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Gear reducer motors play an important role in industry due to their robustness and simplicity of con
struction. However, the appearance of faults in these systems can affect the quality of the product and
lead to significant financial losses. Therefore, it is necessary to perform Prognostics and Health
Management (PHM) for these systems. This paper aims to develop a practical and effective method allow
ing an early fault detection and diagnostic for critical components of the gear reducer, in particular gear
and bearing defects. This method is based on a new indicator extracted from electrical signals. It allows
characterizing different states of the gear reducer, such as healthy state, bearing faults, gear faults, and
combined faults. The diagnostic of these states is done by the Adaptive Neuro Fuzzy Inference System
(ANFIS). The efficiency and the robustness of the proposed method are highlighted through numerous
experimental tests with different levels of loads and speeds.
1. Introduction

Gear reducer motors are widely used in industrial applications
due to their robustness and low cost. However, during their life
cycle, different degradation types can occur in these systems lead
ing to undesirable situations such as: system degradation, down
time, high maintenance costs, product quality damages, etc.
Therefore, maintaining such systems in a good condition requires
the implementation of an adequate maintenance strategy. The pre
dictive maintenance, using Prognostics and Health Management
(PHM), can be a good candidate. It ensures, on one side, the relia
bility, availability, maintainability and safety of industrial systems
[1,2]. And on the other side, it allows the detection and diagnostics
of machine faults [1,3]. According to experts statistics, bearing and
gear faults represent a significant part of the defects of gear redu
cer motors [1,3 5]. Hence, it is essential to adopt efficient monitor
ing methods to diagnose their faults.

In literature, fault detection and diagnostics (FDD) approaches
can be generally classified into two groups [1,2,6]: model based
and data driven based approaches. The model based approaches
use mathematical equations to represent the system behavior. It
is more accurate than the data driven approaches. However, con
sidering the complexity of systems, it is often difficult to imple
ment the model based methods. The second group is based on
the analysis of signals extracted from different types of sensors.
It is suitable for complex systems where no a priori knowledge is
needed to monitor the system. However, its performance strictly
depends on the availability of sufficient and representative data
[7]. The choice of an appropriate approach depends on the system
knowledge we have on it, and the availability of historical degrada
tion data. In reality, it is difficult to model the degradation pro
cesses of bearings and gears because of the complexity of their
mechanism, which is nonlinear, non stationary and stochastic.
Therefore, the data driven approach is chosen because of abundant
data acquired by different sensor types [1]. Among them, vibration
and current signals are promising and non invasive parameters for
monitoring.

The FDD of bearings and gears can be obtained by using the
time domain analysis. In this case, statistical features, such as Root
Mean Square (RMS), Standard Deviation (StD), Kurtosis (KUR),
Skewness (SKE), etc., are extracted from vibration signals to per
form condition monitoring [8 10]. On the other hand, the authors
in [11 13] propose the use of the frequency analysis to identify the



characteristic frequencies of the localized roll bearing defects. Gear
fault diagnostic is addressed in [5,13 15]. The authors in [5,13,14]
extract fault characteristic frequencies to localize gear defects
while the work in [15] uses frequency domain features to detect
gear abnormalities. In the time frequency domain, the studies
[16 21] propose to use the wavelet transformation methods for
the detection of bearing localized faults. In addition, the work in
[22] proposes to combine the fast dynamic time warping method
and the kurtosis technique for fault detection of gears. The study
[23] uses angular measurements to diagnose different gear faults.

In addition to vibration signals, acoustic emission data can be
used as an alternative for condition monitoring, as in [24 26]. In
these works, the authors show the effectiveness of acoustic signals
in motor fault detection and diagnostics, including bearing, gear
and electrical faults such as shorted coils. However, fault detection
and diagnostic based on acoustic emission signals may be unfeasi
ble when the motor runs too quietly [24].

