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We consider convection in a uniform fluid-saturated porous layer which is bounded by conducting plates and heated from below. The primary aim is to determine the identity of the postcritical convection planform as a function of the thicknesses and conductivities of the bounding plates relative to that of the porous layer. This work complements and extends an early paper by Riahi (J Fluid Mech 129:153-171, 1983) who considered a situation where the porous layer is bounded by infinitely thick conducting media. We present regions in parameter space wherein convection in the form of rolls is unstable and within which cells with square planform form the preferred pattern.

Convection in a horizontal porous layer heated from below has attracted a large amount of attention due, in part, to its widespread applications in engineering and industrial processes.

In its most basic form, namely, a horizontal layer of uniform thickness subject to Darcy's law, the Boussinesq approximation and a constant temperature drop, it forms one of the simplest linear instability problems involving a coupled pair of partial differential equations, and therefore may be used to great effect for teaching purposes. The first papers which studied the onset problem are those by [START_REF] Horton | Convection currents in a porous medium[END_REF] and [START_REF] Lapwood | Convection of a fluid in a porous medium[END_REF], and this generic stability problem is named either as the Horton-Rogers-Lapwood problem or as the Darcy-Bénard problem. While a weakly nonlinear analysis for the classical Darcy-Bénard problem also proceeds analytically [see Rees and Riley (1989a,b) and [START_REF] Rees | Stability analysis of Darcy-Bénard convection[END_REF]], it becomes necessary to resort to numerical methods for any system which is more complicated; see [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF] and [START_REF] Rees | The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below[END_REF]. State-of-the-art reviews of these matters and related convection problems may be found in the chapters by [START_REF] Rees | The stability of Darcy-Bénard convection[END_REF], [START_REF] Tyvand | Onset of Rayleigh-Bénard convection in porous bodies[END_REF], [START_REF] Rees | The instability of unsteady boundary layers in porous media[END_REF] and [START_REF] Nguyen-Quang | Spatial pattern formation of motile microorganisms: from gravititactic bioconvection to protozoan culture dynamics[END_REF], and the books by [START_REF] Pop | Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media[END_REF] and [START_REF] Nield | Convection in Porous Media[END_REF].

Layered porous media are ubiquitous in both nature and industrial applications, and numerous studies have been made of these cases. Although it was not the first paper on the topic, a very comprehensive analysis of the onset of convection was undertaken by [START_REF] Mckibbin | Onset of convection in a layered porous medium heated from below[END_REF], who considered two-and three-sublayer configurations. It was found that the neutral curve sometimes exhibits two local minima thereby allowing the identity of the critical mode of convection to change discontinuously as the system parameters change smoothly. Further work on the onset of convection in layered media may be found in [START_REF] Mckibbin | Thermal convection in a porous medium composed of alternating thick and thin layers[END_REF] and [START_REF] Postelnicu | Thermal stability of two fluid porous layers separated by a thermal barrier[END_REF]. This work was later extended into the weakly nonlinear regime by [START_REF] Mckibbin | Heat transfer in a layered porous medium heated from below[END_REF]. [START_REF] Rees | The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below[END_REF] also provided a weakly nonlinear stability analysis and showed that some configurations give rise naturally to three-dimensional convection patterns. A similar conclusion was obtained earlier by [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF], who considered a classical Darcy-Bénard layer sandwiched between two conducting solid regions. Other works on layered media have been undertaken by [START_REF] Masuoka | Onset of convection and flow patterns in a porous layer of two different media[END_REF] and [START_REF] Rana | Natural convection in a multi-layered geothermal reservoir[END_REF] and, more recently, on layers where fluid movement is confined to each sublayer by impermeable but infinitesimally thin partitions, by [START_REF] Genç | Onset of convection in horizontally partitioned porous layers[END_REF] and [START_REF] Rees | The onset of convection in porous layers with multiple horizontal partitions[END_REF].

The aim of the present work is to determine how the presence of conducting boundaries affects the identity of the pattern of convection which arises immediately post onset. To this end a weakly nonlinear analysis is performed. Although this mathematical problem is governed by four nondimensional parameters, namely two conductivity ratios and two thicknesses for the conducting layers, it is possible to gain a fairly complete understanding of the circumstances in which rolls are preferred, and those in which square cells are preferred.

