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A B S T R A C T

The barrier properties of the technologically attractive amorphous silica films depend on their structural
characteristics at the atomic level, which, in turn are strongly influenced by the deposition conditions. In this
paper, we propose an investigation of the poorly investigated densification mechanism of amorphous SiO2 films
processed by CVD from TEOS and O2 between 400 and 550 °C. Based on literature survey and our original
experimental results, we show that the densification process of these films, occurring with increasing the de-
position temperature, is highlighted by a decrease of the water and silanol content, probed by transmission FTIR.
We discuss the evolution of Si-O-Si related vibration signatures and we use the central force model to correlate
the LO2 and LO3 shifts with the decrease of the Si-O-Si bond force constant, when the deposition temperature
increases. Nuclear analysis reveals that films processed below 525 °C present hydrogen content between 5 ± 0.3
and 7 ± 0.3%at. Ellipsometry measurements attest that films processed at 550 °C are close to O/Si silica stoi-
chiometry and hydrogen free. We show that application of the P-etch test results in particularly low erosion rate
of 10 Å.s−1 for dense films processed at 550 °C.

1. Introduction

Thin and dense SiO2 films processed from tetraethyl orthosilicate (Si
(OC2H5)4, TEOS) by chemical vapor deposition (CVD) have long been
considered to solve mainly microelectronic issues, such as copper dif
fusion barrier, dielectric capacitor and intermetallic dielectric layers for
multilayer metallization systems [1]. Nowadays, such films remain key
enabling materials in innovative applications and devices [2 6]. These
applications have in common a low thermal budget process require
ment due to thermally sensitive, or 3D complex geometry substrates.
Addition of oxygen [7] or ozone O3 [8] in the gas phase or the use of
plasma assistance (PECVD) [9,10] are well known actions resulting in
lower thermal budget processes, yielding silica films at moderate tem
peratures, typically lower than 600 °C. More recently, atomic layer
deposition (ALD) of SiO2 thin films has also been performed at low
temperature to solve optical applications issues [11] or to cap nano
porous anodic alumina membranes employed in biosensor devices [12].
The correlation between the effects of such low temperature deposition
and the atomic arrangement of the silica structure is not well

understood, especially considering that the densification process is
complex and multi parameter dependent [13]. However, the atomic
arrangement of the material is the key to understand its targeted barrier
properties when such silica films are used as barrier coatings [4,5] or to
understand the special selectivity of gases when it is used in gas
membranes [6].

The structure of the amorphous SiO2 films has been defined by Sen
and Thorpe [14] and Galeener [15] as a short range organized con
tinuum built up from tetrahedral entities centered on a silicon atom.
Each oxygen atom at the corner of a tetrahedron is shared by another
tetrahedral unit and cross links the entire network. Twofold co
ordinated bridging oxygen is more mobile than fourfold coordinated
silicon and has been considered as the main contributor to the atomic
vibration of this system [16]. Vibration modes of this oxygen are in
timately related to the SiO2 structure and, consequently, the spectral
changes under densification should reveal information on the atomic
distribution of the network. Three vibration modes of the oxygen atom
linked with two silicon atoms are assigned in the mid infrared (IR)
region between 400 cm−1 and 4000 cm−1. These are the transversal
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2. Experimental

Depositions were performed in a horizontal, hot wall tubular CVD
reactor, presented in the supplementary material (Fig. S1). For each
experiment, six 30×10×0.2mm3 Si coupons cut from 4’ Si(100)
wafers (Sil'tronix ST) were degreased in sequential acetone and ethanol
ultrasound baths for 5min each, dried in Ar flow, positioned on a
stainless steel planar substrate holder and immediately introduced in
the reactor. TEOS vapors were introduced in the reactor by bubbling 58
standard cubic centimeters (sccm) of nitrogen, N2 (99.9999%, Messer)
though the liquid precursor heated at 51 °C. 520 sccm of O2 (99.999%,
Messer) are added to the mixture just before the reaction chamber.
Experiments were performed at five different Td, namely 400 °C, 450 °C,
500 °C, 525 °C and 550 °C, at a constant pressure of 730 Torr. An an
nealing at 800 °C during 30min under ambient atmosphere was per
formed on one sample processed at 550 °C. The thickness profiles of the
SiO2 films on all coupons were measured by reflectometry and served to
deduce mechanistic and kinetic information for each experimental
condition. More information about the deposition setup and the kinetic
results obtained is available in our recent companion paper which deals
with the development of a kinetic model of this process [7].