The main drawback of the above studies is that the sensitivity of
the vibrations and the acoustic emissions can be reduced due to
the industrial environment noises. Therefore, it is difficult to diag
nose electrical faults in motors via these signals. Hence, electrical
signals (current, voltage, etc.) can be used as a non invasive alter
native for bearings and gears health monitoring.

Considering the previous studies, the bearing and gear faults are
often separately addressed in the literature. Moreover, to our
knowledge, no existing research takes into account numerous
operating conditions of motors when considering its different fail
ure types, such as bearing faults, gear faults and both component
faults in the same time. Therefore, this paper aims to fill this liter
ature gap. In detail, a new indicator extracted from the three phase
current signals is presented to characterize different system states,
as healthy state, bearing faults, gear faults and combined faults of
an asynchronous motor driving a geared box, with different levels
of loads and speeds. The diagnostic of these classes is done by arti
ficial intelligence using the Adaptive Neuro Fuzzy Inference Sys
tem (ANFIS). The remainder of the paper is structured as follows.
Section 2 presents the proposed methodology to extract and build
health indicators. The performance and robustness of our health
indicators are highlighted in Section 3 through experimental
results carried out on a test bench provided by the LASPI labora
tory. Finally, the conclusion and perspective of this work will be
presented in Section 4.

2. Proposed methodology for fault detection and diagnostics

This section presents the main steps of the proposed methodol
ogy for bearing and gear fault detection and diagnostics (Fig. 1).

The system analysis allows identifying the critical components
and the corresponding failure mechanisms leading to sensor place
ment and data acquisition. The recorded data are then processed to
extract relevant features. For this purpose, both of the frequency
and the time domain are investigated. In detail, the frequency anal
ysis is used for each current signal to extract a characteristic value
(the MAX value of the FFT) corresponding to different load varia
tion states. On the other hand, the time domain analysis is applied
to extract values (such as the peak to peak value of the signal
amplitude) that allow tracking the evolution of the bearing and
the gear degradations. After that, a new feature is evaluated and
used to build health indicators. These indicators are exploited in
the third step to identify and classify the different health states
of the motor’s critical components (healthy state, bearing faults,
gear faults, and combined faults). The classification is performed
by using pattern recognition methods, which are part of Machine
Learning (ML). The following subsections describe in details the
above mentioned steps.
2.1. From system to data acquisition

One of the main tasks of health monitoring is to identify the
appropriate physical parameters to be observed in order to track
the system degradation process. To achieve this task, a methodol
ogy is proposed and shown in Fig. 2.

At the beginning of the methodology, it is necessary to analyze
the architecture, the structure and the functionalities of the system
in order to determine the critical components leading to system
failure. For this purpose, numerous approaches can be used such
as experience feedback, fault tree, event tree, cause and effect tree,
etc. [1]. In the framework of this paper, we focus on asynchronous
motors. According to the studies in [1,3,27], bearing failures repre
sent 41 45% of faults in the induction motors. Moreover, according
to the studies presented in [4,5], gear defects are also the main
cause that leads to wind turbines or gear reducer motor failures.
Therefore, bearings and gears can be considered as the motor crit
ical components whose health states should to be monitored over
time to detect and diagnose their faults. To do this, it is important
to determine the most suitable physical parameters for health
monitoring. According to the studies presented in [3 5,8,9], the
vibration signal is the most used data to track the bearing and gear
degradations. However, the sensitivity of this type of signal can be
reduced due to noises in operational environments. Furthermore,
one of the major disadvantage of vibration monitoring is its high
cost of the accelerometers and the difficulties when accessing to
the machine to install the sensors. Besides, the electrical sensors
are inexpensive and easy to implement. Therefore, current sensors,
which are considered as a non invasive way of monitoring the
motors, are used in this paper. This is also known as Motor Current
Signal Analysis (MCSA) [28].

2.2. From data to features extraction and health indicators
construction

This subsection deals with the extraction of a new health indi
cator from the three phase current signals. The extracted health
indicator will be used to detect and diagnose bearing and gear
defects in gear reducer motors. The extraction process is shown
in Fig. 3.