Problem Formulation and Basic State

The aim of this study is an investigation of the effect of conducting boundaries on the onset of convection and the subsequent weakly nonlinear pattern selection. The main objective is to delineate the regions in parameter space within which one might expect square cell convection (as viewed from above) or rolls. The detailed configuration we consider is shown in Fig. 1 and it comprises a uniform isotropic saturated porous layer of thickness, h 2 , which is bounded by two uniform, impermeable but thermally conducting plates of thicknesses, h 1 and h 3 . These plates do not necessarily have identical conductivities or thicknesses. Moreover the conductivities are generally different from that of the porous layer. This composite layer is of infinite extent in both horizontal directions. The present paper may be regarded as an extension of the work by [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF] in which both h 1 and h 3 were taken to be infinite. The origin of the coordinate system is located at the bottom of the composite layer with x and ŷ being the horizontal coordinates and ẑ, the vertical coordinate. Dirichlet conditions for temperature are applied at the external surfaces of the composite layer, i.e. at ẑ = 0 and at ẑ = h 1 + h 2 + h 3 .

The full governing equations for the porous layer are

∂ û ∂ x + ∂ v ∂ ŷ + ∂ ŵ ∂ ẑ = 0, (1) û 
= - K μ ∂ p ∂ x , v = - K μ ∂ p ∂ ŷ , ŵ = - K μ ∂ p ∂ ẑ + ρ 2 ḡβ K μ (T 2 -T ref ), ( 2 
) (ρC) 2 ∂ T 2 ∂t + (ρC) f û ∂ T 2 ∂ x + v ∂ T 2 ∂ ŷ + ŵ ∂ T 2 ∂ ẑ = k 2 ∂ 2 T 2 ∂ x2 + ∂ 2 T 2 ∂ ŷ2 + ∂ 2 T 2 ∂ ẑ2 , ( 3 
)
where all quantities are given in the "List of Symbols". The respective equations for conductive heat transfer in the lower and upper impermeable layers are,

(ρC) 1 ∂ T 1 ∂ t = k 1 ∂ 2 T 1 ∂ x2 + ∂ 2 T 1 ∂ ŷ2 + ∂ 2 T 1 ∂ ẑ2 , (4) 
and

(ρC) 3 ∂ T 3 ∂ t = k 3 ∂ 2 T 3 ∂ x2 + ∂ 2 T 3 ∂ ŷ2 + ∂ 2 T 3 ∂ ẑ2 . ( 5 
)
In these equations the numerical subscripts refer to the appropriate sublayer. The boundary and interface conditions are,

ẑ = 0 : T 1 = T ref , ẑ = h 1 : ŵ = 0, T 1 = T 2 , k 1 ∂ T 1 ∂ ẑ = k 2 ∂ T 2 ∂ ẑ , ẑ = h 1 + h 2 : ŵ = 0, T 2 = T 3 , k 2 ∂ T 2 ∂ ẑ = k 3 ∂ T 3 ∂ ẑ , ẑ = h 1 + h 2 + h 3 : T 3 = - k 2 h 2 T h 1 k 1 + h 2 k 2 + h 3 k 3 + T ref . ( 6 
)
The reason for such an unusual expression for the imposed temperature at the upper surface is that it guarantees that the temperature change over the porous layer is precisely T , and it is this quantity that will be used for nondimensionalisation purposes.

We may now make the governing equations nondimensional by introducing the following scalings,

( x, ŷ, ẑ) = (0, 0, h 1 ) + h 2 (x, y, z), t = h 2 2 (ρC) 2 k 2 t, p = k 2 μ (ρC) f K p, ( û, v, ŵ) = k 2 h 2 (ρC) f (u, v, w), T = T ref - k 2 k 1 h 1 h 2 T + T θ, ( 7 
)
which are based on the height and the properties of the porous layer.

