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ABSTRACT 

The incineration of municipal solid waste as the main process of Waste-to-Energy (WtE) plants is 

often associated with high temperature corrosion problems. With the idea of further increasing the 

efficiency of electric power generation and reducing the total cost of WtE units, it is important to develop 

preventive maintenance strategies based on accurate predictive methods resulting in economic savings and 

resource optimization. The main purpose of this study is to propose a statistical methodology for lifetime 

prediction modeling over a wide range of conditions of these complex environments and discuss the 

results regarding the mechanisms described in the literature. In order to create a quantitative tool to 

evaluate material corrosion performances based on adapted corrosion tests and the definition of accurate 

criteria for life assessment, a database with 1595 test results has been built from several published high 

temperature corrosion studies. The data distribution was analyzed by descriptive statistic approaches; the 

procedure of Principal Components Analysis (PCA) was applied to determine the most important 

parameters that govern the corrosion process. The statistical results were compared with the experimental 

findings of the authors to create a model by Multiple Linear Regression Analysis whose accuracy and 

physical interpretation are discussed. 

Keywords: statistical modeling, hot corrosion, corrosion rate, uniform corrosion. 



INTRODUCTION 

The growing world population demands an increase of energy in the form of electricity which can 

be provided by the Waste to Energy (WtE) process. However, high temperature corrosion is the main 

limiting factor for energy recovery efficiency in the WtE process. The corrosion control of alloys exposed 

to severe and complex conditions have been a great challenge for industrial applications for several 

decades. Nowadays, the corrosion costs are increasing, therefore, preventive strategies have become the 

main demand of the industries. 

Corrosion is considered to result from the deposition of fuel-slag condensates of sulfate and 

chloride mixtures on component surfaces. The deposits contain alkali metals (Na, K) and heavy metals 

(Zn, Pb), which can form low melting point compounds at operating tube metal temperatures. 
1
 Corrosion 

initiates at temperatures where salts start to melt, and becomes severe when the quantity of fused-salt 

constituents in the deposits increases. Corrosion abatement occurs when the majority of the deposits 

become fused, since this might hamper the gas transport from flue gas to metal substrate. 
2 
This corrosion 

can be viewed as a form of high temperature corrosion caused predominantly by low melting point fused 

salts in slag deposits. 
1
 It has been demonstrated that this phenomenon is complex and the risk of corrosion 

leads to frequent shutdowns for repairs. In order to limit the degradation impact of high temperature 

corrosion on operating costs and availability of the installations, it has become necessary to understand the 

mechanisms, to identify key parameters that govern them, to optimize the materials selection for the 

operational units as well as to adopt a preventive maintenance strategy through prediction methodologies. 

The composition of the corrosive agents naturally depends on the quality of the burned waste but also on 

other factors that vary strongly between the combustion chamber and the super heaters. 

The main factors that intervene in the corrosion mechanisms and kinetics of the WtE boiler tubes are the 

following: 
3, 4

 Gas temperature and metal temperature,

 Condensation of gases containing alkaline and metallic chlorides due to temperature gradient in

the interface gas/tube/vapor,



 Ash composition,

 Gas composition (CO, HCl, SO2, alkaline and metallic chlorides),

 "Soot-blowing" which causes the destruction of the protective oxide scale on the surface,

 The gas velocity which can affect the erosion by contact with solid ash,

 Gas temperature fluctuations,

 Component design.

A considerable amount of literature has been published on high temperature corrosion over the last

decades, therefore the mechanism is well documented but the relative contribution of each parameter still 

needs to be quantified. In parallel, many materials and coatings have been developed in recent years; 

however their performances in different environments are not sufficiently well understood to define 

suitable criteria for corrosion rate predicting models regarding all the operating conditions. 

