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A moderate temperature difference maintained berween two concentric spherical
surfaces induces, in steady state, uniceflular toroida! movements in the enclosed
fluid. Beyond a critical temperature difference, the flow becomes unstable and the
convective phenomena rearrange inta counter-rotating toroidal cells. A two-
dimensional axisymmetric numerical model confirms the existence of a unicellular
regime and shows that, beyond the critical conditions and for the same set of
parameters, two convergent solutions can be obrained. One is unicellular and the
other is bicellular; in the latter, the additional cell appears at the top of the layer.
The initial conditions determine which one of these two will be established. This
transition is investigated as a function of several parameters and the results are
compared with the experimental results in the literature,

INTRODUCTION

The flow due to natural convection between two concentric spheres has been
widely investigated experimentally. The different types of flow and the global heat
transfer were sought. ; :

For radius ratios between 1.19 and 3.14 and air, Bishop et al. []] distinguished
three types of flow. Most frequently, a two-dimensional, crescent-shaped, unicellular
flow was encountered. For a radius ratio of 1.37 or 1.72, this was the only type of
flow obtained, regardless of the temperature difference between the two spheres. For
moderate or high temperature gradients and radius ratios of 2.53 and 3.14, a
kidney-shaped cell was observed.

A third type of flow was observed for small radius ratios (1.19) and moderate or
high temperature differences. This flow is unsteady and muiticellular. Small cells
appear and disappear periodically at the top of the layer. The measured temperature
profiles agree with the types of flow mentioned.

Scanlan et al. [2] used water and two silicone oils to investigate this flow, The
Prandtl number varied from 4.7 to 4148 and radius ratios between 1.09 and 2.8 were



NOMENCLATURE

ri,ro inner and outer sphere radii ) azimuthal angle

R ratio of outer to inner sphere radius A thermal conductivity
(=rolr) v kinematic viscosity

Ra Rayleigh number [= gape(T; — P, reference density
Tord ] : ] angular coordinate measured from

Ray;  Rayleigh number based on layer downward polar axis
thickness [= (R — 1)* Ra} W stream function

Pr Prandtl number (= vpc/A) w vorticity

T temperature [= (T — Tp)/(T; — Tyl

T;, T, inner and outer sphere temperatures ;

A Superscript
T, reference temperature
a coefficient of thermal expansion real variable

considered. The global Nusselt number is plotted as a function of the Rayleigh number
for all three liquids.

Yin et al, [3], for water and air and radius ratios between 1.09 and 2.17, obtain
two experimental curves; for each fluid, the transition Grashof number, transition
between the steady and unsteady flows, is.given as a function of the ratio of the inner
sphere diameter to the annular thickness.

Mack and Hardee [4] determined, by the perturbation method developed up to
order 3, the temperature and stream function fields. This method is valid only for
small Rayleigh numbers; thus, no conclusions on the convergence as a function of the
Rayleigh number are possible.

Here, a numerical model using the implicit alternating direction method permits
the temperature and stream function field to be obtained. Radius ratios between 1.15
and 3 and Rayleigh numbers varying from 100 to 10° are considered. For a given set
of parameters, two different solutions are possible.

THEORETICAL FORMULATION

A fluid layer lies between two concentric spheres. The inner sphere, of radius r;,
is kept at a constant temperature 7;, while the outer sphere, of radius r,, is kept at a
constant but lower temperature 7, (T; > T,). The properties of the fluid layer are: a
coefficient of thermal expansion «, a kinematic viscosity v, a specific heat per unit
volume pc, and a thermal conductivity A, all defined at a reference temperature 7.
The governing equations are:

V-V =0 )
T
——-=VT'+V . -Vr'=0 2
ot pc 2)
av’ ’ ’ 2 ’
P F+V-W + VP —pg—pV*V =0 ©)

V'=V,e, + Ve, + Vyey is the fluid velocity; 7' is the temperature; P is the
pressure; g = —gk is the acceleration due to gravity; e,, e,, e; are unit normal vectors,
and k =cos 8 e; —sinf e,.



The fluid state equation is:
p=p [l =T —T})]

The Boussinesq approximation is assumed valid. To render the equations dimensionless,
the reference values ry, per?/\, Mrpe, ripc®/\?, and AT =T;— T, are used for
length, time, pressure, and temperature, respectively. Since the flow is axisymmetric,
only half the enclosed region is considered.

