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ABSTRACT

In this paper, an analytical and numerical study of species separation in binary mixtures taking account of
the presence of bounding plates for the cell is presented. A rectangular horizontal porous cavity saturated
by a binary mixture and heated from below is considered. This cavity is bounded by thin plates of uni-
form thickness, the outer surfaces of which are subjected to a constant heat flux. The transition from
the equilibrium solution to the convective one, either stationary or oscillatory, was previously studied
by Ouattara et al. (2012). Thus in the first part of this paper, the critical parameters associated with
the onset of long wavelength disturbances, obtained analytically, are recalled. Then the hypothesis of par-
allel flow is used to determine an analytical solution which describes the unicellular flow which may
appear in the case of a large aspect ratio cell for a given range of separation ratio, y, Rayleigh number,
Ra, Lewis number, Le, the ratio of the plate to the porous layer thickness, 5, and their thermal conductivity
ratio, d. The analytical results are corroborated by direct numerical simulations. We verify that if d goes to
infinity, the walls become infinitely conductive and we find the results obtained by Charrier-Mojtabi et al.
(2007). When d tends to 0, the walls become infinitely thin the results obtained by Yacine et al. (2016) are
recovered.

A linear stability analysis of the unicellular flow is also presented. The eigenvalue problem resulting
from the temporal stability analysis is solved by a Tau spectral method. The optimal Rayleigh number
leading to an optimal value of the separation horizontal gradient is determined for different values of
physical parameters. We show that the species separation depends sensitively on the ratio of the plate
to the porous layer thickness, and the ratio of their thermal conductivities. Furthermore, we have shown
that in the stationary state and for a given value of the thermal conductivity ratio (d = 29), the maximum
separation is almost equal for walls of the same thickness than the one of porous cavity or for the case of
porous cell delimited by the infinitely thin walls.

1. Introduction

where D is the mass diffusion coefficient, p the density, and C the
mass fraction of the denser component. Here D = F(C')Dr, where

In binary fluid mixtures subjected to temperature gradient, a
mass fraction gradient appears due to the thermodiffusion or Soret

effect. In addition to the usual expression for the mass flux T given
by Fick’s law, a part due to the temperature gradient is added so
that:

J =—pDVC — pD,VT
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Dris the thermodiffusion coefficient and F(C') is a particular function
of C satisfying both F(C'=0) = 0 and F(C' = 1) =0. Most authors use the
function, F(C') = C(1 - C') and make the assumption that C'(1 - C') =~
Co(1 - Cp) where Cy is the initial value of the mass fraction.

Under the gravity field, the coupling between convection and
thermo-diffusion, called thermo-gravitational diffusion, has been
found to lead to species separation. Thermo-gravitational separa-
tion in a porous medium which is saturated by a binary mixture
has been studied widely because of its numerous fundamental
and industrial applications. Some examples of interest are the
migration of moisture in fibrous insulation, the transport of



Nomenclature

A aspect ratio of the porous bulk A =L/H

a effective thermal diffusivity of the porous-mixture sys-
tem a = 7,/(pC);

as thermal diffusivity of metal as = A;/(pc),

C mass fraction of denser component of the mixture

Co initial mass fraction of the denser component of the
mixture

m mass fraction gradient along the horizontal axis

m’ real mass fraction gradient along the horizontal axis

d thermal conductivity ratio d = 4s/4,

D* mass diffusion coefficient (m? s—1)

D; thermodiffusion coefficient (m? s-! K1)

H height of the porous layer (m)

h height of the horizontal plates (m)

K permeability of the porous medium (m?)

k wave number

ke critical wave number

L length of the cavity (m)

Le Lewis number Le = a/D"

q uniform heat per unit area (W-m~2)

Ra Darcy-Rayleigh number Ra = (KHgB;AT)/(av)

Ra. critical Rayleigh number

t nondimensional time (s)

T1,T3 temperatures inside the lower and upper plates (K)
Ty temperature inside the porous bulk (K)

Vv flow velocity (ms~1)

u,v Horizontal and vertical velocity components (ms~!