FTIR spectrometry was performed in transmission mode with a

optical rocking (TO1), bending (TO2) and asymmetric stretching (TO3) 
modes, which are observed respectively at around 450 cm−1, 800 cm−1 

and 1070 cm−1 [16]. The TO1 mode is sensitive to structural changes
[17] but its frequency shift is too weak to be monitored by FTIR, i.e. the 
shift is in the same order of magnitude with the measurement un
certainties. An additional vibration mode, the TO4, is assumed by some 
authors between 1050 cm−1 and 1250 cm−1 [18 20]. It has been at
tributed to the out of phase vibrations of the TO3 mode [20,21], to the 
longitudinal, LO3 mode in this area [22], to the presence of residual 
TEOS molecules [23] and to strained 3 to 6 fold SieO rings [19,24,25]. 
The debate around the attribution of a physical phenomenon to the TO4 

broad band reveals the difficulty to correlate the existence and the 
characteristics of this vibration with the short range organization of the 
network. This difficulty may be attributed to the intrinsic nature of the 
material, which is amorphous, with randomly crosslinked tetrahedral 
entities [15]. Thus, the overall characteristics of CVD SiO2 films, such as 
stoichiometry [26,27], porosity [28], impurities [29,30] and mechan
ical strain [24] which depend on the process conditions, will affect the 
FTIR signature, the evolution of the refractive index and consequently 
they may bias the interpretation of the densification process.

This literature review reveals that, despite uncertainties on the 
origin of some vibrations, FTIR is an appropriate technique to monitor 
the evolution of the silica network, and for this reason it will be used in 
the present work. We will adopt the central force model proposed by 
Sen and Thorpe [14] and applied to glasses by Galeener [15] in order to 
link FTIR signatures to structural changes. This model connects SiO2 

vibrations to the Si O Si intertetrahedral bond angle, θ, and the SieO 
force constant, α, of the SiO2 network [31]. Nonetheless, the model 
assumes perfect stoichiometric, continuous SiO2 network and it takes 
into account neither composition deviations, namely the offset with 
regard to the nominal O/Si ratio, nor the presence of heteroatoms such 
as carbon impurities, nor the porosity, nor the mechanical strain that 
can be observed in CVD SiO2 films. Consequently, and in order to ela
borate a scenario of the evolution of the structure under different 
process temperatures (Td), we perform complementary characteriza
tions to get insight on these parameters: we quantify by nuclear analysis 
the concentrations of silicon, oxygen and hydrogen; we determine both 
the refractive index by reflection spectroscopic ellipsometry (SE) using 
the Sellmeier model, and the porosity by ellipsometric porosimetry (EP) 
measurements using the Cauchy model. Finally, we apply selective 
chemical corrosion tests proposed by Pliskin [13,32] in order to cor
relate the evolution of the structure with its intrinsic resistance towards 
aggressive medium.

Frontier FT IR/NIR instrument. The 400 4000 cm−1 spectral range was 
probed with a 2 cm−1 spectral resolution. Fifty spectrum accumulations 
were performed for each experiment. Raw data were processed in order 

to remove light interferences and substrate signature. The position of 
SiO2 peaks are affected by the thickness of the film in transmission mode 
[33]. Films with similar thicknesses were investigated, ranging from 338 
nm to 416 nm and the absorbance was normalized by the film thickness. 