For this two-dimensional domain, and introducing the stream function ¥, the
dimensionless equations are:.
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# starts from the descending vertical.

Apart from R = r,/r;, which describes the system’s geometry, two dimensionless
parameters appear in the equations, the Rayleigh number Ra = gapc AT'r} /Av and the
Prandtl number Pr =wpc/A. Another Rayleigh number, based on the layer thickness
L =r,—r;, will be used later and is Ra; = Ra (R — 1)°.

The boundary conditions are:

_ 0¥ _ _ _
V== T=1 forr=1 . (7)
=0 r=p txp=r=lt )
r r;
=0 ‘;—T=o o 9 == f il (9)

There are no boundary conditions for the vorticity, but indirectly

2
w=—a—ql for r=1 and R

ar? (10)
w=0 foré=0andn



The local heat transfer is determined by the local Nusselt number:

Nu= (V T— —) rlog R

Hotter Outer Sphere Case

Let the subscripts 1 and 2 denote the flow solutions when the inner sphere is
kept at a higher temperature and a lower temperature, respectlve]y Direct substitution
into Eqs. (4)<(6) leads immediately to:

Vy(r,0)=—V,(r, m—8)
Wa(r,8)=—w, (r,m—8) (1
T,(r,8)=1—T,(r, m—8)

NUMERICAL MODEL

Equation (4) is modified in order to introduce a fictitious time p:

N _
5 ~ DVt (4a)

Keeping the time-.dependent terms allows the introduction of the initial conditions
naturally and the acquisition of the steady solution without necessarily being
concerned with nonstationary behavior.

The system of Egs. (4a)<9) is formulated in finite differences and solved by the
implicit alternating direction scheme, A calculation for a given Rag, Pr, and R ‘is
developed as follows. Initial temperature and stream function fields are introduced.
The vorticity boundary conditions are calculated using the unsteady form of Eq. (10):

-—+w+T=0 ) (10a)

Equation (6) is used to obtain the vorticity field and Eq. (4a) the stream function;
then Eq. (5) is solved to obtain the temperature fields, and finally the total Nusselt
number is calculated within the same time step. A cycle corresponding to a new time
step is then started. Calculations continue until the solution converges over the whole
range. Tests based on the global Nusselt number then stop the calculation. At every
time step the local Nusselt number and the global Nusselt number are printed. The
time for calculation with a 49 X 49 network for 1 <r<R and 0< 8 <n is 7 s per
time step on an IBM 370-168 computer.

The initial temperature distribution is either pure conduction or a particular
distribution inducing downward velocity in the upper part of the layer. The first of
these last initial conditions is:

I Inr log r
=]— — +asi —
T,(r,0)=1 mR ¢ sin <1r logR) cos y8 (12)



a is an amplitude coefficient and 7y is a wave number that makes it possible to
introduce either a symmetrical or a nonsymmetrical temperature field with respect to
the vertical axis. When Ra is very important, the nonsymmetrical temperature field
leads to a downward velocity along the vertical axis in the upper part of the layer; but
for moderate Rayleigh numbers, it is not possible to have a downward velocity in the
upper part of the layer with an initial temperature field such as Eq. (12). We then
abandon Eq. (12) and choose the same initial condition for all our calculations every
time there is a relatively important downward velocity in the upper part of the layer.
This last initial condition corresponds to a numerical initial temperature and velocity
fields with a counter-rotating cell at the top of the layer. For small Rayleigh numbers,
this initial condition with a counter-rotating cell leads to unicellular flow, just like the
initial condition corresponding to pure conduction.

Depending on the Rayleigh number, steady profiles are obtained after 50-80
iterations. Isotherms and streamlines are plotted at the end of each calculation,

RESULTS AND DISCUSSION

The results are discussed and reference is made to two recent publications; the
first, by Charrier-Mojtabi et al. [S], treats natural convection between two cylinders,
and the second, by Fauveau et al. [6], considers a porous layer between two spheres.

Figure 1 shows, for Pr=0.7, the Nusselt number plotted against the Rayleigh
number for a radius ratio of 2. The numerical values of the parameters and the most
significant results obtained are given in Table 1. For a given radius ratio and a
relatively high Rayleigh number, Fig. 1 shows two different numerical values for the
steady-state Nusselt number.