The nondimensional equations are now,

∂u ∂ x + ∂v ∂ y + ∂w ∂z = 0, (8) u = - ∂ p ∂ x , v = - ∂ p ∂ y , w = - ∂ p ∂z + Ra θ 2 , ( 9 
)
∂θ 2 ∂t + u ∂θ 2 ∂ x + v ∂θ 2 ∂ y + w ∂θ 2 ∂z = ∂ 2 θ 2 ∂ x 2 + ∂ 2 θ 2 ∂ y 2 + ∂ 2 θ 2 ∂z 2 , ( 10 
)
∂θ 1 ∂t = κ 1 ∂ 2 θ 1 ∂ x 2 + ∂ 2 θ 1 ∂ y 2 + ∂ 2 θ 1 ∂z 2 , ( 11 
)
and

∂θ 3 ∂t = κ 3 ∂ 2 θ 3 ∂ x 2 + ∂ 2 θ 3 ∂ y 2 + ∂ 2 θ 3 ∂z 2 . ( 12 
)
The diffusivity ratios, κ 1 and κ 3 , are defined according to,

κ 1 = k 1 (ρC) 2 k 2 (ρC) 1 , κ 3 = k 3 (ρC) 2 k 2 (ρC) 3 , ( 13 
)
and these play a significant role only when one is interested in unsteady convection. The Darcy-Rayleigh number is defined to be,

Ra = ρ 2 (ρC) f ḡβh 2 K T μk 2 , ( 14 
)
and it is based upon the height of the porous layer and the temperature difference across it, rather than upon the corresponding properties of the full composite system. We may also define two conductivity ratios and two thickness ratios as follows,

d 1 = k 1 /k 2 , d 3 = k 3 /k 2 , δ 1 = h 1 / h 2 , δ 3 = h 3 / h 2 . ( 15 
)
Thus, while unsteady nonlinear convection depends on the values of seven parameters (Ra, κ 1 , κ 3 , d 1 , d 3 , δ 1 and δ 3 ), the determination of the onset of convection itself relies on only four (d 1 , d 3 , δ 1 and δ 3 ) since the onset is steady and Ra is computed rather than imposed.

The boundary and interface conditions now become

z = -δ 1 : θ 1 = δ 1 /d 1 , z = 0 : ∂ p ∂z = Ra θ 2 , θ 1 = θ 2 , d 1 ∂θ 1 ∂z = ∂θ 2 ∂z , z = 1 : ∂ p ∂z = Ra θ 2 , θ 2 = θ 3 , d 3 ∂θ 3 ∂z = ∂θ 2 ∂z , z = 1 + δ 3 : θ 3 = -1 -δ 3 /d 3 . ( 16 
)
Given that we seek to determine whether three-dimensional modes are realisable, we will adopt a pressure/temperature formulation of the equation for flow in the porous layer. On eliminating the velocities between Eqs. 8 and 9 we obtain the following momentum equation,

∇ 2 p = Ra ∂θ 2 ∂z , ( 17 
)
while the heat transport equation becomes,

∂θ 2 ∂t = ∇ 2 θ 2 + ∂ p ∂ x ∂θ 2 ∂ x + ∂ p ∂ y ∂θ 2 ∂ y + ∂ p ∂z -Ra θ 2 ∂θ 2 ∂z . ( 18 
)
The basic state whose stability characteristics we seek is given by

θ 1 = -z/d 1 , θ 2 = -z, θ 3 = -1 -(z -1)/d 3 , p = -Ra z 2 /2. ( 19 
)
Of interest is the fact that, θ 2 , the temperature distribution within the porous layer, is independent of the governing nondimensional parameters. This is a consequence of the fact that we have taken the temperature difference across the porous layer to be the reference temperature scale when defining the Darcy-Rayleigh number, Ra.

Linear Stability Analysis

The present configuration is different from that of [START_REF] Mojtabi | The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection[END_REF], who considered constant heat flux conditions at both of the outer surfaces, because we have taken fixed temperature conditions. Further, [START_REF] Mojtabi | The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection[END_REF] confined their attention to cases where the two bounding plates are identical in all respects. Therefore, it is essential to summarise briefly the appropriate linear theory for the present situation before developing the weakly nonlinear analysis.

On subtracting the basic state, which is given by Eq. 19, from the governing equations, Eqs. 11, 12, 17 and 18, the full system governing the evolution of perturbations is found to be,

κ 1 ∇ 2 θ 1 = ∂θ 1 ∂t , ( 20 
)
κ 3 ∇ 2 θ 3 = ∂θ 3 ∂t , ( 21 
)
∇ 2 p -Ra ∂θ 2 ∂z = 0, ( 22 
)
∇θ 2 + Ra θ 2 - ∂ p ∂z = ∂θ 2 ∂t -∇ p • ∇θ 2 + Ra θ 2 ∂θ 2 ∂z , ( 23 
)
where these equations have been written in such a way that the replacement of all the right hand sides by zero will yield the equations governing the onset of stationary modes. We may Fourier-decompose the linearised equations using the following substitutions,