In recent years, researchers have proposed a variety of approaches for the quantitative description of 

the degradation kinetics of high temperature corrosion of structural materials. Strutt (1985) 
5
 proposed the 

prediction of corrosion by statistical analysis of corrosion profiles of the pits. Then Kawahara (1998) 
6, 7

 

assumed in a model that high temperature corrosion follows a linear rate or a parabolic rate depending on 

gas temperature, metal temperature, HCl in the gaseous phase, Cl
-
 in deposits and the sum of elements Ni, 

Cr, Mo. Later, Ots (2004) 
8
 has proposed a model that includes the effect of erosion in the degradation 

process. Ruth and Spiegel (2006) 
9
 studied the corrosion kinetic as a function of gaseous phase and melt-

salts composition. Lebel (2008) 
10

 proposed a model considering the gas temperature, HCl and SO2 in the

gaseous phase and Cl in deposits. All these studies have attempted to explain the degradation mechanisms, 

but the models are still partial as they do not simultaneously take into account the main corrosion 

governing parameters, or because their validity domains are too restricted for operating conditions in 

modern WtE facilities. 
11

 In addition it is very difficult to establish a statistical pattern for all the 

parameters from one single study or by simple comparison of studies because the corrosion testing 

procedures and experimental conditions change from one study to another. Recent publication of 



Output Variable Selection 

In the database, the information related to the tests such as material chemical compositions, solid 

fuel characteristics, test settings, deposit chemical composition, and coating descriptions are the input data 

of the potential model, while the corrosion rate is the output result. Statistically speaking, the input data 

are the explanatory variables of the corrosion rate that is the dependent variable of the model. 

About 30 studies were included in the database, 
1, 2, 7, 13-38

 with 1328 tests performed under different 

conditions, each of them expressing corrosion degradation in different ways such as: mean and maximum 

(1)
International Organization for Standardization (ISO), 1 ch. de la Voie-Creuse, CP 56 CH-1211 Geneva 

20, Switzerland. 

ISO/FDIS
(1)

 17248:2013(E) 
12

 on high temperature corrosion testing of metallic materials by embedding 

material in salts or ash should help in the future to build up this kind of model. Therefore, there is no 

lifetime model currently available in the open literature for commercial materials that takes all variables 

involved in the high temperature corrosion process into account. 

EXPERIMENTAL PROCEDURE 

It is well known that one single experimental study is not enough to create an accurate model when 

multiple parameters are involved. In order to develop a lifetime prediction model for materials exposed to 

high temperature corrosion atmospheres, a database has been built to compile a large quantity of 

experimental data coming from 30 high temperature corrosion studies. This database includes over 1594 

results coming from 1328 high temperature corrosion tests under different conditions of the waste 

incineration process. This database was built on worksheets taking into account all the information 

regarding the tests exhibited in the papers reviewed. Simultaneously, the information found was sorted by 

areas of interest, as shown in Figure 1. 

Database Treatment 



thickness loss, weight loss and weight gain. All of these values were translated into rates and were then 

quantified as shown in Figure 2. 

Most of the corrosion rates results (43%≈ 684 results) are expressed in maximum thickness loss rate 

(m/h) (MTLr), as a consequence of this large population, this magnitude seemed most likely to be used

as the dependent variable in the model in order to develop a robust model capable to be refined according 

to the environment of interest. 

Input Variable Selection 

Once the maximum thickness loss rate (MTLr) was chosen as the dependent variable, 684 values 

distributed in 15 studies 
11-25

 were analyzed by statistical descriptive methods such as curves as a function 

of time (Figure 3), histograms and box plots, in order to identify the data distribution, to exclude isolated 

data and to establish the validity domain. 

In order to identify the explanatory variables which best describe MTLr, the data population was 

analyzed by the statistical method Principal Component Analysis (PCA). 
39

 This technique allowed to 

reduce the number of variables for the model, based on the following criteria: 

• Highest cumulative variability in the first two factors (F1, F2) in order to visualize most of the

information in the 2 axes (Figures 4, 5, 6).

• Highest correlations between the MTLr and all the explanatory variables.

