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a b s t  r  a c t  

In the  current  era of •information  everywhereŽ, extracting  knowledge  from  a great amount  of data is in-  

creasingly  acknowledged  as a promising  channel  for  providing  relevant  insights  to  decision  makers. One
key issue encountered  may be the  poor  quality  of the  raw  data, particularly  due to  the  high  missingness,
that  may affect  the  quality  and the  relevance of the  results• interpretation.  Automating  the  exploration  of
the  underlying  data with  powerful  methods,  allowing  to  handle  missingness and then  perform  a learn-  

ing  process to  discover  relevant  knowledge,  can then  be considered  as a successful strategy  for  systems•
monitoring.  Within  the  context  of water  quality  analysis, the  aim  of the  present  study  is to  propose a ro-  

bust  method  for  selecting  the  best algorithm  to  combine  with  MICE (Multivariate  Imputations  by Chained
Equations)  in  order  to  handle  multiple  relationships  between  a high  amount  of features  of interest  (more
than  200) concerned  with  a high  rate of missingness (more  than  80%). The main  contribution  is to  im-  

prove  MICE, taking  advantage of the  ability  of Machine  Learning  algorithms  to  address complex  relation-  

ships among a large number  of parameters.  The competing  methods  that  are implemented  are Random
Forest (RF), Boosted Regression Trees (BRT), K- Nearest Neighbors  (KNN) and Support  Vector  Regression
(SVR). The obtained  results  show  that  the  hybridization  of MICE with  SVR, KNN, RF and BRT performs
better  than  the  original  MICE taken  alone. Furthermore,  MICE-SVR gives a good trade-off in  terms of
performance  and computing  time.
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. Introduction

The proliferation  of sensing devices has increased the  ability  of
rganizations  to  acquire  various  and great amount  of data, allow-

ng  them  to  implement  real-time  monitoring  of their  systems. This
s generally  based on the  analyses of complex  relationships  be-
ween  several factors  of interest,  such as in  water  quality  analysis.
nline  monitoring  has indeed  offered  the  development  of decision

ystems that  are able to  accelerate decision-making  and anticipate
ctions  to  prevent  undesired  events or to  eradicate  critical  issues.
o achieve such a goal, it  is required  to  pre-process  the  raw  data,
specially  when  some values are missing  on a certain  level.  
� Corresponding  author.
E-mail addresses: romy-alinoro.ratolojanahary@enit.fr  (R. Ratolojanahary),
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aymond.houe-ngouna@enit.fr (R.�� Houé��Ngouna), kamal.medjaher@enit.fr (K.�� Med- 
aher), jean.junca-bourie@eau-adour-garonne.fr (J. Junca-Bourié), fdauriac@hautes-  
yrenees.chambagri.fr (F. Dauriac), mathieu.sebilo@upmc.fr (M. Sebilo).
Missing  data is a recurring  phenomenon  in  real-world  applica-
ions  ( Sterne et al., 2009;  Yang, Liu, Zeng, & Xie, 2019 ). It  may oc-
ur  due to  sensor failures,  bad or non-existing  strategy  for  data ac-
uisition,  budget  issues, lack of response from  a participant  in  the
ase of survey  or various  other  reasons. If  the  complete  data are
epresentative  of the  studied  phenomenon,  this  missing  informa-
ion  is negligible,  otherwise  the  results  may be incorrect  and may
ead to  wrong  interpretations.  For example,  anomalies  could  go un-
etected  if  they  happen during  a non-monitored  period  of time.  

There are two  ways of dealing  with  missing  data:  deletion  or
mputation  ( Buhi, 2008 ). Deletion  means discarding  the  observa-
ions  or the  variables  with  missing  data, which  is called complete-
ase analysis, while  imputation  consists in  reconstructing  the  miss-
ng  values. Because of its  simplicity,  deletion  is usually  the  default

ethod  used in  practice.  However,  there  are many  cases in  various
elds  in  which  this  method  showed  some limitations.  Indeed, it
ecreases the  sample size and may lead to  a loss of substantial  in-

ormation.  In Clark and Altman  (2003)  for  instance, the  number  of
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observations  dropped  from  1189 to  518 (43% of the  original  data)
in  an ovarian  cancer dataset, which  led to  biased interpretation.  

Another  deletion  method  is pairwise  deletion  through  which
only  non-missing  values are used for  analyses, for  instance  in  cor-
relations  scores calculation  where  the  method  fails  when  the  two
correlated  variables  are not  “lled  at the  same time.  Instead of dis-
carding  an observation  or a variable  concerned  with  missing  value,
it  is preferable  to  estimate  accurately  those missing  values in  order
to  provide  relevant  interpretations.  