(θ 1 , θ 2 , θ 3 , p) = θ1 , θ2 , θ3 , p e iαx + c.c., (24) 
where all quantities with the tilde are functions of the vertical coordinate, z, only. We obtain the following ordinary differential eigenvalue problem for the Darcy-Rayleigh number in terms of the wavenumber, α:

θ1 -α 2 θ1 = 0, θ2 + (Ra -α 2 ) θ2 -p = 0, θ3 -α 2 θ3 = 0, p -α 2 p -Ra θ2 = 0, ( 25 
)
where primes denote derivatives with respect to z.

The general solution for θ1 in the lower layer and which is zero at z = -δ 1 is,

θ1 = A sinh α(z + δ 1 ), ( 26 
)
where the constant, A, is arbitrary. However, at the interface at z = 0, it is necessary to apply the interface conditions that θ1 = θ2 and d 1 θ1 = θ2 . This process yields the following values for θ2 and θ 2 at z = 0,

θ2 = A sinh αδ 1 , θ2 = Ad 1 α cosh αδ 1 . ( 27 
)
The constant, A, may now be eliminated to yield the following mixed boundary condition which effectively replaces the presence of the lower layer when solutions are stationary:

θ2 = [d 1 α coth αδ 1 ] θ 2 at z = 0. ( 28 
)
A similar analysis for the upper layer results in the equivalent formula,

θ2 = -[d 3 α coth αδ 3 ] θ 2 at z = 1. ( 29 
)
We note that neither Eq. 28 nor Eq. 29 is a conventional boundary condition of the third kind (i.e. a Robin condition), such as is represented by Newton's law of cooling, because the relationship between the temperature and the temperature gradient depends on the wavenumber, α, and hence on the depth of penetration of the thermal field into the conducting layers. We also note that we obtain the boundary conditions presented in [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF] if we allow both δ 1 and δ 3 to become infinitely large, which is equivalent to having vertically unbounded conducting domains above and below the porous layer.

The solution in the porous layer may now be obtained by expanding θ2 and p in terms of eigenfunctions, and by applying the new mixed boundary conditions for θ2 , namely, Eqs. 28 and 29, and those for pressure, namely, p = Ra θ2 at z = 0, 1. The process is straightforward but lengthy, and it eventually yields the following dispersion relation relating Ra and α:

α 2 sin σ sinh λ (1 + d 1 d 3 coth αδ 1 coth αδ 3 ) + λσ (cos σ cosh λ -1) +α (d 1 coth αδ 1 + d 3 coth αδ 3 ) (σ cos σ sinh λ + λ cosh λ sin σ ) = 0, ( 30 
)
where

λ 2 = α Ra 1/2 + α 2 , σ 2 = α Ra 1/2 -α 2 . ( 31 
)
The corresponding dispersion relation for the case of constant heat flux boundary conditions at the outer surfaces of the composite layer is obtained by simply replacing the hyperbolic cotangents by hyperbolic tangents, and this new formula agrees with that obtained by [START_REF] Mojtabi | The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection[END_REF] 

on setting δ 1 = δ 3 ≡ δ and d 1 = d 3 ≡ d.
It appears that all the neutral curves have unimodal form and each has a well-defined and unique minimum. Such minima were obtained using a simple Newton-Raphson procedure, as follows. If we rewrite the dispersion relation, (30), in the form, F (Ra, α) = 0, then the minimum in the neutral curve corresponds to needing both

F = 0 and ∂F ∂α = 0 ( 3 2 )
to be satisfied simultaneously. The iteration scheme is,

⎛ ⎝ Ra m+1 α m+1 ⎞ ⎠ = ⎛ ⎝ Ra m α m ⎞ ⎠ - ⎛ ⎜ ⎜ ⎜ ⎝ ∂F ∂ Ra ∂ 2 F ∂ Ra∂α ∂F ∂α ∂ 2 F ∂α 2 ⎞ ⎟ ⎟ ⎟ ⎠ -1 ⎛ ⎜ ⎝ F ∂F ∂α ⎞ ⎟ ⎠ , ( 33 
)
where the subscript, m, denotes the iteration number. The partial derivatives were evaluated using numerical differentiation, and the solutions obtained for Ra and α are correct to more than six decimal places in all cases.