Compared to what is reported in the literature [1,8,15,16,24,26],
the health indicator proposed in this paper is robust when taking
into account the impact of different load levels variation on the
machine. Also, this indicator allows detecting both bearing and
gear faults simultaneously. The main steps of the features extrac
tion and health indicators construction are presented hereafter.

1. Data acquisition. Depending on the operating conditions of the
motor, the three phase raw current signals (ia tð Þ; ib tð Þ, and ic tð Þ)
are used to extract the relevant features. These raw signals are
shown in Fig. 4.

2. Splitting every current signal into N segments of length L.
The obtained signals are split into several segments of length
L. In this contribution, each recorded signal equals to 10 s and
is split into 100 segments of 0:1 second (L 0:1 s, N 100).
Each signal segment is denoted by yjh (Fig. 5) where j character
izes the phase current (j 2 a; b; c½ �) and h represents the segment
number (h 2 1; . . . ;N½ �). This step aims to reduce the data size
for signal processing, and takes only the relevant features, such
as the peak to peak and the amplitude maximum values from
the observations.

3. Extraction of features from every segment observations yjh.
This step is inspired from the result in [29]. In practice, there
exits a large dispersion in the observations of the health indica
tors which characterize the system’s health states. Therefore, it
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fig. 2. From system to data acquisition. 
is necessary to calculate the ratio between the peak to peak 
values of each segmented signal in time domain (yih) and its 
spectral amplitude in frequency domain (MAX(FFT(yih)). This 
ratio allows grouping all the observations of the different load 
levels ( e.g. 0%, 25%, 50%, 75%) in one class. Figs. 6 and 7 illustrate 
the dispersion problem and the effectiveness of the ratio, 
respectively. 
In detail, Fig. 6 shows an example of the distribution of the 
health indicators observations. These health indicators repre 
sent three different health states (e.g. healthy, faulty 1, faulty 
2) without the normalization to the MAX(FFT(yih)) value. Each 
health state contains several groups of observations, which cor 
respond to different load levels ( e.g. 0%, 25%, 50%, 75%). Fig. 7 
shows the effect of the normalization on the reduction of the 
observations dispersion caused by the load level variations. 
The Fig. 8 shows the frequency and the time domain plots of 
the recorded signal. These plots allow separating the classes 
by a decision making rule. This rule is based on the values of 
the ratio between Yih amplitudes and MAX(yih(f)), which are 
then used to represent each health state (regrouping different 
load level observations, in Fig. 6) by a class as illustrated in 
Fig. 7. 
Yih · where Yih(f) 
MAX(yih(f))' 

(1) 

The proposed indicator is then expressed by the ratio between 
the RMS value of each segment zih and the standard deviation 
StD of the total raw signal Yi. 
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Fig. 4. Three-phase raw current signals. 
RMS(zih) 
StD (Yi) 

(2) 

where zih is the hth signal segment of the/' phase, zih and Yi con 
sist of ne and Ne sampling points, respectively. The RMS and the 
StD are respectively the root mean square and the standard devi 
ation. The RMS value measures the average energy of the signal, 
each degradation will vary the RMS values [30]. On the other 
hand, the StD value allows to limit the dispersion between the 
indicators of different health states. 

RMS(zih) ✓ 1 ~ - X 2 ) jh(n)2 
ne n , 
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4. Construction of health indicators. The obtained indicator is 
then exploited to build health indicators which are used to 
classify, detect and diagnose the bearing and gear faults. 
Note that the utilization of only one indicator is not suffi 
cient to detect several faults. In this case, the combination 
of different indicators is necessary to move from one 
dimensional space to three dimensional space by using a 
pattern recognition technique as shown in Fig. 9. 
This technique is based on classifying N observations 
denoted (indiiah , indiilil , indi;,h) into classes where 
h E [1, ... , N]. Each observation is characterized by a vector 
including the three health indicators corresponding to the 
three phase current signals of the motor. This vector is then 
used to build a matrix of health indicators as illustrated 
hereafter. 

