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INFLUENCE OF VIBRATION ON SORET-DRIVEN
CONVECTION IN POROUS MEDIA

M. C. Charrier Mojtabi
Laboratoire d’ Energétique (LESETH),
Université Paul Sabatier,

Toulouse Cedex, France

Y. P. Razi, K. Maliwan, and A. Mojtabi

Université Paul Sabatier,
Toulouse Cedex, France

Two-dimensional thermosolutal natural convection with Soret effect under the simultaneous
action of vibrational and gravitational accelerations is investigated. We consider a porous
cavity saturated by a binary mixture and adopt the time-averaging formulation. For an
infinite horizontal layer, a stability analysis is performed from which the threshold of sta-
bility is determined. Numerical simulations, using a pseudo-spectral Chebyshev collocation
method, are performed to describe the convective motion. The problem is investigated for
different aspect ratios with various directions of vibration. It is concluded that, for both the
stationary and the Hopf bifurcation, the vertical vibration has a stabilizing effect while the
horizontal vibration has a destabilizing effect on the onset of convection.

INTRODUCTION

The effect of mechanical vibration on the stability threshold of thermal systems
has attracted the attention of researchers in recent years. In thermovibrational
convection, the energy of mechanical vibration in the presence of a temperature
gradient can be used to control the onset of convective motion. This type of con-
vective motion, in which the buoyancy force may be thought of as time-dependent,
has been the subject of intense studies in fluid media [1-4], and with less intensity in
porous media [5-9]. As with any other new branch of fluid mechanics, the progress in
thermovibrational problems is a direct response to industrial applications. For
example, Apollo 14 experimental results showed that spacecraft vibrations might
cause an appreciable amount of heat transfer [10]. These results were in contra-
diction with the common belief that natural convection could not exist in space.
Further research showed later that a spacecraft in orbit is subject to many disturbing
influences of human as well as operational origin. These influences result in the



NOMENCLATURE
a* effective thermal diffusivity, m?/s R acceleration ratio
A aspect ratio Ra Rayleigh number
b amplitude of vibration R, vibrational Rayleigh number
¢ perturbation of concentration T temperature, K
C; initial mass fraction A% velocity, m/s
C mass fraction W solenoidal vector
D* mass diffusion coefficient o angle of vibration
Dr thermodiffusion coefficient Be coefficient of mass expansion
Da Darcy number Br coefficient of thermal expansion
e direction of vibration € porosity
G gravitational acceleration, m/s* €* normalized porosity
H height, m 0 perturbation of temperature
J unit vector in y direction \Y kinematic viscosity, m?/s
I mass flux (=VC — VT) c volumic heat capacity ratio
k wave number i separation ratio
K permeability, m> 0} stream function perturbation
L length of the cavity ® dimensional frequency
Le Lewis number (= a*/D¥)
n unit vector normal to the boundary Subscripts
P pressure, N/m? ¢ critical
Pr* Prandtl number (= v/a*) co oscillatory critical
R vibrational parameter cs stationary critical

production of residual accelerations which are usually referred to as “g-jitters.” It
was suggested that g-jitters may be represented by a unidirectional harmonic oscil-
lation having small amplitude [11].

Our objective is to study the effect of vibrational mechanism on coupled dis-
sipative phenomena, namely, the Soret-driven convective motion in a porous medium
saturated by a binary mixture. Under the Soret effect, the temperature gradient can
produce mass flux [12]. This problem in the context of vibration in fluid media was
studied in an infinite horizontal layer [13, 14]. The limiting case of high-frequency and
small-amplitude vibration was studied, which enabled the time-averaged method to
be used. The authors found that vibration could drastically change the stable zones
in the stability diagram. Generally, vertical vibration (parallel to the temperature
gradient) increases the stability of the conductive mode. Smorodin et al. [15] studied
the same problem under finite frequency. They also showed that, in synchronous
mode, vibration has a stabilizing effect.