Onset Criteria

Although it is impossible to check over the whole of the four-dimensional parameter space spanned by the nondimensional parameters, δ 1 , δ 3 , d 1 and d 3 , we believe it to be true that the neutral curve governing the onset of convection takes its classical form, namely that it has a single minimum, and that Ra → ∞ when α → 0 and when α → ∞. Therefore, we focus our interest on the values of Ra and α at the minimum of the neutral curve, and these are denoted by Ra c and α c , respectively. Figure 2 summarises the onset criteria for symmetric configurations where the bounding layers are identical. For the present purpose we define δ = δ 1 = δ 3 and d = d 1 = d 3 . It is very clear from this figure and the numerical data used in its preparation that we recover the classical Darcy-Bénard stability criterion when d is sufficiently large and that of its constant heat flux analogue when d is sufficiently small. Thus, we have

lim d→∞ (Ra c , k c ) = (4π 2 , π) and lim d→0 (Ra c , k c ) = (12, 0). ( 34 
)
From the physical point of view the limiting case, d → ∞, corresponds to perfectly conducting bounding layers, and hence temperature perturbations within the porous layer do not penetrate into the bounding layers. When d → 0 the heat flux is not affected by the xvariation of the temperature at the boundaries of the porous layer. Thus, the effective boundary conditions for the porous layer correspond to the constant heat flux case; see Eqs. 28 and 29.

These conclusions may also be drawn from the dispersion relation given in Eq. 30. When d is large, a formal large-d expansion will yield sin σ = 0 at leading order. Given the definition of σ in Eq. 31, this condition is equivalent to where n = 1 yields the first mode. On the other hand, when d → 0, then the dispersion relation in Eq. 30 reduces to

Ra = (n 2 π 2 + α 2 ) 2 α 2 , ( 35 
)
α 2 sin σ sinh λ + λσ (cos σ cosh λ -1) , (36) 
which is identical to the relation given in [START_REF] Rees | The onset of convection in porous layers with multiple horizontal partitions[END_REF] for the constant heat flux form of the Darcy-Bénard problem.

We also note that the classical Darcy-Bénard criteria are also recovered when δ → 0, and a similar argument based upon the dispersion relation may be made to show this. Physically, however, this limit corresponds to vanishingly thin bounding layers.

Figures 3 and4 summarise the onset criteria for asymmetric cases. In all the cases presented the top right-hand corner of the frames correspond to the classical Darcy-Bénard problem, while the bottom left-hand corner corresponds to the constant heat flux analogue. The remaining two corners are equivalent to having one porous boundary with a Dirichlet boundary condition and the other with Neumann boundary condition. Thus these corners correspond to Ra c → 27.097628 and α c → 2.326215 as either d 1 → ∞ and d 3 → 0 or d 1 → 0 and d 3 → ∞.

In Fig. 3 we retain the fact that the bounding layers have identical thicknesses, but we assess the effect of having different conductivities in these layers. The first case shown corresponds to δ = 1, and therefore the bounding layers have the same thickness as the central porous layer. The transition between the three asymptotic cases mentioned above is seen clearly, and we note that the shape of the isolines of both Ra c and α c when δ = 1 are found not to alter significantly as δ varies, although the location of the pattern relative to the origin does vary. However, we note that the δ = 1 case also represents very accurately those cases for which δ takes larger values. On the other hand, when δ takes successively smaller values, it appears that the isolines move by a corresponding factor, as depicted by the comparison between the δ = 0.1 and δ = 0.01 cases. Thus, for small values of δ the isolines, when drawn as a function of log 10 (d 1 /δ) and log 10 (d 3 /δ), do not vary with δ.

This small-δ similarity solution may also have been predicted by setting d i = γ i δ (for i = 1, 3) in the dispersion relation, Eq. 30. Thus, we obtain the following version of the dispersion relation whenδ 1 = δ 3 ≡ δ: Contour levels are as described in Fig. 2. In all cases Ra c ∼ 4π 2 and α c ∼ π in the top right-hand corners of the frames, while Ra c ∼ 12 and α c ∼ 0 in the bottom left-hand corners α 2 sin σ sinh λ 1 + δ 2 γ 1 γ 3 coth 2 αδ + λσ (cos σ cosh λ -1) +αδ(γ 1 + γ 3 ) coth αδ (σ cos σ sinh λ + λ cosh λ sin σ ) = 0.