A homemade substrate holder was used in order to apply an angle 
between the incident beam and the sample, to observe the TO LO 

splitting.

Two instruments were used for ellipsometry investigations. First, EP 
measurements were used to evaluate the open nanoporosity of the films. 
A Semilab GES5E spectroscopic ellipsometer was used on pur pose, 
operating between 250 nm and 1000 nm, at a fixed incidence angle of 
70°. This ellipsometer is completed with a lab made chamber set up for 
automatic vapor adsorption desorption investigation [34,35]. Porosity 
was estimated by probing the evolution of the refractive index due to the 
intake of the ethanol by the structure. Before any acquisition of the 
refractive index and thickness of the layer, the sample was maintained 
under vacuum at 150 °C to desorb water or other volatile adsorbed 
compounds. Refractive index and thickness calculation were monitored 
at variable ethanol pressures by adding gradually the solvent in the 
chamber. The filled pore fraction of the open pores is a function of the 
partial pressure of the solvent above the sample. Ellipsometric data 
tan(psy) and cos(delta) are collected then simulated and fitted on the 
390 1000 nm spectral range with a goodness of fit over 0.99, using the 
Cauchy model (Winelli2® software).

In addition, a Semilab SE 2000 instrument operating in the 250 nm 
to 1000 nm spectral range with fixed incidence angle of 70° was used to 
evaluate the refractive index by SE. The spectroscopic ellipsometry data 
were simulated and fitted using the Semilab SEA software. The Sellmeier 
model was used as a reference to determine the refractive index and the 
films thickness.

The O/Si atomic ratio of film was determined by coupling the 
Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction 
Analysis (NRA) techniques for Si and O analysis, respectively. RBS was 
performed at a 166° detection angle with 2 MeV α particles. The oxygen 
concentration was measured through the use of the 16O(d,α0) nuclear 
reaction with D+ ion beam of energy 0,9 MeV and at a 166° detection 
angle of emitted alphas. The hydrogen content of SiO2 film was mea
sured by ERDA with 2,8 MeV alphas beam. The samples were posi
tioned at 15° grazing incidence and the recoiled hydrogen atoms were 
collected at scattering angle of 30°. The global composition of films is 
obtained through the simulation of the RBS, NRA and ERDA spectra by 
using the SIMNRA software [36].

The corrosion resistance of the films was evaluated by using the P
etch solution test, proposed by Pliskin [13]. The test consists in im
merging the sample for 30 s in a stirred solution maintained at 25 °C. 
The solution is composed of 3 parts hydrofluoric acid (49 wt%), 2 parts 
of nitric acid (70 wt%), and 60 parts of water. The P etching rate for 
each sample corresponds to the thickness loss for a given etching time, 
determined by SE and is given in Å.s−1,

3. Results and discussion

3.1. FTIR

Fig. 1 presents a typical 400 4000 cm−1 FTIR survey spectrum of a 
SiO2 film processed at Td = 400 °C. According to the literature [16], the 
TO1, TO2 and TO3 vibration modes are detected at 450 cm−1, 798 cm−1 

and 1074 cm−1, respectively. The TO4 broad band appears around 
1100 1200 cm−1. Water content is observed between 3300 and 3600 
cm−1 and silanol fingerprints are probed at 925 cm−1 and 3650 cm−1. 
Neither carbon (SieC) [37] nor CH3 [38] nor SieH im purities related 
vibrations [29,39 41], expected respectively at 600, 1300 and 2000 cm
−1, are present.