For existing thermovibrational studies in porous media saturated by a pure
fluid, we can mention the works of Zen’kovskaya [5] and Zen’kovskaya and
Rogovenko [7] in an infinite layer heated from below or above, Khallouf et al. [6] in a
rectangular cavity heated differentially, and Bardan and Mojtabi [8] in a rectangular
cavity heated from below. Also, Jounet and Bardan [9] consider the thermohaline
problem in a rectangular cavity. Finally, Sovran et al. [16] considered the effect of
vibration on the onset of Soret-driven convection in a rectangular cavity.

In this work we study the thermoconvective motion in an infinite horizontal
layer and confined cavity filled with a porous medium saturated by a binary
mixture. The effect of direction of vibration on the stability threshold is investigated.
Stationary as well as Hopf bifurcations are studied, and convective structures



under the combined effects of vibration and gravitational accelerations are
examined.

PROBLEM DESCRIPTION

We consider a rectangular cavity filled with a porous medium saturated by a
binary mixture, Figure 1. The aspect ratio is defined as 4 = L/H, where H is the
height and L is the length of the cavity. The boundaries of the cavity are rigid and
impermeable; the horizontal ones can be heated from below or above, while the
lateral ones are thermally insulated and impermeable. The governing equations are
written in a reference frame linked to the cavity. As vibration has high frequency and
small amplitude, the time-averaged formulation is adopted [17]. According to this
method, each field is subdivided into two parts. The first part varies slowly with time,
while the second part varies quickly with time. By replacing these transformations in
the governing system of equations and averaging over the vibration period, we find
two coupled systems of equations. One governs the system with slow evolution and
the other governs rapid evolution with respect to time. By making some assump-
tions, we may find the oscillatory fields exactly. By replacing these in the system with
slow evolution we find the time-averaged system. Under the Boussinesq approx-
imation the dimensionless governing equations for the mean flow averaged over the
vibration period can be written as

V-V=0
ov .
B +V =—~VP+Ra(T+C)j+ R(Wr
+yW,) - V(T—%;C) (cos ai + sin o)

a—T+V-VT:AT (1)
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Figure 1. Geometry and coordinate system.



where V, T, C are the velocity, temperature, and mass fraction fields, and W and
W, are solenoidal vectors corresponding to the temperature and concentration,
respectively.

The corresponding boundary conditions are

Wr-n=W,-n=0

y=0: T=1, Jp-n=0
y=1: T=0, Jun-n=0 (2)
oT oC
=0,4: —=—=0
. ’ Ox Ox

System (1) depends on eight parameters: the thermal Rayleigh number Ra =
KgB AT H/va*, the vibrational Rayleigh number R, = (R’Ra’B)/2(B*w® + 1) =
R’Ra’ (R = b@*/g), the separation factor y = —C;(1 — C;)(B,/B7)Dr/D*, the nor-
malized porosity €3(¢® = ¢/c), the Lewis number Le (Le = a*/D*, in which a* is the
effective thermal diffusivity and D* is the effective mass diffusivity), the coefficient of
the unsteady Darcy term in the momentum equation B= Da/(cePr*) (in porous
media B~ 10> and Da represents the Darcy number Da = K/H?), and finally o is
the direction of vibration with respect to the heated boundary.

SOLUTION METHOD

In order to solve the system (1) with the corresponding boundary conditions
(2), the projection diffusion algorithm is used [18]. The linear (viscous) terms are
treated implicitly using a second-order Euler backward scheme, while a second-order
semiexplicit Adams-Bashforth scheme is employed to estimate the nonlinear
(advective) terms. We apply this method to an advection-diffusion equation such as
(" is a general coefficient)

ng (u-Vf) =TV (3)

which can be discretized as

%fn+1 _ 2fn + %fn_l
At

= IV = 2(u- )" = (- V)] (4)
Equation (4) may be written in the form of the following Helmholtz equation:

(V2 —h)f" ! =5 (5)

A high-accuracy spectral method, namely, the Chebyshev collocation method
with the Gauss-Lobatto zeros as collocation points, is used in the spatial dis-
cretization of the operators. The successive diagonalization method is applied to the
inverse of these operators.