indiia1 indiib1 indi;,1 
indiia2 indiib2 indi;,2 

indi 
indiia3 indiibJ indi;,3 

indiiaN indiibN indiicN 

2.3. From health indicators to fault detection and diagnostics 

This step aims to map each value of the above matrix to a cor 
responding class (e.g. healthy, degraded, faulty, etc.) by using a 
pattern recognit ion technique. This technique is based on a dassi 
tier model using a training database for the recognition of the 
membership class of each observation. Note that this technique 
requires a priori knowledge of the classes for the construction of 
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the training database. In our case, the number of studied classes is 
equal to 7. Each class is composed of 100 observations. Thus, the 
number of all observations N is equal to 700. To perform this task, 
the constructed matrix indi is divided into a training database and 
a test database. The training database is derived from classes 
named 0 5 , 1 ,-;; s ,-;; 7, where s represents the number of health 
states of the gearbox components. Each training class is repre 
sented by a matrix composed of 50% of observations taken ran 
domly from each class and defined by the vector 
(indi;ah, indiibh, indi;,h)- The training database corresponds finally 
to a matrix of n lines (n 350), containing the health indicators 
observations, and three columns corresponding to the three 
phase current indicators. This matrix is used to train the classifier 
0 % 
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Fig. 7. Dispersion limitation thanks to the no
model. The test database is also constructed randomly from indi 
and composed of 50% of each class to test the accuracy of the das 
sifter model as illustrated in Fig. 10. The test database corresponds 
finally to a matrix of n 350 lines. 

In the literature, numerous machine learning techniques are 
used to detect and diagnose bearing and gear defects. Among these 
techniques, we can cite the most effective methods such as Neural 
networks (NN) [31,32), K Nearest Neighbors (K NN) [33), Support 
vector machines (SVM) [31,34,35), Naive Bayes classifier (NB) 
[36) and Adaptive Neur Fuzzy Inference System (ANFIS) 
[37,38,30). Each of these techniques presents its own advantages 
and drawbacks. However, as the ANFIS combines both artificial 
neural networks and fuzzy inference systems, it allows exploiting 
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the ability of a neural network to classify and identify patterns 
with a rule based fuzzy logic model leading to an increase of the 
learning capacity [39). 

The ANFIS was initially developed by [37) in 1993. It is made of 
five layer neural network, where each layer performs a step of a 
fuzzy inference system of type Takagi Sugeno, also called (pre 
neuronal architecture). ANFIS uses the hybrid learning algorithm 
between the descent gradient method and the least square method 
to minimize the error between the ANFIS output (prediction vat 
ues) and the target values (true values). The general structure of 
AN FIS is shown in Fig. 11. 

In details, ANFIS has a set of inputs values from the health indi 
cators observations denoted (indiah , indibh , indi,h)-These indicators 
are extracted from the training database that characterizes the dif 
ferent health states of the gearbox. Each observation of the training 
matrix is associated to a membership function, which can be trian 
gular, gaussian, trapezoidal, etc. In our case where four functions 
are considered, the ANFIS has j 3 4 fuzzy rules µ, with 3 is the 
number of inputs (health indicators = 3), and 4 is the number of 
membership functions (MF: gauss, gauss2mf ... ). These rules can 
be given as follows: 

ifindia11 is µ{ , indibh is µt and indich is µ~ 

34 

Y "'f) .vi fi (india11 , indibh , indi,h) 
j 1 

with: 

fi (indi(a,b,cJh) Wj-(e{ .indi,,h + e{indibh + e{indich + eL,) 

(5) 

(6) 

(7) 

and where e represents the coefficients of the rulej, w is the weight 

of the rule j, and Y corresponds to the output of the ANFIS model 
(the predicted values of the different health states of the motor). 

First layer (Fuzzification) The first layer contains as many neu 
rons as possible of the fuzzy subset in the inference system. It per 
forms the fuzzification of the training input set from 
(indiah , indibh , indich), by calculating the membership degree of 
each input through a membership function. 