Fig. 2 presents a zoom on the 700 1300 cm−1 region of the FTIR
spectrum of five samples processed at different Td, from 400 °C to
550 °C. This spectral domain includes the Si OH, and SiO2 vibrations
modes (TO2, TO3 and TO4). A color code is applied for each Td and it
will be used in all forthcoming illustrations. Several informations are
highlighted in this figure. First, a slight, though noticeable evolution of
the position of the TO3 peak, corresponding to the asymmetric
stretching vibration mode is observed with increasing Td. At the same
time, the TO3 peak broadens, from 72.5 cm−1 at 400 °C to 81 cm−1 at
550 °C as shown by the diagram in the insert of Fig. 2. Finally, a de
crease of Si OH intensity is observed when Td increases. These three
informations will be discussed hereafter in other to have an insight into
the reorganization of silica films when Td increases.

3.1.1. Evolution of TO3 frequency with the increase of Td
It has been reported that the information contained in the evolution

of the position of the TO3 peak, provides insight in the densification
process of the SiO2 network [13,42]. According to these authors, the
shift to higher wavenumbers (blue shift) of the TO3 peak position in
dicates the densification of the SiO2 network and conversely, a shift to
lower wavenumbers (red shift) is assigned to a decrease of the density.

Fig. 3 presents the evolution of the position of the TO3 peak as a
function of Td of the CVD samples of the present work (mauve diamond

plots). The point at the highest temperature corresponds to a sample
deposited at 550 °C and annealed at 800 °C for 30min. We observe a red
shift of the TO3 peak position with increasing Td, while the peak po
sition of the annealed sample shifts to a higher value. For sake of
comparison, a compilation of literature data is also reported in Fig. 3, as
a function of deposition or post deposition annealing temperature
[23,43 49]. Empty symbols correspond to sol gel, room temperature
processed, then annealed SiO2 films. Full symbols correspond to plasma
enhanced CVD (PECVD) SiO2 films, processed between room tem
perature and 250 °C. Two regimes are illustrated in the diagram. For
deposition, or post deposition annealing temperatures equal to, or
lower than 600 °C, the TO3 position presents a red shift or remains
stable with increasing temperature. Above 600 °C, it presents a blue
shift with increasing temperature.

Literature and our own data present a remarkable coherence. The
global behavior of all chemical systems used for the processing of SiO2

films indicates that the assumption following which densification is
illustrated by a blue TO3 shift, is not relevant for films processed and/or
annealed below 600 °C. This inconsistency is attributed to films defects
such as porosity, impurities or mechanical strain resulting in less dense
organization of the tetrahedral network [13]. The previously described
TO4 broad band is the representation of the disorder of the network and
it is relatively high for every silica films processed at temperature lower
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Fig. 1. FTIR survey spectrum of a SiO2 film processed at Td=400 °C.
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than 600 °C. This peak can strongly impact the position of the TO3 peak.
At and above 600 °C, the Si O Si asymmetric stretching vibration mode
is less impacted by the TO4 broad band because fewer defects might be
observed in the structure. Consequently, the TO3 peak position presents
a blue shift with increasing temperature [44].

3.1.2. Broadening of TO3 peak with the increase of Td
The broadening of the TO3 peak revealed in Fig. 2 was also observed

for PECVD SiO2 films [48]. This behavior is attributed to a dis
organization of the network [50] and thus it cannot be linked to the
densification of the SiO2 structure, either. Nonetheless, a close ob
servation reveals that this broadening is not related to the increase of
the full width at half maximum (FWHM) of the peak but rather to a
change in its shape. At high Td, the peak can no longer be fitted by only
one gaussian or lorentzian function. The peak is shifted due to the
asymmetric, one side increase of the peak area. An addition of a second
contribution had to be assumed. The existence of two contributions
below the TO3 main peak has been already suggests by authors [51,52].
To explain this behavior, they assigned the contribution of two asym
metric stretching mode vibrations from two different phases.