Each curve in Fig. 1 was calculated in the following way: points on curve (a)
were computed from the initial conditions corresponding to pure conduction. For
curve (b), all the points were obtained starting from the same initial condition
corresponding to relatively important downward velocity along the vertical axis, in the
upper part of the layer.

Nu
3.
2 J (b)
(a)
1 T T
102 103 104 Ra,

Fig. 1 Nusselt number as a function of Rayleigh numbes for R = 2.



Table I Values of Nu, W44, and V[0 ==,
r = (R + 1)/2] Calculated as Functions of Rag,

and R 4
R Ra Nu . v,
1.2 6,000 1.24 14.81 23.20
6,000 1.28 15.3 —87
2 3,000 111 5.11 12.43
3,000 1.26 6.51 _14.48
5,000 1.40 9.18 -18.43
2 10,000 1.18 4.0 9
5,000 1.30 5.48 14.55
5,000 1.60 10.2 -2
10,000 1.47 1.8 17.97
10,000 1.89 13.33 —14.02
30,000 2.65 23.57 —63.20
50,000 2.58 19.30 41.52
50,000 3.12 29.28 -76.61

These two cases correspond to two different flows: case (g) is unicellular toroidal
and case (b) is multicellular toroidal. In the latter, the temperature and stream
function fields are almost identical to those of case (a) for 0 <§ < 120°. However, at
the top, a counter-rotating cell of smaller magnitude appears. Figures 2 and 3 shows
the temperature and streamlines obtained for case () and case (b) for two different
radius ratios (R =+/2 and 2).

The multicellular regime, which is both experimentally and numerically con-
firmed for a spherical porous medium [7], suggests some comparison despite the
obvious differences [8] between the Darcy and Navier-Stokes equations. In both
porous and fluid media the unicellular regime is easier to obtain numerically, and in
both the multicellular regime is obtained if a negative velocity is imposed, at the top,

Rs2 Ra@ 3104 Prad.? Ra2 Raq 5104 Pra0.7
Fig. 2 Streamlines and isotherms for R = /2, Pr=0.7, and Ra; = 3000.
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Fig. 3 Streamlines and isotherms for R = 2, Pr = 0.7, and Raj, = 50,000.

by the initial conditions. This work is limited to Ra; = 5 X 10* for R = 2. If the value
were much higher, the multicellular regime could appear spontaneously. If this were so,
a critical Rayleigh number, beyond which the unicellular regime is no longer possible,
would thus be defined.

The multicellular regime observed by Bishop et al. [1] is unsteady but nothing
proves that it cannot be axisymmetric, multicellular regime does exist; however, the Nus-
selt number values oscillate before the solution converges to the steady state. For the
unicellular case, the oscillations are barely noticeable and convergence is much faster.

Two things could explain the incongruence between the numerical calculations
and the experimental data: either a two-dimensional model is insufficient to show the
unsteady behavior, or the time step size corresponds to a real time that is greater than
the period of oscillation (9-12 s); the calculations combine phenomena with different
characteristic times.

The multicellular regime is very different from the one obtained for a horizontal
cylindrical layer. Charrier-Mojtabi et al. [5] used analogous initial conditions and, for
high Rayleigh numbers (Ra; = 50 X 10?), were unable to obtain a multicellular regime
for Pr=0.7.

The numerical, axisymmetric model used here is a logical but not the final step
in the understanding of the convective phenomena between two spheres. A three-
dimensional analysis would be necessary to determine whether the counter-rotating
cells are axisymmetric or three-dimensional.

To emphasize the difference between these two solutions, the radial velocity, at
6 =m and r=(R + 1)/2, is plotted in Fig. 4 as a function of the Rayleigh number for
R = 2. A critical Rayleigh number, beyond which the two solutions can coexist, can be
approximately defined. Below this critical Rayleigh number Ra,, only the unicellular
regime is possible.

CONCLUDING REMARKS

At the state of development of this study, two points can be emphasized as
general concluding remarks concerning an axisymmetric two-dimensional model in this
configuration:
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Fig. 4 Radial velocity at 8§ = mand r = (R + 1)/2 as a function of Rayleigh number for R = 2.

1. Because several numerical solutions can be obtained, the physical solution
must be revealed by complementary experimental or three-dimensional
studies.

2. In numerical work, unicellular flow tends to appear much more readily than
the multicellular regime. This observation, which can often be considered for
high Rayleigh numbers as contradicting reality, is probably a consequence of
the assumption of axisymmetric flow, which therefore appears too restrictive.

v
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