Quoting  White  and co-authors,  •awareness has grown  of the
need to  go beyond  complete-analysisŽ and  some major  improve-
ments  of the  simplistic  methods  have been proposed  in  the  liter-
ature,  since Rubin•s innovative  proposal  for  approaching  missing-
ness ( White,  Royston, & Wood,  2010 ). Among  others,  Rubin, who
is the  author  of Multiple  Imputation  (MI),  de“ned  a conceptual
framework  for  characterizing  missing  data that  allows  to  distin-
guish various  types and to  determine  when  missing  data can be
ignored  ( Little  & Rubin, 1987;  Rubin, 1976 ). The major  insight  of
the  proposed  imputation  method  is that  it  addresses uncertainty
and complexity  of the  data structure,  allowing  to  go beyond  delet-
ing  or discarding  data. 

Following  Rubin, van Buuren  introduced  the  Multiple  Imputa-
tions  by Chained Equations  (MICE), a MI  technique  that  requires
fewer  assumptions  on missingness and also handles relationships
between  variables  ( van Buuren  & Groothuis-Oudshoorn,  2011 ).
However,  original  MICE considers only  linear  relationships  and has
been successfully  applied  to  dataset with  at most  70% of missing-
ness. It  may therefore  fail  in  other  cases such as in  water  quality
data as considered  in  the  present  study,  which  are characterized  by
a high  rate  of missingness and a great amount  of factors  of inter-
est that  are not  necessarily  linearly  related.  This suggests the  need
of an alternative  method  to  improve  the  imputation  mechanism  in
order  to  provide  relevant  interpretation  of the  results,  which  is the
purpose  of this  work.  

The rest of the  paper is organized  as follows:  the  main  imputa-
tion  methods  available  in  the  literature  are reviewed  in  Section 2 ,
followed  by the  presentation  of a method  to  improve  MICE for
multiple  data imputation  in  Section 3 . An application  of the  pro-
posed method  on experimental  dataset, along with  associated re-
sults, are described  in  Section 4 while  the  last section  contains  the
conclusion  and perspectives  of the  present  work.  

2. Related  work

In order  to  choose an appropriate  method  for  handling  missing
data, the  underlying  cause of the  missingness has to  be investi-
gated. Indeed, as mentionned  in  Buhi  (2008)  , each method  only
works  under  certain  assumptions,  namely  complete  randomness,
conditional  randomness  or systematic  reasons. 

2.1. Missingness patterns 

The conceptual  framework  allowing  to  take into  account  certain
assumptions,  as noted  above, has been de“ned  by Rubin (1976)  .
There are three  types of missing  data, depending  on the  missing
mechanism  : (1)  Missing  completely  at Random (MCAR), (2)  Miss-
ing  at Random (MAR) and (3)  Missing  Not  at Random (MNAR). 

Let R be the  locations  of the  missing  data in  a dataset X =
(X obs , X miss ) , and �  the  parameters  of the  missing  data model;
where  X obs and X miss are respectively  the  observed and the  miss-
ing  values. MCAR, MAR and MNAR patterns  are formally  de“ned
as follows  ( van Buuren, 2018 ):  

€ Data are MCAR if  the  probability  of missingness is independent
of both  the  observed variables  and the  variables  with  missing
values. This is the  case, for  example,  when  people  forget  to  an-
swer  a question  in  a survey. Formally,  

P (R =  0 | X obs , X miss , � ) =  P (R =  0 | � ) (1)

€ Data are MAR if  the  probability  of missingness is due entirely  to
the  observed variables  and is independent  of the  unseen data.
In other  words,  the  missingness is a function  of some other  ob-
served variables  in  the  dataset (for  example,  people  of one sex
are less likely  to  disclose their  weight):

P (R =  0 | X obs , X miss , � ) =  P (R =  0 | X obs , � ) (2)

Therefore, MAR data are a good candidate  for  data imputation
based on observed variables  ( Buhi, 2008 ).

€ Data are MNAR if  the  missing  value is related  to  the  actual  val-
ues (for  example,  people  who  weigh  more  are most  likely  to
not  disclose their  weight):

P (R =  0 | X obs , X miss , � ) (3)

depends on all  three  elements.

When  data are MNAR, the  missingness process is called non-
gnorable , meaning  that  the  cause of the  missingness must  be in-
luded  in  the  model,  whereas  MAR and MCAR data missingness
rocesses are called ignorable . Following  the  assumptions  behind
hese three  patterns,  several methods  have been provided  in  the
iterature  for  solving  appropriately  the  missingness. 

.2. Single imputation  methods 

Methods  that  compute  one single  value per missing  data are
eferred  as single imputation  methods.  The most  common  single
mputation  methods  are mean, median  or mode imputation,  con-
isting  in  replacing  the  missing  value with  the  mean, median  or
ode  of the  associated variable  ( Buhi, 2008 ). In this  case, the  miss-

ng  value is easy to  compute,  but  the  method  ignores  the  corre-
ation  among the  variables  and underestimates  the  standard  de-
iation.  If  the  variable  containing  missing  values is categorical,  a
imple  option  is to  create a new  category  for  the  missing  val-
es. This method  is suitable  for  MNAR data, i.e. when  the  miss-