• Existing correlations among the variables, in order to avoid repeating variables in the model by MLR

with the same information contained.

• The correlations are represented by the angles between vectors (). Those which are orthogonal are

not correlated at all, those which are very close between them ( < 90°) are positively correlated and

those who are on opposite sides ( > 90°) are negatively correlated.

• Priority is given to the well-represented variables on the axes in order to increase the reliability of the

correlations and physical trends. The representation on the axes is indicated by the radius of the

vector, the closer it is to the circle perimeter the better it is.



The PCA’s were carried out by groups of variables depending on the type of information. As shown 

in Table 1, PCA1 was applied on alloy composition, PCA2 was applied on conditions related to the test 

environment such as metal temperature and gaseous phase characteristics, and PCA3 was applied on ash 

chemical composition in elemental form, compositions found in compound form were converted to their 

elemental form to homogenize further treatment. 

RESULTS and DISCUSSION 

Figure 3 shows 684 MTLr values compiled from 15 high temperature corrosion studies as a 

function of the tests’ dwell time, corrosion rates are constant and in some cases tend to decrease with time. 

All of these values are explained by a group of explanatory variables that play a specific role in the high 

temperature corrosion process.
13-27 

Principal Component Analysis 

Figure 4 shows PCA1 for alloys nominal composition on 684 test results with 52% of cumulative 

variability represented. The analysis indicates the general correlation trends among the alloy elements as 

well as the correlation between each element and the MTLr on the entire data population. 

The diagram shows Fe and Ni in the F1 axis with the highest representation and the MTLr as a 

supplementary variable in the F3 axis (not shown in the diagram). As expected, the Fe has a direct 

negative correlation with Ni, Cr and Mo (diametrically opposed). Also Ni, Cr, and Mo have positive 

correlation between them (nearby vectors). Therefore, in order to avoid collinearity among the variables in 

the MLR, for modeling must be used one of the following main elements: Fe, Ni, Cr Mo. However Fe, Ni, 

and Mo show a very low correlation (< 0.05) with MTLr while Cr presents the highest correlation with 

MTLr. 

Most of the elements have logical position regarding the effect on MTLr, even though they show 

low levels of correlation, which may be caused by the 48% of information not yet represented in the 



correlations or by the fact that there are other variables that better govern the corrosion process. Indeed, an 

environment containing oxygen, chlorine, sulfur and other volatile species able to condensate on the tube 

surface as solid phases ( KCl, ZnCl2 and others) leads to very complex corrosion mechanisms. As the 

number of alloying elements in the materials increases, the behavior becomes even more complex and the 

specific role of each element is difficult to differentiate.
28 

However the statistical analysis supports with a 

very low positive correlation the results of several studies indicating that Fe-base alloys are less resistant 

to chloridizing environments compared to Ni-base alloys. This is related to the high affinity of iron for 

chlorine which entails the formation of volatile iron chlorides and lowers the melting point of eutectic 

mixtures. 
20

 The corrosion resistance is improved by the combined effect of the main elements Ni, Cr, and 

Mo. It has been proven that Ni is an element comparatively stable regarding reactions with chlorine. Cr is 

the most important alloying element for high temperature corrosion attacks. It forms Cr2O3 as a major 

component of the protective oxide scale.
19

 Alloys with less than 15% Cr are generally very susceptible to 

high temperature corrosion attacks. Austenitic stainless steels are more resistant than carbon steels. The 

most common is the 304 (UNS S30400) (18%Cr). Higher chromium austenitic stainless steels appear to 

be better in terms of furnace wall corrosion. For example type 310 (UNS S31000) (24%Cr) is more 

corrosion resistant than 304 (UNS S30400). 
41

 Also ferritic stainless steels containing 20 to 30% of Cr 

have shown good resistance to high temperature corrosion. 
40, 41

. The negative correlation between Mo and 

MTLr is expected as the addition of Mo in a content of approximately 5% or more is effective to resist 

high temperature corrosion. This is due to the fact that Mo is less reactive to chlorine than Fe and Ni, the 

same effect is expected with W which also presents negative correlation with MTLr.
 19 