(37)

If we now let δ → 0 and retain only the leading order behaviour of the hyperbolic cotangent terms, then the relation reduces further to,

α 2 sin σ sinh λ 1 + γ 1 γ 3 α 2 + λσ (cos σ cosh λ -1) +(γ 1 + γ 3 ) (σ cos σ sinh λ + λ cosh λ sin σ ) = 0, ( 38 
)
where the largest term that has been neglected is of O(δ 2 ). Therefore, we conclude that the shapes taken by the isolines are independent of δ when δ is small and when they are plotted in terms of d 1 /δ and d 3 /δ. It is possible to make similar observations about Fig. 4, which shows corresponding isolines when 1 varies but where δ 3 is held fixed at a unit value. For these cases we may say (i) the locations of the isolines shown in the δ 1 = δ 3 = 1 frames are not changed by an increase in either δ 1 or δ 3 , and (ii) when δ 1 is small, then the corresponding isolines are independent of δ 1 when drawn as a function of log 10 (d 1 /δ 1 ).

Weakly Nonlinear Analysis

The above linear theory assumes that disturbances take the form of two-dimensional rolls. However, rolls of other orientations may be added to any one such roll to obtain different convection patterns. Thus, the addition of two rolls at right angles will form a square cell pattern, when viewed from above, when the rolls have identical amplitude, while the superposition of three rolls at 60 • relative orientation yields a hexagonal pattern. Competition between these patterns under slightly supercritical conditions may be determined using weakly nonlinear theory. Following the style of analysis introduced in [START_REF] Newell | Finite bandwidth, finite amplitude convection[END_REF] and given in more detail in the context of Darcy-Bénard convection in [START_REF] Rees | Stability analysis of Darcy-Bénard convection[END_REF], we will expand the solutions to Eqs. 22 and 23 in a suitable power series. However, we need to avoid a potential clash of notation in this section of the paper, and therefore, from this point forward, we will replace θ 2 by , so that successive terms in the weakly nonlinear expansion may be identified by their subscripts.

The weakly nonlinear expansion takes the following form,

p = p 1 1 + 2 p 2 2 + 3 p 3 3 + • • • , ( 39 
)
where the small quantity, , is defined according to,

Ra = Ra 0 + 2 Ra 2 + • • • . ( 40 
)
In the above, Ra 0 is an alternative notation for the critical Darcy-Rayleigh number, Ra c , and slightly supercritical conditions are equivalent to positive O(1) values of Ra 2 . At successive orders of expansion we obtain the following systems, in turn.

At O( ):

∇ 2 p 1 -Ra 0 ∂ 1 ∂z = 0, (41) 
∇ 2 1 + Ra 0 1 - ∂ p 1 ∂z = 0. ( 42 
)
At O( 2 ):

∇ 2 p 2 -Ra 0 ∂ 2 ∂z = 0, (43) 
∇ 2 2 + Ra 0 2 - ∂ p 2 ∂z = Ra 0 1 ∂ 1 ∂z -∇ p 1 • ∇ 1 . ( 44 
)
At O( 3 ):

∇ 2 p 3 -Ra 0 ∂ 3 ∂z = Ra 2 ∂ 1 ∂z , ( 45 
)
∇ 2 3 + Ra 0 3 - ∂ p 3 ∂z = Ra 0 1 ∂ 2 ∂z + 2 ∂ 1 ∂z -∇ p 1 • ∇ 2 -∇ p 2 • ∇ 1 + ∂ 1 ∂τ -Ra 2 1 . ( 46 
)
In the above, τ = 2 t, is a slow timescale. Further details on how these equations have been solved are given in the Appendix, but it is important to note that the O( ) equations are identical to the linearised stability equations presented earlier. We assume that the solution takes the form of two rolls of relative orientation, φ. More specifically, the solutions are of the form,

p 1 1 = f 1 (z) g 1 (z) Ae iαx + Ae -iαx + f 1 (z) g 1 (z)
Be iα(x cos φ-y sin φ) + Be -iα(x cos φ-y sin φ) , (

where the modal amplitudes, A and B, are functions only of the slow time scale, τ . The inhomogeneous terms in the third-order equations, ( 45) and ( 46), contain terms which have components of the form of the first-order eigenmodes. However, the value of Ra 2 may be chosen to ensure that the these components become nonresonant, i.e. are orthogonal to the eigensolution. Application of the appropriate solvability conditions yield the following pair of amplitude equations,