ngness is correlated  to  the  values of the  missing  data. When  a
ariable  of the  incomplete  dataset is a periodic  time  series, a more
laborated  single  imputation  technique  is to  apply  a linear  inter-
olation  or an Autoregressive  Integrated  Moving  Average (ARIMA)
odel  to  “ll  in  the  missing  values ( Shao, Meng, & Sun, 2016 ). Al-

hough  those two  techniques  are simple,  the  “rst  one is not  e�-
ient  when  the  missing  gap is large, and the  second one requires
 periodic  time  series. Another  technique  involves  predicting  the
alues from  the  observed variables.  For example,  K-nearest  neigh-
ors (KNN) replaces the  missing  value with  a linear  combination
f the  K nearest non-missing  observations  ( Jordanov, Petrov, &
etrozziello,  2018;  Tutz & Ramzan, 2015 ). To use this  algorithm,  it

s necessary to  choose the  optimal  K and de“ne  a distance  mea-
urement  between  two  observations.  A local  similarity  imputation
ased on Fast Clustering  was proposed  in  Zhao, Chen, Yang, Hu,
nd Obaidat  (2018)  . The authors  partition  the  incomplete  data with
 fast clustering  method  (Stacked Autoencoder-based),  then  “ll  the
issing  data within  each cluster  using a KNN algorithm.  The ob-

ained  results  showed  that  the  proposed  method  outperformed
ther  local  similarity-based  methods.  Shao and co-authors  applied
wo  Single Layer Feed Forward  Neural  Networks  (Extreme  Learn-
ng  Machine  and Radial Basis Function  Network)  on a periodic  soil

oisture  time  series ( Shao et al., 2016 ). This method  performed
etter  predictions  than  a linear  interpolation  and ARIMA in  in“ll-

ng  missing  segments. However,  it  requires  parameter  tuning  in  or-
er to  be performing.  



Table 1
Advantages and Drawbacks of the  reported  single imputation  methods.

Method Advantages Drawbacks

Mean Easy to implement - Underestimates standard  deviation
- Ignores relationships between variables

Add a category Easy to implement Only works  with  categorical and MNAR data
Linear Interpolation Takes time into account Does not work  when  the missing gap is large
ARIMA Takes time into account Requires a periodic  time series
Linear Regression Takes into account relationships between variables - Underestimates the variance

- Ignores non linear relationships between variables
Stochastic linear regression Takes into account relationships between variables Ignores non linear relationships between variables
KNN Takes into account relationships between variables Requires parameter  tuning
ANN Takes into account the  time factor Requires parameter  tuning

Fig. 1. Overview  of the  multiple imputation  method.
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A brief  summary  of these implementations  of single  imputation
ethods  is presented  in  Table 1 that  provides  the  main  drawbacks
nd advantages. A well-known  limitation  that  they  have in  com-
on  is that  once a missing  value is imputed,  it  is treated  as a
on-missing  value. 

.3. Multiple  imputation  methods 

In order  to  solve the  limitations  of single  imputation,  some
uthors  have proposed  to  take into  account  the  uncertainty  of
he  imputed  values ( Little  & Rubin, 1987;  Neter, Maynes, & Ra-
anathan,  1965 ). In that  purpose, Rubin has developed  the  Mul-

iple  Imputation  (MI)  method,  which  combines  several single  im-
utations  ( Little  & Rubin, 1987 ), as described  in  the  following.  

.3.1. Principles of multiple  imputation  

The principles  of MI  are illustrated  in  Fig. 1 , based on the  fol-
owing  main  steps: (1)  imputation  phase where  m datasets are
roduced  by drawing  them  from  a distribution,  which  can be dif-

erent  for  each variable  ( van Buuren, 2018 ), (2)  analysis phase in
hich  the  m datasets are analyzed, and (3)  pooling  phase that
ombines  the  m datasets to  produce  a “nal  result,  for  example
y calculating  the  mean of the  imputed  values for  each missing
alue. The m datasets can be generated  in  parallel  using parametric
tatistical  theory  and assuming a joint  model  for  all  the  vari-
bles ( van Buuren, 2007;  Rubin & Schafer, 1990 ), such as in
ultiple  imputAtions  of incoMplEte  muLtIvariate  dAta (AMELIA),
hich  uses expectation-maximization  with  a bootstrapping  algo-

ithm  ( Honaker,  King, & Blackwell,  2011 ). Such approach  lacks
exibility  and may lead to  bias ( van Buuren, 2007 ). The other
lternative  is to  generate the  m datasets until  a stop criterion

s met:  in  Hong and Wu  (2011)  for  instance, the  authors  iter-
tively  used association  rules  to  successfully  estimate  the  miss-

ng  values. Although  the  studied  dataset had a high  missing  rate,
t  was relatively  small  (there  were  only  three  variables).  Some
ther  examples  of the  sequential  methods  are Sequential  Impu-
ation  for  Missing  Value (IMPSEQ) ( Betrie, Sadiq, Tesfamariam,  &

orin,  2014 ), a covariance-based  imputation  method  and MICE,
 series of linear  regressions that  consider  a different  distribu-
ion  for  each variable  ( van Buuren, 2007;  Raghunathan, Lepkowski,
oewyk,  & Solenberger, 2001 ). Betrie  and co-authors  have found

hat  the  two  sequential  methods  outperform  AMELIA ( Betrie  et al.,
014 ). In Stekhoven and Buhlmann  (2011)  , the  authors  introduced
 MI  method  called MissForest, which  is similar  to  MICE, except
hat  it  uses Random Forest instead  of Linear Regression in  the
mputation  step. As MissForest yielded  a better  performance  than

ICE, that  result  is encouraging  towards  tweaking  the  MICE algo-
ithm,  which  is the  object  of the  present  work.  A brief  summary  of



Fig. 2. Overview  of the  MICE algorithm.