RESULTS
Linear Stability Analysis

For the direction of vibration parallel to the temperature gradient (o =m/2),
there exists a mechanical equilibrium (for both an infinite horizontal layer and a
confined cavity), which is characterized by

Vozo T():l—y C():CSt—y WT():O Wco:() (6)

However, for other directions of vibration, we may obtain quasi-equilibrium solu-
tion only for the infinite horizontal layer. This is characterized by

V():O T()Zl—y C()ch—y WmV\A:CQ—yCOSO( WT() =0

Weo, =c3 —ycosa Weg, =0

It should be noted that, for a confined cavity, there is no equilibrium solution under
the horizontal vibration.

Infinite Horizontal Porous Layer

In order to investigate the stability of the conductive solution, we perturb the
fields around the equilibrium state. Then, after linearization, we develop the
disturbances in the form of normal modes. We introduce the stream function
perturbation ¢, the temperature perturbation 0, and the mass fraction perturbation
c. Also, we designate the stream function perturbations ¢¢ and ¢, for corresponding
solenoidal fields W, and W,. In order to facilitate our study, we use the transfor-
mations n=c — 0 and ¢, =P, — Ppo. We may write:

N N

¢ = Z a;sin(inz) exp(ot + Ikx) 0 =) b;sin(inz)exp(ot + Tkx)
i=1 i=1
N—1 N

n= Z ¢;icos(inz) exp(ot + ITkx) by = Z d;sin(inz) exp(ot + Ikx)
i=0 i=1

N
¢, = Zgi sin(inz) exp(ot + Ikx)
i=1

in which & is the wave number in the infinite horizontal direction O, and = —1.
The corresponding linear stability problem is solved using the Galerkin
method.

Vertical vibration. For different sets of parameters 0< R, <100,
2<Le<100, y= —0.2, and €*=0.5, 0.7, the numerical simulations are carried
out. The results of linear stability analysis for Le =2 and €* =0.5 are presented in
Table 1. It should be noted that, in the range of Lewis numbers studied, the results
are qualitatively the same. As can be observed from Table 1, we may distinguish two



Table 1. Effect of vibrations on the Hopf bifurcation (Le=2, y= —0.2, and €*=0.5)

Rv Racs k cs Raco k co (O
0 153.19 4.75 95.43 2.59 10.78
10 157.53 4.73 97.78 2.56 10.75
50 173.63 4.65 107.1 241 10.50
100 193.60 4.54 117.8 2.26 10.26

types of bifurcations: stationary and Hopf bifurcations. For the stationary bifurca-
tion, we assume that the principle of the exchange of stability is valid (i.e., o € R).
From this the marginal state is determined (c=0). For the Hopf bifurcation
(o0 =0,+ lng), the marginal state corresponds to o,=0. It should be added that
the Hopf bifurcation is present only for negative separation factors and, for the layer
heated from below, it forms before the stationary bifurcation (Ra., <Ra,,). The
effects of vibration on the Hopf bifurcation for y= — 0.2, €e*=0.5, and Le =2 are
represented in Table 1. We can conclude from Table 1 that vibration has a stabilizing
effect: it increases the critical value of thermal Rayleigh number for the onset of
convection. This is true for both the stationary and the Hopf bifurcation. It should
be mentioned that vibration reduces the critical wave number (k., k.,) and the Hopf
frequency ().

Horizontal vibration. The stability domain for different vibrational para-
meters in the (Ra, ) stability diagram is presented in Figure 2. This diagram is
characterized by stationary and oscillatory bifurcations. For \ >0 the bifurcation

Rac
R=0.1 -, \ ~ ~Racs (R=0.1)
\L\ 45-
i \ —~Raco (R=0.1)
N [ —o—Racs (R = 0.1, ke = 0)
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‘A, . \ ' = 0.
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Figure 2. Stability diagram for stationary and oscillatory convection for Le =10, €*=0.5 and B=10"°.



is always of the stationary type, while for \ < 0 we may obtain oscillatory or station-
ary bifurcations. The computations are performed for £8=0.5, B=10"°¢ (usual
values used in porous media), and Le = 10. The results show that horizontal vibra-
tion has a destabilizing effect on both stationary and Hopf bifurcations. One of
the interesting features of Figure 2 is that we may obtain long-wave-mode instability
in the regions where under static gravity conditions are infinitely /linearly stable. The
existence of these regions is due to a vibrational mechanism. A regular perturbation
method with the wave number as small parameter is used to study the behavior of the

long-wave mode. The stability boundary can be obtained from following relation
(x=0):