Greek symbols

Br thermal expansion coefficient (K1)

Bc solutal expansion coefficient

& porosity of porous medium

€ normalized porosity of the porous medium

é ratio of the plate to the porous layer thickness 6 = h/H

p density of the mixture (kg m—3)

v separation ratio y = —(f¢/pr)(Dr/D*)Co(1 — Co)

Vuni separation ratio beyond which flow at onset of convec-
tion is unicellular

p effective thermal conductivity of the saturated porous

medium (W m~! K1)

As thermal conductivity of the
(Wm™' K™

(pc);  volumetric heat capacity of the mixture (J m~> K™')

horizontal plates

(pC)p effective volumetric heat capacity of saturated porous
medium (J m~> K1)

y kinematic viscosity of mixture (m? s—1)

® stream function

01,03 temperature perturbations inside the lower and upper
plates

0 bulk temperature perturbation

o thermal diffusivity ratio o = as/a

Superscripts

I

dimensional variable

contaminants in saturated soil, drying processes or solute transfer
in the mushy layer during the solidification of binary alloys.

Reviews of recent developments and publications in this field
are given by Nield and Bejan [1], Ingham and Pop [2], Vafai [3]
and more recently by Vadasz [4]. A compilation of the most perti-
nent information on the critical Rayleigh number and wavenumber
associated to the onset of convection in an infinite porous layer
saturated by a mono-constituent fluid with different boundary
conditions, (i.e. free or impermeable; prescribed temperature or
prescribed heat flux) may be found in Nield and Bejan [1].

Zebib and Bou-Ali [5] performed a linear stability analysis of a
binary mixture buoyant return flow in a tilted, differentially
heated, infinite layer using an asymptotic long-wave analysis and
pseudo-spectral Chebyshev numerical solutions. For negative sep-
aration ratio, it was shown that longitudinal instabilities with
small wave numbers are triggered at any finite temperature differ-
ence for all inclination angles except when the layer is close to the
horizontal for either the heating-from-above or heating-from-
below configurations. Numerical results were given for a specific
water-ethanol mixture and were in good agreement with the
asymptotic results. Transition from the longitudinal stationary
instabilities in inclined layers to these instabilities in horizontal
layers was also presented for this mixture.

With regard to thermo-gravitational separation, in 1938,
Clusius and Dickel [6] successfully carried out the separation of
gas mixtures in a vertical cavity heated from the side (thermo-
gravitational column, TGC). Furry et al. [7] then developed the the-
ory of thermodiffusion to explain the experimental process
involved in isotope separation. For differentially-heated vertical
columns, the authors showed that there is a maximum separation
for an optimal value of the cell thickness. Subsequently, many
works have followed, in order to justify the assumptions or extend-
ing the results of the FJO theory to the case of binary liquids. Lorenz

and Emery [8] proposed to introduce a porous medium into the
cavity in order to increase the width of the cell corresponding to
the maximum separation.

Bennacer et al. [9] studied the double diffusive convection in a
vertical annular porous medium subjected to a horizontal temper-
ature gradient. An increase in the curvature of the cylindrical
annulus permits a higher species separation due to the nonsym-
metrical temperature profile. To overcome such limitations, two
sub-domains allowing filtration separation were proposed and
investigated. The separation ability increases with the partitioning
number. In the same configuration, and for double diffusive
convection without Soret effect, Marcoux et al. [10] showed the
curvature effect on the temperature and mass fraction field. More
recently Abahri et al. [11], studied the separation of a binary
mixture occurring in a horizontal porous annular layer. The inner
and outer cylinders were kept at different and constant uniform
temperatures Ti and To, with Ti < To. They used the perturbation
method by developing the temperature, stream function and mass
fraction in terms of a power series in the Rayleigh number, to
provide solutions for low Rayleigh number flow regimes. Direct
numerical simulations, using the finite element method, were
performed to corroborate the results obtained analytically.