Table 2
Advantages and Drawbacks of the  reported  MI methods.

Method Advantages Drawbacks

AMELIA Can be applied to categorical, ordinal or continuous data Assumes a joint model  for  all the  variables
MI using decision rules Works  well  when  the missing-value rate is high Not  adapted to data with  a large number  of variables
IMPSEQ Time complexity - Lack of robustness toward  outliers

- Does not take into account nonlinear relationships between variables
MICE Flexibility - Does not take into account non-linear  relationships between variables

- Theoretical justi“cation  needed
MissForest - Adapted  to high dimensional datasets Computation  time issue

- Takes into account linear relationships between variables
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the  advantages and drawbacks  of the  methods  presented  above is
given  in  Table 2 , while  the  original  MICE principles  are described
in  the  following.  

2.3.2. Main  principles of MICE 

The main  steps of MICE are summarized  in  Fig. 2 and detailed
in  Algorithm  1 . MICE algorithm  implementation  was based on a
method  described  in  Azur, Stuart,  Frangakis, and Leaf (2011)  . It
assumes that  missing  data are of MAR type.  The “rst  step is to
initialize  the  missing  values to  the  mean of each column.  Then
the  missing  values of the  “rst  variable  are reset to  •missingŽ. Af-
ter  that,  a regression  model  is “tted  on the  subset of the  dataset
where  the  value of this  variable  is present.  Finally,  the  obtained
model  is used to  “ll  in  the  value and update  the  dataset. This
process is repeated  for  each variable  until  all  the  missing  data
are estimated.  The whole  process, “rst  step excluded,  is reiter-
ated n _ cycles times  until  the  estimated  data converge. In the  lit-
erature,  it  is advised to  increase the  number  of cycles in  function
of the  size of the  dataset and the  missingness ratio  ( Graham, Ol-
chowski,  & Gilreath,  2007 ). Although  MICE has been proved  e�-
cient  in  the  literature,  the  trade-off between  computational  cost
and performance  becomes imbalanced  when  dealing  with  large
datasets and/or  datasets with  a high  missingness rate. Indeed, the
number  of imputed  datasets has to  be increased, and so does the
computational  time.  Furthermore,  a high  missingness rate  implies
high  uncertainty.  Another  key issue is that  this  form  of the  algo-
rithm  is based on linear  regression, which  may not  re”ect  the  ac-
tual  relationships  between  the  variables  of the  current  study.  To
address these issues, an improved  version  of MICE is proposed  and
described  in  the  following.  
. The proposed  method  to  improve  MICE

As noted  above, the  dataset concerned  with  water  quality  con-
idered  in  this  study  has a very  high  missing  rate  (82%). Besides,
here  is a great amount  of variables  (more  than  200)  in  which  each
s concerned  with  at least one missing  value. The methods  men-
ioned  above, including  the  most  performing,  have been applied  in
 less constrained  context  and therefore,  can fail  to  provide  good
esults  in  the  speci“c  case of the  dataset considered  in  this  pa-
er. It  is then  proposed  to  take advantage of the  ability  of Machine
earning  algorithms  for  handling  such issues in  order  to  improve
ICE. The two  main  ideas are: (1)  de“ne  a set of competing  meth-
ds, and then  (2)  replace the  Linear Regression in  the  original  MICE
y each of these methods  in  order  to  select the  most  performing
hat  “ts  the  context  of the  present  study.  

The competing  methods  have been chosen among the  most  per-
orming  supervised  learning  algorithms  in  the  literature,  namely
andom Forest(RF), Boosted Regression Trees (BRT), and Sup-
ort  Vector  Regression (SVR). Besides, K-Nearest  Neighbors  (KNN),
hich  is commonly  used to  solve missingness, has also been se-

ected. 

The main  steps of the  proposed  method  are illustrated  in  Fig. 3 .

1. The “rst  phase of the  original  MICE is initialized  (step 1).
2. A competing  method  is then  chosen, followed  by a mechanism

for  optimally  setting  its  hyperparameters  (step 2).
3. Next,  phase (II)  of the  original  MICE is modi“ed  by replacing

Linear Regression with  the  chosen method,  and then  launched
in  a loop  that  goes a number  of times  corresponding  to  the  pre-
de“ned  number  of cycles (step 3).



Fig. 3. The proposed method for  model selection  to improve MICE.

Algorithm  1 MICE. 