O 1 µij (indi(a,b,c)h) with i 1, 2 (8) 

where µij represents the membership functions used for the fuzzi 
fication. In this paper, the Gaussian function [37) is considered. 

Second layer (Weighting of the fuzzy rules) The second layer cat 
culates the activation degree of the premises (output of the first 
layer), where each neuron in this layer marked 1t corresponds to 
a fuzzy rule of the type Sugeno. The output of this layer (weights 
Wj) corresponds to the product of the fuzzy inputs. The activation 
functions used on these neurons depend on the operators AND/ 
OR cited in Eq. (5). 

(9) 

Third layer (Normalization) The third layer normalizes the activa 
tion degree of each rule, i.e. each node in this layer, marked N, 

receives at its input the output of the previous layer of the fh neuron, 

and then calculates the ratio between the i'h rule weight and the sum 
ofall rule weights. The output of this layer is the normalized weights. 

3 Wj 
o Wj -- (10) 

IJ',wi 
Fourth layer (Defuzzification) The fourth layer ensures the 

defuzzification of the previous layer to determine the parameters 
of the activation function e, i.e. e is the consequent parameters. 

o4 wj/i <'-0-( c{ .indi,,h + ~ .indibh + e{indi,h + eL,) (11) 

Fifth layer(Output)The fifth layer contains a single neuron in a cir 
cle marked L · Its role is to calculate the sum of the previous output. 

J' 

o5 Y I:<'-0-( c{ .indiah + ei .indibh + e~ .indich + eL 1) 

j 1 

(12) 

The ? represents the predicted values of the different health 
states of the motor. These values will be used to evaluate and clas 
sify the data from the testing set. 

3. Application and results 

This section presents the application used to test and verify the 
performance and the robustness of the proposed methodology for 
bearing and gear fault detection and diagnostics. The application 
consists of a test bench installed at laboratory level (Fig. 12). 
Three phase current signals are continuously recorded from the 
output of the pulse generator placed before the motor. These signals 
are recorded at different operating conditions by varying the speed 
and the load. They are then processed separately, in frequency and 
time domains, to show the limits of these traditional approaches 
and to emphasize the added value of the proposed health indicator. 
Finally, the obtained health indicators are fed into classifier models 
to diagnose the motor's bearing and gear health states. 



Fig. 12. Test bench installed at LASPI laboratory. 
3.1. Description of the test bench 

The Fig. 12 shows the test bench installed at the lASPI Iabora 
tory in France. Its overall scheme is presented in Fig. 14. In detail, 
the asynchronous cage motor drives a three axis gearbox. This Iat 
ter component is composed of three rotating shafts. The first shaft 
AE, also named as the input shaft, is directly driven by the rotor 
shaft. At the output shaft, an electromagnetic brake is placed in 
order to apply a load level to the motor. The second shaft Al con 
tains the gear and the bearing components used during the exper 
iments (the green zone in Fig. 14). This shaft is geared by the input 
shaft. Finally, the third shaft AS is named as the output shaft and is 
geared by the Al shaft. The motor is powered by a pulse generator 
that adjusts its speed by varying the rotating frequencies (25 Hz, 
35 Hz and 45 Hzi The achieved experiments correspond to four 
load levels (0%, 25%, 50% and 75%) at different speeds. Regarding 
the data acquisition part, the current sensors are installed at the 
stator level and connected to an acquisition card (reference 9234 
from National Instrument) to record the three phase currents. 
The recorded data are stored in csv files by using Matlab software. 
Each file contains 10 s of the current signal sampled at a frequency 
equal to 25.6 kHz. 

This test bench is dedicated for bearing and gear fault diagnos 
ties. It is equipped with specified components representing differ 
Gear 
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E7 Healthy Healthy 1/, Tooth break Healthy 

Fig. 13. List of experiments per
ent states such as outer and inner race faults in bearings, surface 
damage and half tooth break faults in gears. The Fig. 15 shows 
the components used in the experimental tests with different fail 
ure types considered in this work. 

