 0.6 0.6 0.6 Q,(i 0.6 0.5 
[)2 03 U.3 0.3 0.3 0.3 0.4 
D3 0.1 0.1 0.1 0.1 (). I U. I 
D4 0 0 0 0 0 0 

DS 0 0 0 0 0 0 



X2 for these products can be considered as random

discrete variables belonging to discrete set

fLowi;Nominali;Highigi� 1;2 as a result of random

events related to the market; it is considered that the

most in¯uential events are presence or not of

competitors and the importance of customers. Low

and High state of demands correspond to a variation

of + 20% of the nominal demand. It is supposed that

the competitors are represented by two states: Present/

Not Present and customers by: Important/Not

Important. Production of one unit of product P1

requires t1 machine time units and production of one

unit of P2 requires t2 machine time units; t1 and t2 are

random discrete variables belonging to the set fLarge;
Nominalg as result of random events related to the

state of the machine where Large corresponds to

Nominal plus 10%. The machine can be in one of the

states: Normal, Failure 1 and Failure 2. The period of

planning is T time units. The purpose is to determine

the quantity of each product to be produced during the

planning period T according to evidence of random

events in order to maximize the pro®t.

4.2.1. Modeling

Linear programming modeling: Let us denote by x1
and x2, respectively, the quantity of P1 and P2 to be

produced. The linear problem is then

max
x1; x2

25x1 � 35x2

t1x1 � t2x2 � T

s.t. 0 � x1 � X1

0 � x2 � X2

In correspondence with system (2), we have

A � t1 t2� �; b � T; cT � 25 35� �;

xmin �
0

0

� �

; xmax �
X1

X2

� �

BN modeling: The BN of this system is given by

Fig. 7 where Xi represent generically X1 or X2 and

Fig. 6. News vendor BN in Hugin lite.
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conditional probabilities (considered just for simula-

tion but consistent) for parameters t1, t2 are given by

Fig. 8 and those for Xi by Fig. 9.

4.2.2. Simulation

For simulation, we consider nominal values: T� 160

time units, nominal values for t1 and t2, are

respectively, 1 and 2 time units and nominal values

of X1 and X2, are respectively, 150 and 75. The

solution without considering uncertainties is

x � �150 m5� and the pro®t is 3925 money units.

Figure 10 shows the output of linear programming

unit for some con®gurations of random events;

parameters are selected using mean procedure.

5. Conclusion and future works

The problem of decision making by linear program-

ming approach under uncertain data is considered in

this paper. An effort to link BN and linear

programming in a single framework in order to

solve this decision-making problem is presented.

Because of availability of numerous software for

modeling in the ®eld of BN as well as in the ®eld of

linear programming, this approach can be useful for

modeling and processing data for real time decision-

making. Examples considered show the feasibility of

this approach. The main drawback here is the

separation of software dedicated to BN such as

Hugin Lite and software dedicated to mathematical

programming such as GAMS, AMPL, Matlab,

XPress, etc. For instance in our second example,

conditional probabilities are computed by Hugin Lite

and optimization is done under Matlab with

Optimization function linprog (of course, here one

could solve optimization problem by hand!). An

interface between software based on BN approach as

Hugin Lite and optimization software or an integra-

tion of algorithms of BN and algorithms of

optimization into a single software becomes necessary

Fig. 8. Conditional probabilities for parameters t1 and t2 according to the state of machine.

Fig. 9. Conditional probabilities for parameter Xi according to the state of competitors and customers.

Fig. 7. Bayesian network of problem of Example 2.

'1 

M ;u:hine Nonnol F/ulure_ l Failure_'.! 

Nominal 0.9 0. 1 0.7 
Large 0.1 ().9 0.3 

'2 

Machiue Nomml Failun: I Failure 2 

Nominal 0.9 0.7 0.1 
Large 0.1 0.3 0.9 

X; 

Competitors Presem Nor prescm 
Cus1omers lmponam Nt>T importnnt lmpona111 Nol imporw111 

Low 0.2 0.5 0.2 0.3 
Nominal 0.5 0.3 0.3 0.5 
High 0.3 0.2 0.5 0.2 



if one attempt to use this approach to solve real world

problems. The learning process in the BN unit as well

as model establishment in the parameters selection

unit can get bene®ts with techniques as data mining,

knowledge discovery in databases because many

informations concerning parameters are often stored

in databases. Future works will concentrate on these

tasks.

Notes

1. Parents of a variable Xi are all variables that are causes of

Xi.

2. Probability of Xi knowing C�Xi�.
3. Notice that these values do not come from a realistic

experience but are choosen by the author with an effort to

make them consistent and close to reality.

References

Bayes, T. (1958) An essay towards solving a problem in

the doctrine of chances. Biometrica, 46, 293 298

(reprinted from an original paper of 1763).

Becker, A. and NaõÈm P. (1999) Les reseaux bayesiens,

Eyrolles, Paris.

Dantzig, G. B. (1963) Linear programming and extensions,

Princeton University Press, Princeton, NJ.

Gill, P. E., Murray, W. and Wright, M. H. (1981) Practical

Optimization, Academic Press.

Hiriart Urruty, J. B. and LemareÂchal, C. (1993) Convex

Analysis and Minimization Algorithms, Springer

Verlag, Heildelberg.

Jensen, F. V. (1999) Lecture Notes on Bayesian Networks

and In¯uence Diagrams, Department of Computer

Science, Aalborg University.

Luenberger, D. G. (1984) Linear and Nonlinear

Programming, 2nd edition, Addison Wesley.

Mangasarian, O. L. (1969) Nonlinear Programming,

McGraw Hill, New York.

MoreÂ, J. J. and Wright, S. J. (1993) Optimization Software

Guide, Frontiers Appl. Math. 14, SIAM, Philadelphia.

Nesterov, A. S. and Nemiroski, A. (1994) Interior Point

Polynomial Algorithms in Convex Programming,

SIAM, Philadelphia.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent

Systems, Morgan Kaufmann.

Rockafellar, R. T. (1970) Convex Analysis, Princeton

University Press, Princeton, NJ.

Tchangani, A. Ph. (2001) Reliability analysis using

Bayesian networks. Studies in Informatics and

Control Journal, 10(3), 181 188.

Teghem, J. (1996) Programmation lineÂaire, Editions,

Ellipses/Editions de l'UniversiteÂ de Bruxelles.

Winston, W. L. (1994) Operations Research: Applications

and Algorithms, 3rd edition, Duxbury Press.

Wright, S. J. (1996) Primal Dual Interior Point Methods,

SIAM, Philadelphia.

Fig. 10. Bayesian linear programming results.
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