Input:  

€ X incomplete  data matrix  of size n _ obs × n _ features
€ n _ cycles number  of cycles

Output:  

€ Completed  data matrix  of size n _ obs Š n _ features

X f ull  :=  mean_impute(  X) 

for  i :=  1 to  n _ cycles do  

for  j :=  1 to  n _ features do  

y j :=  X j /*  the  j Š th column  */  

X ( j ) :=  X \  X j
m � { 1 , n } =  { i | X j !  =  NaN} /*  m denotes the  indices  where
X j is not  missing  */  

regressor :=  linear_regressor()  

regressor.“t(  X m 
( j ) , y m 

j ) /*  the  model  is “tted  on the  subset of 

the  dataset where  X j is not  missing  */  

y ¬  m 
( j ) :=  regressor.predict(  X ¬  m 

( j ) ) /*  ¬  m denotes the  indices  

where  X j is missing  */  

end  for  

end  for  

return  X f ull  
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4. After  convergence, performance  indicators  for  the  current
method  are computed  (step 4).

5. When  all  the  competing  methods  have been processed accord-
ing  to  the  four  previous  steps, a selection  mechanism  takes
place by comparing  their  performance  indicators  (step 5).

6. Finally,  the  best method  is applied  to  solve the  missingness
(step 6).

Due to  the  high  missingness rate, the  optimal  choice of the  hy-
erparameters  (as considered  in  step 2) is based on a modi“ed  ver-
ion of the  studied  dataset constructed  according  to  the  following
rocedure:  

€ For each variable,  a triangular  distribution  is simulated  with
different  parameters  (min,  mode, max).  If  a variable  always  has
the  same value, then  that  value is replicated  in  each observa-
tion.  The triangular  distribution  has been used because it  pro-
vides a simple  representation  of the  real distribution  of the
dataset and allows  more  ”exibility  by taking  into  account  the
uncertainty  of the  values. 

€ The data are scaled so that  the  units  of the  variables  do not
play  any role.

€ The observations  are shu�ed  and the  missingness distribution
of the  real dataset is reproduced  in  order  to  mimic  the  real
problem  as accurately  as possible.

Two main  performance  indicators  have been used for  the  com-
arison  (as realized  in  step 5), namely  processing time  and Mean
quared Error  (MSE). 

.1. Theoretical background of the competing methods 

.1.1. Random Forest 
Random Forest is an ensemble method  based on fully  grown  re-

ression trees. The objective  is to  build  several weak  learners  (the
egression  trees) in  parallel  in  order  to  produce  a strong  regressor.
he main  steps are as follows:  

1. The observations  are sampled  with  replacement  (bootstrap  ag-
gregating).

2. A set of variables  is selected randomly.
3. The tree  is built  upon  the  observations  from  step (1)  and the

variables  from  step (2).
4. The “nal  prediction  is made by averaging  over  the  predictions

of all  decision  trees.

In this  algorithm,  one of the  most  relevant  hyperparameters  to
et in  order  to  make the  model  perform  well  is the  number  of
rees. 

.1.2. Boosted Regression Trees 
Similarly  to  the  Random Forest algorithm,  BRT is an ensem-

le method  based on regression  trees. Gradient  boosting  is used
o train  the  weak  learners  (shallow  regression  trees) sequentially.
n this  algorithm,  a higher  focus is set on observations  that  have
igher  errors  on the  previous  tree  and a gradient  descent is used

o minimize  the  loss function  (least squared errors)  at each step. 
Let y i be the  target  value and f ( x i ) its  predictor.  

The objective  function  is given  as in  Eq. (4)  : 

 (y, f ) =  

n�

i = 1

l (y i , f (x i ))  (4)
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where  l (y i , f (x i ))  :=  (y i Š f (x i ))  2 . 
The algoritm  goes as follows:  

f 0 is the  trivial  tree, it  returns  the  mean value of Y . 
For k :=  1 to  m : 

€ Calculate the  negative  gradient  Š� l (y i , f (x i ))  , which  corre-
sponds to  the  residual  for  i =  1 to  n .

€ Fit a regression  tree  h k for  the  residuals.
€ Create a model  f k =  f k Š1  +  �� k h k , where  � is the  step

magnitude,  found  by searching arg min  �
�  n 

i =1  l (y i , ( f k Š1  (x i ))  +
�� h k (x i ) , and � is the learning rate.

Return  f m .
For this  algorithm,  the  number  of trees m , as well  as the  learn-

ing  rate  � , are the  hyperparameters  that  need to  be set by the  user
in  order  for  the  method  to  perform  well.  

3.1.3. K-Nearest Neighbors 

Let X and y be the  training  data, X � a new  observation  and y �

the  associated value to  predict.  The KNN algorithm  goes through
the  following  steps: 

1. Calculate the  distance  between  X � and each of the  observations
of the  training  set;

2. Take the  y values of the  K closest observations  y i 1 , y i 2 , . . . , y ik ;
3. Assign to  y � a linear  combination  of these values (usually  the

mean).