In this application, seven types of experiments that characterize 
seven health states of the motor were performed on the test bench. 
These experiments are summarized in Fig. 13. 

Each experiment, from £1 to £7, required the change of the corn 
ponents mounted between the Al and AS shafts, as illustrated in 
Fig. 14. From the Fig. 13, one can see that in the first experiment 
£1, all the components are in a healthy state whereas in the second 
experiment £2 a surface damage is present in the gear at the A/ shaft. 

3.2. Investigation on the fault signatures using spectral analysis 

This subsection deals with the extraction of the characteristic 
frequencies corresponding to the component defects. In the case 
of bearings, the faults can be distributed in different components 
as shown in Fig. 16. 

The vibration caused by these component defects (inner race, 
outer race, cage and rolling balls) affect the current signals by pro 
ducing harmonic frequencies due to the radial motion between the 
motor rotor and the stator. Each defect can be localized through its 
characteristic frequency by the following equation: 
....... 
Legend 

Al : AS Al:AE 

Healthy Healthy Healthy state ++ 

Healthy Healthy Gear surface damage ++ 

Healthy Healthy Gear ½ tooth break ++ 

Inner race Healthy Bearing inner race fault ++ 

Ouwmce Healthy Bearing outer race fault .. 
hmermce Healthy Combined fault (E2 + E4) ++ 

Ouwrace Healthy Combined fault (E3+ ES) ++ 

formed on the test bench. 
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Fig . 14. Overall scheme of the test bench. 
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Fig. 15. Illustration of different component experiences. 
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Fig. 16. Bearing components. 
(13) 

where f , represents the electrical supply frequency, k (1, 2,3 ... ) 
is the harmonic number generated by the current signals and/ b cor 
responds to the characteristic frequencies of the bearing elements. 
The spectral analysis conducted hereafter aims to show the 
impossibility of detecting faults by using the characteristic 
frequencies extracted from the recorded current signals at dif 
ferent operating conditions. However, for illustration and clarity 
of presentation, only the operating condition corresponding to a 



Table 1 
Characteristic parameters of the bearing used for the experimental tests. 

Number of roUing elements, Nr 
Contact angle, fi (0

) 

Rotating frequency.[, (Hz) 
Diameter of the rolling elements. d ( inch) 
Pitch diameter, PD ( inch) 

9 
0 
43.75 
0.2762 
0.7342 
speed of 45 Hz and a load level of 75% is considered in this 
application 

The characteristic frequencies of the bearing inner and outer 
race defects are expressed by Eq. (14) whereas the characteristic 
parameters of the bearing are given in Table 1. 

I nne r race f ,r 

Out e r race for 

/Y!_ [1 d. cos(Rl] f 
2 PD • r 

t{r [1 +dcos(p)] f 
2 PD • r 

(14) 

where Nr is the number of rolling elements, d represents the rolling 
elements diameter, PD is the pitch diameter, fJ represents the con 
tact angle. 

The above fault characteristic frequencies (inner race and outer 
race defects) are calculated by the information presented in the 
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Table 1. Therefore, the inner race frequency is/;, 276.319 Hz, 
and the outer race frequency is f or 125.231 Hz. 

The Fig. 17 shows the spectrum of the current signal in the cases 
of a healthy and a faulty bearing. From these figures, one can notice 
that the magnitude at the harmonic frequencies of the defect bear 
ing is different when compared with the ones calculated above. 
Therefore, one can conclude that the defects cannot be detected 
by using this technique. To remedy to this situation, the proposed 
health indicator is applied in the following subsection. 

3.3. Health indicators construction 

In this application, seven experimental tests (see Fig. 13) were 
performed for different operating conditions to acquire the three 
phase current signals and extract health indicators. These indica 
tors are then used to evaluate the performance and the robustness 
of the methodology proposed in Section 2. 