3.1.3. Decrease of hydrated species specific peak intensities with the
increase of Td

Fig. 2 reveals a simultaneous decrease of the intensities of the TO4

vibration shoulder and of the Si OH vibrations located at 925 and
3650 cm−1 with increasing Td. Above Td=500 °C, almost no Si OH
located at 925 cm−1 is probed. In order to confirm this trend, it is useful
to focus on the 2750 3800 cm−1 spectral domain, also containing Si
OH and H OH vibrations. Fig. 4 presents the FTIR spectra in this do
main for the samples processed in the five investigated Td. A common
baseline has been adopted for all five spectra. The insert in Fig. 4
presents the evolution, with increasing Td, of the peak intensities of the
Si OH and H OH vibrations located at 3650 cm−1 and at 3400 cm−1,
respectively. As is the case for the Si OH vibrations located at
925 cm−1, their intensity in the presented spectral domain also de
creases with increasing Td, and the same holds for the H OH vibration.
Moreover, it is observed in the insert of the figure that this decrease is
slightly accelerated above 500 °C for both bonds.

When Td increases, the structure is less hydrated as shown from the
decrease of the H2O and Si OH vibrations in Fig. 4. At the same time,

the intensity of TO4 decreases and the TO3 peak area increases. More
over, the attenuation of the TO3 broadening above 450 °C observed in
Fig. 2, can be correlated to the reduced Si OH population above this
temperature. Based on this assumption, we suggest that at moderate
temperature; i.e. below 600 °C, the SiO2 network is composed of cross
linked Si O Si units with impurities which impact SieOeSi asymmetric
stretching “out of plane” mode vibrations (TO4 shoulder) [19,23,24].
These impurities can be assigned to hydrogen species (H2O and Si OH)
or structural disorder such as space among SiO4 tetrahedra [53]. At
higher temperature, additional Si O Si bonds are created and the
amount of impurities decreases. This scenario results in the presence of
two populations of Si O Si bonds, the classic Si O Si bond population
which vibrates at the TO3 vibration frequency and another one re
presented by the TO4 vibration mode or by another asymmetric vi
bration mode suggested by authors [51,52]. Si O Si groups that vibrate
at the TO4 frequency are the one impacted by impurities [23] or por
osities [19,24]. As soon as the signature of hydrogen species decreases
when Td increases, TO4 decreases and the position and shape of the TO3

change as described. In order to check this assumption and to link the
FTIR signature to structural changes, it is essential to further investigate
the deconvolution of each contribution, especially in the TO3 TO4 re
gion.

3.1.4. TO3 LO3 splitting
By applying an oblique incidence of the infrared beam on the

sample, the interaction of the electromagnetic field with the film is
enhanced and the asymmetric stretching mode is split into two com
ponents [54], the transverse optical excitation (TO) and the long
itudinal optical one (LO), the latter called the Berreman effect [55,56].
Fig. 5 presents the evolution of each component of the asymmetric
stretching mode for the five Td, for an incidence angle of 60° with the
sample surface. A similar behavior to the one described hereafter is
observed for all other tilt angles. The shape of the TO3 peak varies when
tilted, with non Gaussian type evolution when Td increases, as pre
viously reported. This is attributed to the existence of two populations
of the Si O Si group. At the same time, the TO3 position presents a red
shift, while the position of the longitudinal component (LO3) presents a
blue shift. Similar observations were obtained on mesoporous SiO2

films [57]. Due to TO4 splitting, Lange et al. [54] attributed TO4 and
LO4 frequencies at 1200 cm−1 and 1170 cm−1 respectively. While TO3

0 200 400 600 800 1000 1200

1055

1060

1065

1070

1075

1080

1085

TO
3
Po

si
tio

n
(c
m

-1
)

Temperature (°C)

Parrill et al. (1992)
Almeida et al. (1990)
Primeau et al. (1997)
Smith et al. (1989)
Fridmann et al. (1990)
Brown et al. (1995)
Lucovsky et al. (1990)
This work

Fig. 3. Overview of TO3 position as a function of post-an-
nealing temperature for SiO2 films. Empty symbol data: sol-gel
films processed at room temperature. Full symbol data: PECVD
films processed between room temperature and 250 °C. Empty
squares [25], empty dots [43], empty triangles [23], full
squares [48], full dots [49], full triangles [46], full pentagons
[44]. Full diamonds correspond to samples of the present work
positioned as a function of the deposition temperature. The
point at the highest temperature corresponds to a sample de-
posited at 550 °C and annealed at 800 °C for 30min.