Contrary to what is expected, Si has a positive correlation with the corrosion rate. Si is supposed to 

improve the corrosion resistance against sulfidation, but, since it reduces the melting point, the 

microstructural stability, the tube producibility, and weldability of materials, adding Si only can be 

beneficial depending on the chosen application. Other characteristics such as high temperature strength 

and bending workability can be reached by optimizing small amounts of alloying elements such as C, Nb, 

Ti and Al.
19, 20, 25

 Also
 
Kawahara (1997) has confirmed that the corrosion rate of an Al-rich layer is 



relatively low, as it forms aluminum oxide (Al2O3) as a protective film that contributes to corrosion 

resistance depending on the conditions. 
32

 The unexpected positive correlation between Cu, Nb, Ti and 

MTLr may be explained by the fact that the PCA analysis includes several families of materials and their 

effect as alloying elements depends on the major elements of the alloys. Hence the reason for the positive 

correlation with MTLr is difficult to establish, as their effect can be overlapped by other elements. The 

statistical analysis identified Cr as the most viable element to be included in modeling because Cr has the 

highest correlation with corrosion rates among the main elements of the alloys and its importance in the 

high temperature corrosion resistance. However, because of the variability of the data, further filtering 

procedures for materials domain were necessary (Figures 7,8). 

Figure 5 shows PCA2 for environmental conditions which includes temperature and gas phase 

compositions run over 684 tests with 73% of cumulative variability. This means higher correlation 

reliability in comparison with PCA1. The variables are adequately represented by the F1 and F2 axes, 

while MTLr as a supplementary variable is in the F3 axis (not shown in the diagram). As expected, MTLr 

has the highest positive correlation with TMetal because the metal temperature not only influences the 

reaction rate, but also controls the melting of deposits and thus activates the corrosive reaction. 
19,32

 TMetal

does not show a significant correlation with the other variables. 

The negative correlations with %O2, CO2 and %H2O are consistent with studies in which the 

corrosion rate decreased by increasing the O2 and H2O concentration. 
9, 42

 This is certainly related to the

formation of protective oxide scales against the corrosiveness of ash, as these gases act as oxidizing agents 

to form protective layers. When protective oxide scales are dissolved by molten deposits, an oxidizing 

environment should supply the O2 needed for re-healing the oxide layers in the presence of the oxide 

forming elements. 
32

 The O2 content does not show any correlation with the other variables.

HCl has a positive correlation with MTLr, which is expected because HCl is well known to initiate 

active oxidation at the metal/oxide scale interface. Nevertheless, the present analysis highlights that the 

HCl correlation with MTLr is very low. A possible explanation for this might be that the effect of gaseous 

HCl is probably low compared to other parameters. Brossard et al (2010) 
43

 demonstrated in laboratory 



scale testing that the fireside corrosion rate in gaseous complex atmospheres (O2, H2O, HCl and SO2), is 

drastically higher in the presence of reactive ash. On the other hand, H2O, which has a negative correlation 

with MTLr, exhibits a high positive correlation with CO2 and HCl. Statistically, this means that they share 

the same information. Thus, for MLR, it is recommended to use just one of these. Considering that HCl 

has a low correlation with MTLr, it can be dismissed. 

SO2 has a low negative correlation with MTLr which is consistent with the results of Grabke et al. 

(1995) who suggested that the mass loss of the alloys caused by HCl is reduced by the presence of SO2 in 

the atmosphere. The equilibrium of reaction 1 that would cause mass loss is shifted by SO2 to the left side. 

Moreover, sulfidation of chlorides takes place according to reaction 2. Nevertheless, sulfidation 

generates Cl2 which may participate actively in the corrosion process. 