Ra.+ R, (1 + q/)g = % (R, = R*Ra?) (8)

Numerical Simulation

The numerical simulations for a confined cavity are performed for vertical and
horizontal vibration. The calculations are made for different aspect ratios 4 =1 and
A=10. The 27 * 27 collocation points are used for 4 =1 while 63 * 27 collocation
points are used for 4 =10.

Vertical vibration. The aim of this section is to provide a qualitative picture
of the flow and thermal fields to complete the results of our stability analysis. In
order to study the effect of vibration on the convective pattern, we set Le =2,
Vy=0.4, A=1, and Ra =30 and change the value of the vibrational Rayleigh number
R,. The calculations are performed for e* =0.5 and 0.7 and are presented in Tables 2
and 3.

These values are chosen according to the results of the stability analysis. We
conclude from Tables 2 and 3 that, for the selected values of Le, €*, |, A, and Ra,
vibration reduces the Nusselt number and we may obtain a conductive solution. In
addition, we find that for the combination of R,, \, and €* we have the interesting
relation R,.(1 +\/e*)=cst. For the case under study this constant is 31.5.

In order to demonstrate the effect of vibration on convective structure
under different aspect ratios, we also consider convection under gravitational
acceleration: 4 =10, Le=2, €*=0.5, y=0.4, Ra,,=13, and R, =0. Figure 3 shows

Table 2. Effect of mechanical vibration on Nu for 4=1, a=n/2, Le=2,
e*=0.5, y=0.4, and Ra=30

R, Nu

5 1.204
10 1.1483
15 1.0789
16 1.0604
17 1.0359
17.5 1.0124

17.53 1.0084




Table 3. Effect of mechanical vibration on Nu for 4=1, a=n/2, Le=2,
€*=0.7, y=0.4, and Ra=30

R, Nu
5 1.2057
10 1.1528
15 1.0942
16 1.0604
19 1.0329
19.7 1.0156
20.2 1.0034

Figure 3. Onset of stationary convection for 4 =10, Le=2, €¥*=0.5, {=0.4, R,=0, and Ra=13.

Figure 4. Effect of vertical vibration on the onset of convection for 4A=10, Le=2, ¢*=0.5, y=0.4,
R,=20, and Ra,=15.7.
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Figure 5. Onset of oscillatory convection for 4 =10, y= —0.2, e*=0.5, R,=100, Ra,.,=118.5, and
wo=10.08.



the streamlines corresponding to this case, which are characterized by six convective
rolls. The numerical result of the onset of convection is in good agreement with the
result obtained from the linear stability analysis of an infinite horizontal layer heated
from below (Racs=12.95, kc=1.94). 1t should be emphasized that, based on our
numerical simulations, we conclude that 4 =10 provides a good representation of an
infinite layer. Figure 4 represents the effect of vertical vibration. It is clear that
vibration changes the convective structure dramatically. The results are in good
agreement with the linear stability analysis (Ra.,=15.04, k.,=0.01).

The result of the Hopf bifurcation for the temporal evolution of velocity for
Le=2,e*=0.5, R,=100,\y = —0.2is presented in Figure 5. As mentioned earlier,
the Hopf bifurcation appears for the negative separation factors. The numerical
result shows that the critical values corresponding to the Hopf bifurcation are
Ra.,=118.57, k.,=2.2, and wy=10.08. These are in good agreement with stability
analysis results (Ra.,=117.83, k., =2.26, ®y=10.25).

@

(=]

(b)
Figure 6. (a) Stream functions for 4=1, Le=2, e¥*=0.5, y=0.2, Ra=6, and R=0.3. (b) Isotherms for
A=1,Le=2,¢e*=0.5 {y=0.2, Ra=6, and R=0.3.