,---0 6. .,"/ 
I I I 

I I I 
I .,0 I 

;✓ , 

0~ ,' 
6, I 

' ~ 
0-~'t',.:.--::_2:: CJ' ,' 

6 
2'.:)-,0 L ', 

1 \ -y, :i:_~., , / ,' 
•---- \ rY-- - ,' ,, 

.., .._..., \ 'J I 

'R" I 
"\, I 

·- ,,/· '~~ ::.--ti I • --_,/ --- \ ~ I 

___ , ' I- • -
-------- ... __ ' •' - 0-

-.,,',,, \•--- •,, / -6-
··· ................ :. --•-- _t 

----- -+-• 

., 
•' 

,.---. 
,• 



and LO3 probe the same asymmetric stretching vibration mode, other
types of vibration may less bias the LO3 response. Consequently, the
blue shift observed for the LO3 peak is predominantly attributed to the
asymmetric stretching vibration [58,54].

In order to confirm the effective densification of the SiO2 network
with increasing Td, as assumed by the blue shift of LO3, we now apply
the central force model which correlates the different Si O Si vibration
frequencies (ω, cm−1) with the effective force constant (α, N.m−1) and
the angle (θ) of the bond [15]:

= + +
−α ½(ω ω ) M (1 4M /3M )LO2

2
LO3

2
O O Si

1 (1a)

= − + +
−cos θ (ω ω ) (ω ω ) (1 4M /3M )LO2

2
LO3

2
LO2

2
LO3

2 1
O Si (1b)

where MO (16 g.mol−1) and MSi (28 g.mol−1) are the molar masses
of oxygen and silicon. The evolution of the effective force constant and
of the angle of the Si O Si bond versus Td can be determined by mea
suring the evolution of the LO2 and LO3 frequencies, ωLO2 and ωLO3.
Since the TO2 LO2 splitting is negligible, TO2 and LO2 frequencies are
merged and the evolution of the LO2 frequency is assumed identical to
that of the TO2 one. Table 1 details the LO2 and LO3 shifts, the evolu
tions of the force constant and of the intertetrahedral bond angle as a
function of Td. The model predicts that with increasing Td, the effective
force constant increases and the intertetrahedral bond angle remains
stable. It is concluded that, by differentiating the TO3 LO3 pairs, it is

possible to isolate the asymmetric stretching contribution and to con
firm the densification of the SiO2 network, despite the red shift which is
observed for the TO3 peak.

3.2. Nuclear analysis

The red shift of the TO3 vibration mode is assigned to films defects
in general, including impurities. We perform ion beam analysis in order
to access the composition of the films processed between 400 °C and
550 °C. The results are resumed in Fig. 6 in terms of the evolution of the
O/Si atomic ratio and of the atomic percentage of hydrogen atoms as a
function of Td.

Between 400 and 525 °C the O/Si atomic ratio remains stable at a
value slightly higher than 2, attributed to the presence of H2O
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molecules in the network as was revealed by FTIR. This ratio decreases
to ca. 1.93 at 550 °C. However, this evolution remains within the un
certainty of the measurements. At Td equal to or lower than 525 °C, the
hydrogen concentration varies between 5.0 ± 0.3 and 7.0 ± 0.3 at.%.
At Td= 550 °C, it is below the detection limit of ERDA, namely 0.5 at.
%. These results are consistent with a decrease of the concentrations of
water and silanol groups at 550 °C. Silanol groups were not probed at
925 cm−1 by FTIR at this temperature and a low signal was probed for
water and silanol groups at 3650 cm−1. However, the decrease of water
content and silanol groups between 400 and 525 °C, observed by FTIR,
is not probed by nuclear analysis. This can be attributed to the con
ditioning of the samples under secondary vacuum during nuclear ana
lysis, resulting to water desorption from the structure. It can also be
attributed to the current density received by the sample under the ion
beam which may result in a preferential desorption.