First, the performance of the proposed health indicator RMS/StD 
is highlighted against the health indicators using only root mean 
square (RMS), variance (VAR) and kurtosis (KUR) values, which are 
the most employed features in the literature. Thus, seven classes 
corresponding to the motors bearing and gear health states ( char 
rm of current signal 
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Health indicators construction at speed corresponding to 45 Hz with 75o/, load level 
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g .. .,, 
> 

0.17 

0.165 

0.16 -

• El:H..ithystalo 
• E2: Gear twfact damage 
• E3: Gear 112 tooth break 
• E4: Bearing inMr race fluft 
• ES: Staring outer 1'108 fault 

H: E2>£4(Comb;nod ,._lb) 
• E6: El•E Combined faults 

0.155 

0.155 -r---:::7-~---r---r--,~----/ 
0.156 0.158 0.16 0.15 

0.16 

0.162 0.164 0.166 0.168 var (lb) 
var (la) 
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Health indicators construction at speed corresponding to 45 Hz with 75% load level 
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Table 2
Accuracy score (%) comparison between the classifiers at different operating conditions of the motor. 9 operating conditions: C1 (45 Hz, 75% load), C2 (45 Hz, 50% load, C3 (45 Hz,
25% load), C4 (35 Hz, 75%load), C5 (35 Hz, 50%load), C6 (35 Hz, 25% load), C7 (25 Hz, 75% load, C8 (25 Hz, 50% load), and C9 (25 Hz, 25% load) represent the 9 operating conditions
of the motor. 7 classifiers: RF (Random Forest), SVM (Support Vector Machine), LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), KNN (K-Nearest Neighbors), LDA
(Linear Discriminant Analysis), and ANFIS (Adaptive Neuro-Fuzzy Inference System).

Case C1 C2 C3 C4 C5 C6 C7 C8 C9

RF 99.42 99.14 93.42 100 99.42 99.71 100 99.72 99.71
SVM 100 92.28 80.57 100 100 100 82.28 66.57 100
LR 98.28 87.42 72.28 100 100 90.28 70 63.42 100
NB 99.71 95.42 85.14 100 100 100 100 99.71 100
DT 99.71 98.57 88.28 100 99.71 97.42 100 99.14 100
KNN 100 100 94.58 100 100 100 100 99.71 100
LDA 100 100 90 100 100 99.42 100 99.71 100
ANFIS 100 100 95 100 100 100 100 100 100
acterized by seven colors shown in Fig. 13) and using only RMS,
VAR and KUR values are shown in Figs. 18 20 respectively.

These figures show a wide dispersion of the health indicators
using only RMS, VAR and KUR. Thus, one can conclude that their
utilization is not sufficient to detect different health states of the
gearbox. On the other side, the performance of our proposed health
indicator when considering 25 Hz, 35 Hz, 45 Hz and 75% of load
level is shown in Fig. 21.

From Fig. 21, it can be seen that the proposed health indicator
allows clearly separating seven classes corresponding to the gear
box health states in different operating conditions, 45 Hz, 35 Hz
and 25 Hz with 75% load level. The class separability for the speeds
corresponding to 25 Hz and 35 Hz of the pulse generator is higher
than the one of the speed corresponding to 45 Hz. In addition, the
robustness of the proposed health indicator is highlighted in the
cases of 25 Hz, 35 Hz and 45 Hz with 0% load level.

The Fig. 22 shows a negligible dispersion of the extracted health
indicators and a clear separability between the classes with
numerous operating conditions of the motor (different load and
speed levels). These results highlight the efficiency of the proposed
health indicator to characterize the different health states of the
gearbox by using the current signals, even in the cases of low load
levels.

3.4. Fault classification

The health indicators extracted previously are used in this sub
section to diagnose the bearing and the gear faults at different
operating conditions of the motor by varying the load and the
speed levels. For this purpose, the health indicator vectors obtained
in subSection 2.2 are fed into the input of the ANFIS classifier. The
structure of these vectors is shown hereafter.

indi

N indiia indiib indiic Xs

1 1:7849 1:8992 1:7789 1
2 1:7871 1:8989 1:7817 1
. . . . . . . . . . . . . . .