Horizontal vibration. For the case of horizontal vibration, we first set A =1,
Ra=6, Le=2, e*=0.5, y=0.2, and R=0.3. The value of Ra is set to such a value
that only the vibrational mechanism is in action. Figures 6a and 6b show the corre-
sponding fluid flow structure and temperature distribution; the stream functions are
characterized by symmetrical four-vortex rolls. This structure is a typical example of
an imperfect bifurcation, as was observed earlier in convection under microgravity
conditions [19]. The sum of stream functions is zero in this case. If we further
increase the thermal Rayleigh number to Ra=13.15, the gravitational acceleration
will be in action, too (this value is chosen according to linear stability analysis results:
for Le=2,€*=0.5,y=0.2, R=0.3, the critical Rayleigh number Ra s~ 14). The in-
tensity of convective motion will be accordingly increased and the sum of stream
functions at all points in the domain is a good criterion for the intensity of convective
motion. This case is shown in Figures 7a and 7b. As can be seen from the figures, we
obtain a symmetry breaking structure. This is explained by coalescence of the two

e e ———ar—
[ ————— ]
i} 1

(b)

Figure 7. (@) Stream functions for A=1, Le=2, e¥*=0.5, y=0.2, Ra=13.15, and R=0.3. (b) Isotherms
for A=1, Le=2, €*=0.5, y=0.2, Ra=13.15, and R=0.3.



(b)

Figure 8. (a) Stream functions for A=1, Le=2, e*=0.5, y=0.2, Ra=15, and R=0.3. (») Isotherms for
A=1,Le=2,€*=0.5{y=0.2, Ra=15, and R=0.3.

rolls with the same sign in the diagonal direction and the existence of two separate
off-diagonal rolls with weaker intensity. If we increase the thermal Rayleigh number
further, to Ra =15, we find a single convective roll, which means that the gravita-
tional effect is more important than the vibrational effect, Figures 8a and 8b.

For A=10, the case corresponding to Le=2, ¢*=0.5, y=0.2, R=0.1, and
Ra =15 is considered. The typical four-vortex structure is presented in Figure 9.
Further increase in Ra will cause a multicellular convective regime, Figure 10.

CONCLUSIONS

Two-dimensional thermosolutal convection under mechanical vibration has
been studied analytically and numerically. The vibration is in the limiting range of
high frequency and small amplitude. The influence of the direction of vibration for
different aspect ratios of the cavity is studied and the corresponding fluid flow



Figure 10. Stream functions for 4 =10, Le=2, ¢*=0.5, y=0.2, Ra=17, and R=0.1.

structures are obtained. The geometries considered are an infinite horizontal layer
and a confined cavity. Linear stability analyses of equilibrium and quasi-equilibrium
states are performed for the infinite horizontal layer. It is found that when the
direction of vibration is considered parallel to the temperature gradient, vibration
has a stabilizing effect for both the stationary and the Hopf bifurcation. The action
of vibration reduces the number of convective rolls and the Hopf frequency. How-
ever, when the direction of vibration is perpendicular to the temperature gradient,
vibration has a destabilizing effect. New instability regions appear in the bifurcation
diagram (Ra—\{) in which the preferred pattern is the monocellular convective roll.
Numerical simulations using a spectral method are performed which corroborate the
results of the stability analysis. It is shown that the vertical vibration can reduce the
number of convective rolls. The effect of vibration on the Nusselt number is also
investigated, and the importance of the group [R,.(1 +\//€*)] is emphasized. For the
cases in which mechanical equilibrium is impossible, the fluid flow structures are
sought. For a fixed value of vibrational Rayleigh number, we increase the Rayleigh
number from a value much less than the critical value corresponding to the onset of
convection in an infinite layer. We observe first a symmetrical four-vortex structure,
then a diagonal dominant symmetry breaking structure, and finally a monocellular
structure. These results are similar to the results obtained in a cavity filled with pure
fluid under the action of vibration in weightlessness. The interesting result of this
study is that, by appropriate use of parasite acceleration in a microgravity
environment, we may obtain significant enhancement in heat and mass transfer rates.
The scientific interest of this study lies not only in the thermomechanical aspect of
the results, but also in the possibilities of potential applications as well.
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