(K,Na)2Ca2(SO4)3 + 2 HCl = 2 (K, Na)Cl + 2 CaSO4 + SO2 + H2O + ½ O2 Reaction 1 

2(K,Na)Cl + SO2 + ½ O2 = (K, Na)2SO4 + Cl2 Reaction 2 

Therefore according to statistical results concerning the atmospheric conditions, the parameters that 

should be taken into account for modeling are TMetal, %O2 and %H2O or %CO2  

Figure 6 shows PCA3 for ash composition in elementary form run for 684 test results with 73% of 

cumulative variability. Most of the variables are adequately represented by the F1 axis except for %S and 

%Ca which are found on the F2 axis, while MTLr as a supplementary variable is poorly represented by the 

F4 axis (not shown in the diagram). Consequently, the correlations must be interpreted with caution as 

general trends of the variables’ behavior regarding MTLr. In the diagram, the arrangement of the elements 

shows their contrasting effect on the melting temperature of the ash and thus on the corrosion rate, four 

groups can be distinguished. In the first group there are the elements Al, Si, Fe, P that are present as 

oxides in the ash (Al2O3, SiO2, Fe2O3, P2O5). Among these, Al, Si, Fe each has a very low or negative 

correlation with MTLr. This is expected considering that they do not decrease the ash melting 

temperature.
45

 During combustion these elements form stable compounds (oxides, silica, alumina) with 



high melting temperature. Thus Fe, Al, Si are refractory oxides forming elements within the deposit 

compared to other deposit elements as these compounds do not decrease ash melting temperature and limit 

the fraction of molten salts in the deposit. Therefore deposits remain solid avoiding an increase of the 

corrosion rate at high temperatures.
13, 44

 The positive correlation of P is expected, because it forms P2O5,

which is a compound that decreases the melting point of the ash and increases the corrosion rate.
46

 

The second group of elements contains Cl and heavy metals Pb, Zn (form chlorides PbCl2, ZnCl2) 

which have a positive correlation with MTLr. This is expected because they reduce the melting point of 

ash thus increasing its corrosiveness. 
19

 Corrosion rates of alloys increase when the ash contains larger 

amounts of fused salts since the protective oxide scale formed on the surface of alloys can be destroyed by 

reaction with fused salts. 
1
 

Figure 6 also shows a third group of elements: S and Ca. The negative correlation of S on the 

corrosion rate confirms the findings of Kawahara (1997) who showed that when heavy metal sulfates were 

contained in the ash, they worked to suppress corrosion. 
32

 Later Becker (2001) confirmed that sulfates are 

also present in waste incineration ash deposits, but they are typically much lower in concentration than 

chlorides and are not thought to play a primary role in the corrosion mechanism under the deposits. 
14

 Ca 

comes from the compound CaSO4, which explains its high positive correlation with sulfur and its negative 

correlation with MTLr. This is also in line with earlier research, which showed that generally, the relative 

amount of fused salts increases in ash with greater chlorine content, indicating that chlorinated compounds 

have generally lower melting temperatures than sulfates and oxides. 
1
 The same argument could be applied 

for the fourth group containing the alkali metals Na and K which tend to decrease the melting temperature. 

2
Na and K are found between Cl and S, which is consistent with the fact that these elements form 

chlorides (NaCl, KCl) and sulfates (Na2SO4, K2SO4). Therefore, the positive correlation between K and 

MTLr is expected and the low negative correlation with Na is not statistically significant. 

For the modeling, it seems convenient to include Cl and S, then Al, Si, Fe, Ca grouped as refractory 

oxides forming elements of the ash, and Na, K, Pb, Zn grouped as melting elements of the ash. 
44

 



As was pointed out above in the PCA1 (Figure 4), since the hot corrosion mechanism is rather 

sensitive to the alloy composition, different alloy systems might behave differently under a given 

environment. Therefore for modeling over a wide range of conditions, it becomes necessary to classify the 

material’s chemical composition domain in order to model the effect of the variables for a specific class of 

alloy. 