It is worth noting that hydrogen containing silica films have often
been reported in the literature. For example, films processed by plasma
enhanced ALD and thermal, ozone involving ALD from various silicon
precursors present a relatively high hydrogen concentration, in the
range 10 to 13 at.% [59]. Also, films processed by PECVD from hex
amethyldisiloxane (HDMSO) and O2 present a Td dependent hydrogen
concentration, decreasing from 18.5 at.% at 50 °C to 5.3 at.% at 300 °C
[60].

The significant amount of hydrogen probed by nuclear analysis and
a non negligible amount of water probed by FTIR can be assigned to the
deposition process since it is a by product of the CVD reaction between
TEOS and oxygen [61]. It can also be due to the post processing ad
sorption of water in the SiO2 structure, as reported by some authors
[62 64]. For example, Lucovsky et al. observed a significant intake of
H2O after 5 days storage at ambient atmosphere which has a strong
effect into the TO3 band [64].

Also, thermal desorption and FTIR studies of the gas evolution and
the microstructure of PECVD silicon oxide grown between 70 and
700 °C from TEOS and oxygens show that between 100 and 300 °C, gas
desorption is due to adsorbed water in the film during air exposure,
originating from liquid water and hydrogen bonded water molecules at
the macropore site [65]. At higher temperature, from 350 °C to 650 °C,
gas desorption is related to the isolated silanol bonds at the macro and
micropore sites formed during film growth.

3.3. Ellipsometry

The densification of the films involves an evolution of their porosity,
taken in the broader sense of the free space available among the SiO4

tetrahedra. In order to get insight in this parameter, two films processed
at 400 and at 550 °C; i.e. the highest and lowest Td were characterized
by EP. The refractive index, n550, of the film processed at 550 °C, de
termined using the Cauchy model, was shifted from 1.450 to 1.423 after
the warm up stage up to 150 °C. Taking into account that this tem
perature is too low to induce structural modifications in the film, the
evolution of the refractive index gap can be assigned to water removal,
contained in the film (nvoid= 1 < nH2O). Then, ethanol was introduced
in the chamber. The value of n550 remained unchanged to 1.423. EP
measurements were not sensitive enough to determine a possible por
osity in the films. In the literature, ultra microporous SiO2 films exhibit
a porosity smaller than 1 nm [66]. Studies were done in order to un
derstand the adsorption of water molecules inside 1.04, 1.96 and
2.88 nm diameter silica pores [67]. The proposed scenario considers the
coverage of the surface of each pore by silanol groups. A first stage,
defined by a preferential adsorption of the water molecule near silanol
groups, is followed by the formation of a water monolayer over the
entire pore surface. In the presence of excess water molecules, pores are
completely filled with water.

The evolution of the refractive index versus Td using the Sellmeier
models is presented in Fig. 7. Two regimes are observed; below
Td=500 °C the refractive index remains stable. Above 500 °C, the re
fractive index decreases. Two scenarios are reported in the literature for
the correlation between the characteristics of the SiO2 films and their
refractive index: for stoichiometric films, the refractive index increases
when the network becomes denser due to the decrease of porosity
content that contain void or water with a refractive index of the en
vironment lower than that of SiO2 [68]. For non stoichiometric SiOx

films, the refractive index decreases when the SiO2 network becomes
denser [69]. This behavior is assigned to the incorporation of oxygen in
the structure, this enrichment goes with a decrease of the refractive
index because nSi > nSiO > nSiO2.