Three hyperparameters  have to  be de“ned  properly  so that  the
algorithm  performs  well:  the  distance, the  number  of neighbors  K
and the  type  of aggregation  of the  neighbors  values. 

3.1.4. Support Vector Regression 
Let X, y be a training  data. The objective  of SVR is to  “nd  a

function  f such that  the  deviation  of f (.) from  the  real values y
is at most  � ( Smola & Schölkopf,  2004 ). If  the  problem  has no
solution,  slack variables  � i , � i 

� are introduced  to  tolerate  part  of
the  error.  First, let•s consider  the  case where  f is linear,  i.e. f (x ) =
w.x +  b. f is then  the  solution  of the  following  optimization  prob-
lem  ( Eq. (5)  ):

Minimize  
1 

2 
|| w || 2 +  C 

n�

i = 1

(� i +  � �
i ) 

s.t. y i Š <  w, x i >  Šb � �  +  � i

<  w, x i >  +  b Š y i � �  +  � �
i 

� i , � �
i � 0 (5)

where  C >  0 is the  trade-off between  the  ”atness  of f and the
amount  of tolerated  deviations  larger  than  � , and <  , >  is a scalar
product.  By using the  dual  representation  of the  problem  based
on Lagrange multipliers,  we “nally  get:  f (x ) =  sum n 

i =1  (� i +  � �
i ) <

x i , x >  +  b where  � i are the  Lagrangian multipliers.  If  the  adequate
f is not  linear,  we can map the  data into  a high  dimensional  space
where  the  function  f becomes linear  ( Fig. 4 ). Instead of searching
Fig. 4. Mapping to the feature space in  SVR.
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or  the  expression  of 	 , a function  k called a kernel  function,  which
atis“es  k (x, x ) =  <  	 (x ) , 	 (x ) >  is used. The existence of such a
unction  is proved  by the  Mercer•s theorem.  � , C and the  kernel
unctions  are the  Support  Vector  Regression (SVR) hyperparame-
ers that  need to  be selected properly  for  the  performance  of the
lgorithm.  

. Application  and  results

.1. The context of the study 

The incomplete  dataset used in  this  paper is taken  from  a wa-
er  sample analysis made at Oursbelille,  in  the  Adour  plain,  South-

est  of France, from  1991 to  2017. The operational  principle  of this
rinking  water  collection  point  is described  in  Fig. 5 . First, the  wa-

er  is pumped,  its  nitrate  rate  is measured and is conveyed to  large
erial  tanks  in  order  to  be treated  by active  charcoal. Then, the

reated  water  is stored  in  a water  tank.  In a third  step, some sens-
ng  devices are then  used to  monitor  some quality  indicators,  such
s the  pH. In a fourth  step, on demand,  the  stored  water  is chlo-
inated,  before  being dragged to  another  underground  well,  few
ilometers  away from  the  pumping  well.  From this  second storage
ank,  water  is distributed  to  the  citizens  of the  Adour  region.  The
egion  bene“ts  of an oceanic climate,  with  a rainy  winter  and an
verage temperature  ranging  from  4 to  19 � C. 

The acquired  data contain  148 observations  of 411 water  qual-
ty  indicators,  with  an overall  missingness of 82%. Fig. 6 a is an
verview  of the  dataset, where  some of the  measured water  qual-

ty  indicators  are displayed,  while  Fig. 6 b summarizes  the  missing-
ess distribution  per variable  in  the  dataset. 

Only  the  variables  that  are measured at least 5 times  are con-
idered, which  reduces the  dataset to  257 variables  (52% of the  411
ariables).  It  is noted  that  the  removed  variables  do not  restrict  the
nalysis since they  are not  among the  common  hyperparameters

or  water  quality  assessment found  in  the  literature.  

.2. Settings and assumptions of the implementation  

Based on the  presentation  of the  three  missingness patterns,
nd the  nature  of the  studied  dataset (as described  in  the  previ-
us subsection),  we can assume that  our  study  is within  the  MAR
attern.  

Moreover,  the  proposed  method  depends on several factors:  (a)
he  number  of cycles to  perform  the  imputations,  (b)  the  num-
Fig. 5. Operational principle of the  drinking water  well  of Oursbelille.
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(a) Overview of the dataset. (b) Number of missing values per variable.

Fig. 6. Description of the  dataset.
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Table 3
Candidate values of the  hyperparameters for  each Machine
Learning method.

Algorithm Hyperparameter Candidate values

RF n_trees {10, 15, 20, 50, 100}
BRT m {30, 50, 100, 150}

� {0.01, 0.1, 0.5}
KNN K {2, 3, 4}

d {euclidean, manhattan}
y � {uniform, weighted}

SVR � {0.01, 0.1}
C {0.01, 0.1, 1, 10, 100}
kernel {rbf, poly, sigmoid}
� {1e-3, 0.01, 0.1, 1}
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Fig. 7. Variation  of MSE to choose the hyperparameters in  BRT.
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er of values de“ned  for  each hyperparameter,  (c) the  size of the
ataset, (d)  the  number  of variables  of interest,  and (e) the  com-
lexity  of the  ML algorithm  itself.  For these reasons, in  order  to
btain  relevant  results  in  a reasonable running  time,  and by oppo-
ition  to  what  is commonly  used in  literature,  only  one value for
he  number  of cycles (i.e. 10 cycles) is considered  in  this  work.  