In order to assess the alloy composition domain, Figure 7 shows the 3D diagram of the 72 alloys 

contained in the database based on the major alloying elements Ni-Cr-Mo as a function of Fe given in 

(wt%). It can be seen in the diagram that most of the alloys have low levels of Fe and medium or high 

levels of Ni. The Cr concentrations vary throughout the domain but they range from 10% to 30% while the 

Mo content is variable ranging from 0.3% to 18.2%. 

For a better understanding, Figure 8 shows the surface diagram of the composition domain as a 

function of Ni content (wt%) which indicates three alloy systems clearly defined: low alloy steels, 

austenitic stainless steels and Fe/Ni-base high temperature alloys and nickel base alloys. It is well known 

that high temperature corrosion mechanisms vary depending on the elements present in the alloy. 
28

 For 

the purpose of this project the study was focused on the effect of the variables over the austenitic stainless 

steels and Fe/Ni-base high temperature alloys. 

Multiple Linear Regression 

A total population of 200 tests results from 10 high temperature corrosion studies 
13, 14, 16, 18, 19, 21, 22, 

23, 24, 27
 performed with austenitic alloys was processed by Multiple Linear Regression (MLR), in order to 

assess an equation that allows representing the corrosion rates with high accuracy. The summary statistics 

of the validity domain regarding the variables selected by PCA analysis are shown in Table 2. 

In the model, the variables are grouped according to their effect on corrosion kinetics. The variables 

TMetal (°C), O2 (vol%)Gas, H2O (vol%)Gas represent the environmental conditions, the Cr content (wt%)Alloy 

represents the composition of the material, and Cl, S, melting-elements (Na+K+Zn+Pb) and refractory 

oxides forming elements (Al+Ca+Si+Fe) in (wt%)Ash represent the ash composition. Figure 9 shows the 

influence of the variables in the model expressed by standardized coefficients determined with 95% 



confidence and 0.0001 tolerance, which are used to compare the relative weights of the variables. The 

higher the absolute value of a coefficient, the more important the weight of the corresponding variable is, 

for the model. 

Figure 9 confirms the findings of many previous experimental studies in this field. TMetal increases 

the corrosion rate; O2 and H2O contribute to form protective oxide layers and therefore tend to decrease 

the corrosion rate. S tends to suppress the aggressive effect of Cl in ash, which is critical to the corrosion 

rate. Al, Ca, Si, Fe as refractory oxide forming elements maintain constant the melting temperature of the 

ash,
45

 therefore their negative effect on the corrosion rate is expected. Finally, the melting elements like 

Na, K, Zn and Pb reduce the melting point of the ash, accelerating corrosion. 
1, 2, 13, 14, 29

 

The determination coefficient obtained for the model was R² = 0.79 and a coefficient R²Adjusted = 

0.78. The R² is interpreted as the proportion of the variability of the dependent variable explained by the 

model. The nearer R² is to 1, the better the model is. But the R² does not take into account the number of 

variables included in the model. In this sense the adjusted R²Adjusted is a correction of R², which takes into 

account the number of variables used in the model. Therefore 79% of the data has been explained by the 

model. The 21% not explained could be attributed to the variation of the test conditions of the studies 

involved and to parameters that were not taken into account in the model. The accuracy of the model is 

shown in Figure 10, where all the predicted values are located in the confidence interval. 

In order to validate the model over an isolated system, the data population was randomly split into 

two groups of equal density in the same validity domain, the first to create the equation of the model and 

the second for its validation. 