At Td up to 500 °C, the stability of the refractive index can be at
tributed to a film composition that remains stable as suggested by nu
clear analysis. However, this conclusion does not fit FTIR results, which
reveal a decrease of the H2O and Si OH FTIR vibration modes when Td

increases. To counterbalance the expected decrease of the refractive
index due to the dehydration of the layer, the incorporation of oxygen

400 450 500 550
1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

O
/S

at
ra
to

Td ( °C)

0

1

2

3

4

5

6

7

8

H
(%

at
)

Fig. 6. Evolution of the O/Si atomic ratio (filled squares) and of the atomic
percentage of hydrogen atoms (open triangles) as a function of Td, probed by
ion beam analysis. Dotted lines are guide to the eye.
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20 

~15 
'v, 

~ 
~ e 
.r:. 10 
!::l 
(I) 

d. 

5 

t- ----- +--

• 
0 -'-~--~-~--~--~-~--~--/,1---~-' 

'/ 
400 450 500 550 Annealing 

soo·c 
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in the network is considered when T d increases above 500 •c. At this 
temperature range, the incorporation of oxygen can indeed be assigned 
to the generation of new Si O Si bonds. This result suggests an increase 
of the structure densification when Td increases. 

3.4. Co,rosion resistance 

Pliskin proposed in 1964 an etching solution in order to compara 
tively investigate the resistance of various glass and oxide fihn systems 
[32). Since then, the Pliskin etch or P etch has been commonly adopted 
in order evaluate the impact of the type of deposition technique, of the 
chemistry and of the different process parameters on the resistance to 
the involved corrosive solution of the SiO2 films. Fig. 8 presents the P 
etch rate (A.s- 1 ) of the films deposited between 400•c and 550 •c. The 
resistance to the corrosive solution is clearly improved with increasing 
Td, from 18A.s- 1 to l OA.s- 1 • These results favorably compare with 
those of previously reported SiO2 films processed below 600 •c by 
PECVD [70) or using ozone [71), for which the P etch rate varies be 
tween 8 and 53 A.s- 1

• An annealing at 800 ·c durins 30 min of the films 
(independently of Td) presents a P etch rate of 2A.s- 1 ; i.e. similar to 
the denser silica fihn obtained by pyrolysis at temperature higher than 
975 •c [13). This behavior is indirectly linked to the porosity, the 
composition, the stoichiometry and ultimately to the density of the 
films [13). 

4. Conclusions 

An original methodology is developed in order to propose a corn 
prehensive scenario for the densification mechanism of CVD SiO2 films 
processed from TEOS and oxygen in the temperature range 400 550 •c. 
The combination of different characterization techniques allows as 
signing the densification process first to a dehydration of the film based 
on the decrease of the water and silanol peaks, revealed by FTIR. A 
significant hydrogen content between 5 ± 0.3%at. and 7 ± 0.3%at. is 
determined by nuclear analysis for films processed below Td = 525 •c. 
Films processed at T d = 550 •c are hydrogen free and present a slightly 
substoichiometric structure. Ellipsometric porosimetry allows con 
eluding that if the films present porosity, the diameter of this porosity 
might be smaller than the detection limit of EP measurements. The 
corrosion resistance, probed by the P etch rate test, is improved from 18 
to 10 A.s- 1 with increasing Td; i.e. with the Si- O- Si network densifi 
cation. Upon annealing at 800 •c for 30 min, the P etch rate is further 
improved, decreasing to 2>..s- 1 , the lowest reported value for SiO2, 
similar to the one of films obtained from the pyrolysis ofTEOS at almost 

1000 •c. This test indirectly confirms the densification of the fihn with 
increasing Td. The integration of the reported various experimental 
information confirms the proposed mechanism and indicates that 
amorphous SiO2 films processed from TEOS and oxygen at 550 •c, are 
dense and thus present high normalized corrosion resistance. 
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