298 1:7628 1:8372 1:8201 3
299 1:7653 1:8416 1:8233 3
. . . . . . . . . . . . . . .

699 1:8387 1:9171 1:7709 7
700 1:8399 1:9201 1:7727 7

266666666666666664

377777777777777775
where N is the number of training and test observations, Xs is the
membership class and 1 6 s 6 7 (the seven health states of the
motor’s bearing and gear).

These vectors are then divided into a training set and a test set,
both are chosen randomly from the total observations of the con
structed matrix indi. Note that each health indicator contains three
values corresponding to the three phase currents.
In order to prove the efficiency of the ANFIS classifier model, its
classification results are compared to those obtained by other clas
sifiers (RF, SVM, LR, NB, DT, KNN and LDA) with the obtained
matrix indi. In addition, the robustness of the ANFIS based classifi
cation is verified by considering nine operating conditions
(C1. . .C9), which correspond to different load and speed levels.
These condition variations impact the health indicator results by
reducing the separability between the classes. Therefore, it is nec
essary to train a classifier to better diagnose the bearing and gear
faults, independently to the operating conditions. The Table 2 sum
marizes the performance comparison between the ANFIS and some
of the classifiers proposed in the literature. This comparison is
based on the health indicator extracted from the current signals.
As a reminder, the training and the test data sets are taken ran
domly (50% 50%) from the observations of the matrix indi, as
explained in subSection 2.3.

Based on the Table 2, one can notice that the best classification
results are marked in bold. In addition, in all the cases, the accuracy
score given by the ANFIS classifier is higher than that one given by
the other classifiers. We can also see that the accuracy score of the
ANFIS classifier is high and equals to 95% even in the worst case
when the motor runs at a high speed with a low load level (C3).
For all remaining cases, the accuracy score of ANFIS is equal to
100%. These results highlight the robustness of the proposed diag
nostic method under different operating conditions. Indeed, when
the motor runs at a high speed (35 Hz or 45 Hz), the accuracy of the
other classifier models decreases with the diminution of the load
level. For example, at the speed corresponding to 45 Hz, the accu
racy score of the LR classifier decreases from 98.28% to 72.28%
when the load level reduces from 75% to 25%. These results can
be explained by the diminution of the vibration sensitivity, which
causes an imbalance of the current signals in the case of defects at
high speed and low load condition.
4. Conclusion

A methodology based on the three phase current signals has
been presented in this paper for fault detection and diagnostics
of bearing and gear components. First, a set of relevant features
was extracted from the three phase current signals of an asyn
chronous motor. These features are then used to build health indi
cators that allow separating the different states of the bearing and
gear components, taking into account the impact of the operating
conditions of the asynchronous motor. Finally, the constructed
health indicators were fed into an ANFIS model to classify the dif
ferent health states of the bearing and the gear. The proposed
methodology was applied on real data taken from an experimental
test bench realized at the laboratory level. The obtained results
highlighted the performance of the proposed health indicator to
detect and diagnose different faults of the bearing and gear. Fur
thermore, the robustness of the proposed methodology was veri



fied through the detection of simultaneous faults of the bearing
and the gear under different motor speed and load levels. The accu
racy of the ANFIS model was also compared to that of numerous
classifiers proposed in the literature. This comparison clearly
showed the superiority of the ANFIS model.

As a limit of the proposed diagnostic methodology, one can
mention the fact that it is a supervised one. Therefore, it requires
historical data to learn the fault patterns before diagnosing them,
which may be difficult to obtain in some industrial cases.

As future work, more fault types, such as the combination
between bearing and gear faults and also the combination between
mechanical and electrical defects, will be investigated. The applica
tion of the proposed methodology on other types of motors could
be also a good perspective to show its effectiveness.
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