c 1 ∂ A ∂τ = Ra 2 A -A c 2 A A + c 3 B B , ( 48 
)
c 1 ∂ B ∂τ = Ra 2 B -B c 2 B B + c 3 A A . ( 49 
)
The values of c 1 , c 2 and c 3 always take positive values, and the value of c 1 also depends on the diffusivity ratios, κ 1 and κ 3 . It is to be expected that c 1 should be positive because it means that growth of the disturbances take place only when Ra 2 > 0, i.e. when the Darcy-Rayleigh number is above its critical value. The positive of value c 2 means that the onset of convection is supercritical. The value of c 3 also depends on the relative orientation of the two roll solutions. In all the cases we tried, c 3 takes its smallest value when the rolls are perpendicular to one another. The detailed analysis of [START_REF] Rees | The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below[END_REF] shows that the identity of the postcritical pattern depends on the minimum value of the ratio,

(φ) = c 3 /c 2 . ( 50 
)
For the classical Darcy-Bénard problem, Rees and Riley (1989a) showed that,

= 70 + 28 cos 2 φ -2 cos 4 φ 49 -2 cos 2 φ + cos 4 φ , ( 51 
)
which varies between the maximum of 2 when φ = 0 and the minimum of 10 /7 when φ = ± 2 1 π. However, values of need to be computed for more complicated configurations, such as the present one.

When min φ (φ) > 1, then rolls are stable and square cells are unstable to perturbations of the form of one of the constituent rolls. In such situations rolls also transport more heat than do square cells [START_REF] Rees | Stability analysis of Darcy-Bénard convection[END_REF]). The situation is reversed in all respects when min φ <1 and square cells then form the stable pattern.

Weakly Nonlinear Results

Although the computations for the linearised theory employed the Newton-Raphson method to solve the dispersion relation, the governing ordinary differential equations for the weakly nonlinear theory were solved using a shooting method algorithm together with a fourth-order Runge-Kutta method. Initial conditions for the O( ) equations were given by the dispersion relation analysis, while the fact that the second and third-order equations are linear meant that the initial iterate for the unknown initial conditions could be set to zero. We used 100 intervals in the range 0 ≤ z ≤ 1, and the presence of the bounding layers are modelled by means of appropriate boundary conditions; see Eqs. 57 and 58 in the Appendix.

The sole aim of this section is to determine regions in parameter space wherein either rolls are stable or square cells are stable. The simplest way of doing this was to choose two parameters to be fixed and two to vary from the set of four. Given that [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF]varied the conductivity ratios we have done the same, so that some comparison may be made. Thus, for a chosen pair of values of δ 1 and δ 3 the condition ( 2 1 π) = 1 maps out a curve in (d 1 , d 3 )-space. The curve was found by calculating the values of ( 2 1 π) on a fine grid of values of d 1 and d 3 andthen bydrawingthe = 1 contour.

Figure 5 shows the ( 2 1 π) = 1 contours for various cases for which δ 1 = δ 3 ≡ δ.For each case shown, the region which includes the origin is the one within which square cells are stable. The curve marked δ 1 corresponds to the case computed by [START_REF] Riahi | Nonlinear convection in a porous layer with finite conducting boundaries[END_REF], and the agreement is excellent.

As δ decreases, which corresponds to bounding layers of decreasing thicknesses, the size of the square-cell region also decreases, and shrinks towards the origin. For small values of δ the figure suggests the rate of shrinking is proportional to the magnitude of δ, and therefore that there may again be a simple scaling for d 1 and d 3 in terms of δ. Such an asymptotic analysis is now extremely complicated because it would require the solution of all the equations given in the Appendix. Therefore, we performed a numerical investigation by displaying the contours of ( 2 1 π) = 1 as functions of d 1 /δ and d 3 /δ; these are shown in Fig. 6.

Figure 6 suggests very strongly that there is well-defined limiting contour of ( 2 1 π) = 1 as δ → 0 when plotted in (d 1 /δ, d 3 /δ)-coordinates. We may also make the following two observations. First, if the bounding layers are less than 10% of the thickness of the porous layer (i.e. δ<0.1), then square cells are preferred if both the conditions, d 1 < 0.9δ and d 3 < 0.9δ, are satisfied. This is, of course, a fairly crude condition, because square cells are preferred in a much larger domain than this, but it is a useful rule-of-thumb. Second, it is clear that, for any chosen value of δ,thesmalld 1 and d 3 limits correspond to square convective planforms. These limits are equivalent to the constant heat flux analogue of the Darcy-Bénard problem, for which Ra c ∼ 12 and α c ∼ 0.