The implementation  of the  proposed  method  was performed  by
sing Python  programming  language, on a computer  with  the  fol-

owing  main  features:  

€ Operating  System: Windows  10;
€ RAM: Intel(R)  Core(TM) i5-7200U  CPU @ 2.50GHz 2.70 GHz;
€ Processor: 8.00 Go.

The corresponding  results  are described  and discussed in  the
ollowing.  

.3. Implementation  of the proposed method 

The main  steps of the  proposed  method  have been imple-
ented  according  to  the  following  explanations.  

€ Step 1. The “rst  phase of the  original  MICE, that  is mean impu-
tation,  is launched  (initialization  step).

€ Step 2. The next  step concerns the  hyperparameter  tuning  of
the  Machine  Learning  algorithms.  There is no analytical  solu-
tion  that  allows  to  “nd  the  optimal  values. Therefore, to  do so,
a cross-validation  is performed  using the  modi“ed  dataset, and
a mean squared error  (MSE) is measured. The optimal  hyper-
parameters  are therefore  those that  have the  lowest  MSE. Note
that  only  a limited  number  of candidate  values have been taken
into  account  because adding  more  would  drastically  affect  the
algorithmic  complexity.
The competing  methods  are MICE, MICE combined  with  RF
(MICE-RF), MICE combined  with  BRT (MICE-BRT), KNN (MICE-
KNN) and MICE combined  with  SVR (MICE-SVR).
The candidate  values for  the  hyperparameters  of the  four  Ma-
chine  Learning  algorithms  (KNN, RF, BRT, SVR) are detailed  in
Table 3 . For KNN, let  us notice  that  since the  studied  dataset
contains  variables  with  only  “ve  non missing  values, the  num-
ber of neighbors  is at most  4.

€ Step 3. Phase (II)  of the  original  MICE is modi“ed  by replacing
Linear Regression with  one of the  competing  algorithms,  each
with  its  optimal  hyperparameters  (as obtained  in  step 2).

€ Step 4. The performance  indicators,  namely  MSE and processing
time,  are computed  for  each algorithm.

€ Step 5. The method  that  performed  best in  terms  of MSE, and
with  a reasonable computing  time,  is then  selected.

€ Step 6. Finally,  the  winning  method  is used to  solve the  miss-
ingness.
The main  results  of this  implementation  are presented  and dis-
ussed in  the  next  subsection.  

.4. Results and discussion 

In the  following,  only  steps 2, 4 and 5, which  contain  the  main
esults  of the  implementation,  are presented.  

€ Step 2: Hyperparameter  tuning.

andom Forest . In this  algorithm,  the  performance  increases pro-
ortionally  to  the  number  of trees. However,  it  becomes rapidly

ime  consuming.  The objective  is to  “nd  the  smallest  value for
hich  the  performance  is good enough. Although  it  is not  the  op-

imal  value, the  number  of trees is set to  15 in  order  to  reduce the



(a) Choice of K and the linear combination. (b) Choice of K and the distance.

Fig. 8. Variation  of MSE to choose the hyperparameters in  KNN.

(a) Choice of � and the kernel function. (b) Choice of C and �.

Fig. 9. Variation  of MSE to choose the hyperparameters in  SVR.

Table 4
Performance  indicator  (MSE) of
the main  RF hyperparameter.

n_trees MSE

10 0.5159
15 0.4943
20 0.4850
50 0.4691
100 0.4653

 

 

 

 

 

 

 

 

 

 

 

Table 5
Performance  indicator  scores.

MICE MICE-SVR MICE-4NN MICE-RF MICE-BRT

Processing time 6.87 5.29 8.25 65.18 32.59
MSE 1.09e24 0.44 0.58 0.55 0.54
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computation  time.  Furthermore,  the  error  does not  decrease a lot
between  15 and 100 estimators  (see Table 4 ). 

Boosted Regression Trees. Similarly  to  the  previous  algorithm,  the
best trade-off between  computing  time  and performance  is sought.
It  is noted  that  the  number  of trees is higher,  because shallow  trees
are built  in  BRT instead  of fully  grown  ones in  RF. 

Fig. 7 represents  MSE in  function  of the  learning  rate  � , where
the  labels represent  the  number  of trees. According  to  these re-
sults, the  optimal  hyperparameters  for  this  study  are � =  0 . 01 and
m =  150 . For computational  time  sake, hyperparameters  with  a
slightly  higher  mean squared error  (only  a difference  of 0.001) are
chosen: � =  0 . 1 and m =  30 . 

K-Nearest Neighbors . For this  algorithm,  the  hyperparameters  to
tune  are the  number  of neighbors  K , the  distance  d and the  linear
combination  method  of the  neighbors  value y � . In this  study,  the
euclidean  distance  is chosen, K =  4 , and y � is the  weighted  mean
of the  KNN. Their  choice is illustrated  in  Fig. 8 . Indeed, MSE score
is lower  for  these values.