Equation (3) shows the best fit obtained by MLR, for MTLr as a function of the most suitable 

variables according to the statistical criteria applied, as shown in Table 2, MTLr is given in mm/y, TMetal is 

given in °C, %Cr in the alloy is given in mass, %O2 and %H2O in the gas are given in volume, and % of 

elements in the deposits (Cl, S, Al, Si, Ca, Fe, Na, K, Zn, Pb) are given in mass. 
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Table 2 also shows the statistics of the validity domain regarding the variables of the model and 

indicates the applicable limits for the values of the variables used in equation (3). The model can predict 

corrosion rates for austenitic alloys and Fe/Ni high temperature (chemical composition limits are indicated 

in Figure 8), exposed at temperatures between 300°C and 725°C, complex atmospheres as well as pure air 

(according to O2 and H2O gas contents) and ash compositions calculated in elemental form within the 

established limits. The interaction factor applied between chlorine and melting elements (𝐶𝑙 𝑥 (𝑁𝑎 + 𝐾 +

𝑍𝑛 + 𝑃𝑏)) aims to enhance the relative weight of chlorides forming elements in the model, since these 

elements do not act by themselves in the corrosion processes. Corrosion mechanisms as active oxidation 

and corrosion by molten ash are activated by the presence of alkali metal chlorides (NaCl, KCl) and heavy 

metal chlorides (ZnCl2, PbCl2) respectively. Therefore, it is the chlorine content which controls the 

chlorides formation which are detrimental to the corrosion process. 

Figure 11 shows the accuracy of the predictions obtained by Equation (3) with the data used to 

create the model and the data used for its validation. All the predicted values are located in the confidence 

interval. The determination coefficient was improved to R² = 0.82 and a coefficient R²Adjusted = 0.81. This 

means that 82% of the corrosion rates are explained by the model. The same level of influence of the 

variables in the model is maintained, which indicates that the prediction coefficients of the model are 

stable even if there is a decrease in data population. Indeed, for an ideal model the points would all be on 

the bisector. Although accurate predictions were achieved, the associated error, represented by the 

confidence interval, corresponds to about ± 0.75 mm/y of the calculated corrosion rate Equation (4). 

𝑀𝑇𝐿𝑟𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  =  𝑀𝑇𝐿𝑟𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ± 0.75  𝑚𝑚/𝑦 (4)



CONCLUSIONS 

The purpose of the current study was to propose a statistical methodology to model the high 

temperature corrosion mechanisms associated to waste incineration plants while taking into account a 

major proportion of variables playing a significant role in the corrosion process. By using a large database, 

the present study confirms experimental findings and therefore helps to understand the role of the 

variables in the corrosion process in a wide range of conditions. This contributes to the statistical 

modeling of experimental data in order to obtain acceptable accuracy values despite the variability of the 

data. 

Future trials should simultaneously assess the effects of gas temperature, metal temperature as well 

as gas velocity, which are known to be important corrosion process variables in industrial process. In the 

present study, it was not possible to assess these variables because there is not enough available data in the 

open literature. 

The same type of model will be developed for iron based and nickel based alloys. The methods used 

for this study may be applied to other corrosion mechanisms involved in another industrial process 

elsewhere in the world, such as metal dusting corrosion in syngas plants. 
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FIGURES 

Figure 1. Schematic representation of the database structure 

Figure 2. Measurements that express the corrosion rate in the database 
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Figure 3. Maximum Thickness Loss Rate (MTLr) data as a function of time (hours) 
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Figure 4. PCA1 for alloys nominal composition a) representation of elements in the F1 and F2 axes (52% 

of cumulative variability) b) results of the correlation analysis 

Figure 5. PCA2 for environmental conditions a) representation of variables in the F1 and F2 axes (73% of 



Figure 6. PCA3 for ash composition in the form of compounds and elementary form a) representation of 

variables in the F1 and F2 axes (73% of cumulative variability) b) results of the correlation analysis 

Figure 7. 3D diagram of the composition of the 72 alloys contained in the database, as a function of Fe 

content. 
13-27 



Figure 8. 3D surface diagram of the alloys domain contained in the database, distributed as a function of 

their Ni content.
13-27 

Figure 9. Influence of the variables on the corrosion rate (MTLr) in the model. 



Figure 10. Precision of the model, observed MTLr as a function of predicted MTLr 

Figure 11. Precision of the model, observed MTLr as a function of predicted MTLr after the validation of 

the model 