Figures 7 and8 show how the <1 square cell domain varies with δ 3 when δ 1 takes fixed values. Figure 7 corresponds to δ 1 = 1 while Fig. 8 has δ 1 = 0.3; the figures are drawn Fig. 5 Displaying contours of (π/2) = 1 in (d 1 , d 3 )-space for δ = 0.05, 0.1, 0.2, 0.3, 0.5 and 1.0, and as δ → ∞. The region containing the origin corresponds to where square cells are favoured Fig. 6 Displaying contours of (π/2) = 1 in (d 1 /δ, d 3 /δ)-space for δ = 0.05, 0.1, 0.2, 0.3, 0.5 and 1.0, and as δ → ∞. The region containing the origin corresponds to where square cells are favoured to the same scale to aid comparison. The chief difference between these figures and Fig. 5 is that range of the square-cell domain in the d 1 -direction is almost independent of δ 3 , although the size of the domain in the d 3 -direction is strongly dependent on it. Fig. 7 Displaying contours of (π/2) = 1 in (d 1 , d 3 )-space for δ 3 = 0.05, 0.1, 0.2, 0.3, 0.5 and 1.0, and as δ 3 → ∞ and with δ 1 = 1. The region containing the origin corresponds to where square cells are favoured Fig. 8 Displaying contours of (π/2) = 1in (d 1 , d 3 )-space for δ 3 = 0.05, 0.1, 0.2, 0.3, 0.5and 1.0, and as δ 3 →∞and with δ 1 = 0.3. The region containing the origin corresponds to where square cells are favoured

Final Remarks

In this paper we have considered the effect of conducting bounding plates on the onset of convection and the identity of the preferred weakly postcritical convection planform. The linear theory was carried out using an analysis based upon the dispersion relation, while the weakly nonlinear analysis used a highly accurate Runge-Kutta scheme. We have been able to identify very strong patterns in the behaviour of Ra c and α c as the governing parameters change, and much of this has been explained in physical terms and by means of further analysis of the dispersion relation. With regard to weakly nonlinear convection, our analysis suggests strongly that, for any chosen thicknesses of the bounding layers, there is always a region of (d 1 , d 3 )-space within which square cells are preferred. Further, if may be inferred from our analysis that the constant heat flux analogue of the classical Darcy-Bénard problem also admits square-cell convection patterns immediately post onset; as far as we are aware this is a new finding.

Fig. 1

 1 Fig. 1 Geometry of the porous layer with conducting outer layers

Fig. 2

 2 Fig. 2 Displaying contours of Ra c and α c as functions of δ and d for symmetric bounding sublayers. The contours of Ra c and α c are in intervals of 1 and π/20, respectively, and values decrease downwards. The Ra c = 20 and 30 contours correspond to thick lines

Fig. 3

 3 Fig. 3 Displaying contours of Ra c and α c as functions of d 1 and d 3 for δ = 1, 0.1and0.01. Contour levels are as described in Fig. 2. In all cases Ra c ∼ 4π 2 and α c ∼ π in the top right-hand corners of the frames, while Ra c ∼ 12 and α c ∼ 0in thebottom left-hand corners
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Appendix

In this Appendix we present the equations and boundary conditions that need to be solved in order to find the coefficients in the amplitude equations. A fourth-order Runge-Kutta scheme allied with a user-written, but near-black-box shooting method code was used to solve all the ordinary differential equations which arise. The use of 100 intervals coupled with the order of accuracy resulted in solutions of at least six decimal places.

Modal interactions of the first-order solutions mean that the following substitutions need to be made to solve the second-order equations:

A 2 e 2iαx + c.c. + B 2 e 2iα(x cos φ-y sin φ) + c.c.

The f j and g j functions satisfy the equations,

while the boundary conditions are,

g 4 = -2 + 2 cos φ αd 3 coth( 2 + 2 cos φ αd 3 ) g 4 , (58) while z = 0, 1 : f j = Ra 0 g j , j = 0, 2, 3, 4.

(59)