Support Vector Regression . For this  algorithm,  � , C , the  kernel  func-
tion  and the  parameter  � associated to  the  kernel  function  need
o be tuned.  In Fig. 9 , it  is seen that  the  MSE is generally  lowest
or  the  polynomial  kernel,  and for  �  =  0 . 1 . The lowest  MSE score
s obtained  with  �  =  0 . 01 , C =  1 , kernel =  poly and the  associated

=  0 . 01 . 

€ Step 4: Computing  the  performance  indicators
The results  summarized  in  Table 5 show  that  MICE-SVR is the
most  performing  method  regarding  both  processing time  (5.29
seconds) and MSE (0.44).
The processing time  was signi“cantly  high  while  combining
MICE with  RF and BRT. Indeed, all  three  methods,  MICE, RF, and
BRT are already  computationally  expensive  by themselves.  With
a number  of estimators  set to  15 for  Random Forest, a number
of cycles set to  10 for  MICE and 251 variables  to  “ll,  MICE-RF
computes  15 × 10 × 251 =  37651 fully  grown  regression  trees.
Similarly,  MICE-BRT computes  43500 shallow  regression  trees.
MICE performed  the  worst  because in  terms  of MSE in  the  cur-
rent  implementation  of the  algorithm.  Indeed, all  the  variables
were  used as predictors  in  the  regression, whereas  an interme-
diate  variable  selection  step would  have been appropriate.  It
also proves that  the  relationship  between  the  variables  are not
linear.
MICE-KNN is a little  less performing  than  the  other  combina-
tions  of MICE with  Machine  Learning  algorithms.  This is due to
the  fact  that  the  closest resembling  observations  are logically
those that  are closer in  time.  However,  these values are not
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systematically  “lled  and the  closest neighbors  are only  searched
among non-missing  observations  for  a given  variable.  

€ Step 5: Selection  of  the  most  performing  method.
MICE-SVR performed  best in  both  criteria,  it  is therefore  the
best performing  competing  method  in  this  particular  case.

The proposed  methodology  can handle  datasets with  a high
issingness rate, and is also suitable  for  high-dimensional  data.

t  is a ”exible  method  that  can take into  account  complex  non-
inear  relationships  between  variables  (if  the  competing  methods
re non-linear).  It  makes it  possible to  automate  the  selection  of

he  best method  to  solve missingness, which  reduces the  amount
f work  of the  data analyst,  who  can focus on tasks with  higher
dded value, aiming  at extracting  knowledge.  However,  a few  lim-

tations  are worth  noting,  particularly  concerning  the  number  of
ycles preset  to  10, and the  relatively  low  number  of potential  hy-
erparameters  values (that  does not  allow  a rigorous  sensitivity
nalysis of these hyperparameters).  Furthermore,  these parameters
re tuned  using an arti“cial  dataset which  has been constructed
y modifying  the  real one. All  these limitations  are mainly  due to
lgorithmic  complexity,  which  constitutes  by itself  a challenge  as
ell  as a great scienti“c  issue. 

. Conclusion  and  perspectives

It  is widely  acknowledged  that  data-driven  methods  provide
owerful  algorithms  to  analyze any issue that  is of interest  for
ecision-makers.  However,  performing  such analyses with  incom-
lete  data may not  be helpful  to  take reliable  decisions. In this  pa-
er, a methodology  for  selecting  the  best algorithms  to  address the

ssue of data imputation,  in  the  context  of water  quality  assess-
ent,  has been proposed. A benchmark  of four  of the  most  pow-
rful  and commonly  used ML algorithms  has been performed  for
hat  purpose  (Random Forest, Booted Regression Trees, K-Nearest
eighbors,  Support  Vector  Regression). The results  showed  that
ICE-SVR is the  best in  that  it  converges faster  than  the  three  oth-
rs, and provides  the  best performance  (notably  in  terms  of pre-
iction  average error).  It  can then  be applied  to  high  missingness
ataset, including  data for  water  quality  assessment that  are often

ncomplete,  as in  the  case of Adour  (south-west  of France) consid-
red in  the  present  study.  

Based on the  weaknesses of the  proposed  method,  as men-
ioned  in  the  discussion  of the  results,  the  following  improvements
re planned  for  further  studies:  (1)  deeper automate  the  mecha-
ism  of the  model  selection  by setting  fuzzy  rules  in  an inference
ngine that  will  aggregate all  the  performance  indicators  in  a sin-
le indicator;  (2)  improve,  for  each competing  method,  the  opti-
al  choice of the  hyperparameters  using evolutionary  algorithms

n  order  to  speed up the  computing  time  and increase the  number
f values for  each hyperparameter;  (3)  automate  the  choice of the
umber  of cycles needed for  the  convergence of the  imputations
y taking  into  account  the  size of the  data and its  missingness rate;
4) introduce  the  temporal  dimension  within  the  imputation  pro-
ess.
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