Charrier-Mojtabi et al. [12] and Elhajjar et al. [13] presented an
analytical and numerical stability analysis of Soret-driven convec-
tion in a porous cavity saturated by a binary fluid. The porous cavity
is bounded by horizontal surfaces of either infinite or finite extent
and it was heated either from below or from above. These horizontal
plates were maintained at different but constant temperatures.
From the linear stability analysis, the authors found that the equilib-
rium solution loses its stability via a stationary bifurcation or a Hopf
bifurcation depending on the separation ratio and the normalized
porosity of the medium. The role of the porosity is important: when
it decreases; the stability of the equilibrium solution is reinforced. In



the case of long-wave disturbances, for y < 0 and for  higher than a
particular value called v,,;, they observed that the unicellular flow
leads to species separation between the two ends of the cell. Then,
they studied the stability of this unicellular flow. For a cell heated
from below and for y > ,,;;, the unicellular flow loses its stability
via a Hopf bifurcation. Charrier-Mojtabi et al. [14] studied the spe-
cies separation which appears at low Rayleigh number and for pos-
itive separation ratio in a porous horizontal slot submitted to a heat
flux. The comparison with the separation obtained in differentially
heated vertical columns (TGC) showed that even if the maximum
value of the separation is the same in both configurations, the use
of horizontal cells submitted to heat flux allowed height higher than
the width of TGC column, increasing the amount of separated spe-
cies significantly. More recently, Croccolo et al. [15] experimentally
observed multiple convective structures in a circular cell filled with
a binary mixture by varying very slightly the inclination of the
experimental cell exhibiting strong confinement.

The main objective of this paper is to determine the effect of
conducting bounding plates on the onset of a unicellular flow
and to study its stability. Indeed the unicellular flow may lead to
species separation only if this unicellular flow is stable. To our
knowledge, there is no work on the species separation where the
influence of the thickness and the nature of the bounding horizon-
tal plates are taken into account even though the thickness of the
plates in some applications may be greater than that of the fluid
layer. Very few papers exist that consider the effect of the presence
of horizontal bounding plates on the onset of thermal convection,
the earliest being that of Riahi [16]. Later, Mojtabi and Rees [17]
conducted a theoretical study of the effect of conducting bounding
plates on the onset of Horton-Roger-Lapwood convection using
both linear and nonlinear stability analyses. They showed that it
is essential to determine the combined effect of the relative thick-
ness of the bounding plates and the ratio of the conductivities of
the plates and the saturated porous medium.

Rees and Mojtabi [18] considered the effect of conducting
bounding plates on the onset of convection and the identity of
the preferred weakly nonlinear post-critical convection planform.
They presented regions in parameter space in which convection
in the form of rolls is unstable and within which cells with square
planform form the preferred pattern. Ouattara et al. [19] studied
the effect of conducting boundaries on the onset of convection in
a binary fluid-saturated porous layer. In this study, an analytical
and numerical stability analysis was performed. The equilibrium
solution is found to lose its stability via a stationary bifurcation
or a Hopf bifurcation depending on the values of the dimensionless
parameters. For the long wavelength mode, the critical Rayleigh
number is obtained as Ras = 12(1 + 2dd)/[1 + y(2doLe + Le + 1))
and k. = 0 for > y,,; > 0.

Y{x T q

In the present study we are mainly interested in the influence of
the ratio of the bounding plates to the porous layer thickness and
their conductivity ratio (See Fig. 1). In the first part, an analytical
solution of the unicellular flow is developed in the case of a shal-
low cavity (aspect ratio A >> 1) and the amount of species separa-
tion (measured between the two horizontal ends of the cell) is
expressed in terms of the thermal Rayleigh number, Lewis number,
separation ratio, aspect ratio of the cell, the conductivity ratio and
the thickness ratio of the bounding plates to the porous layer thick-
ness. The value of the Rayleigh number leading to the maximum
separation has been also obtained analytically. Then, in the second
part, a linear stability analysis of the unicellular flow is presented
using a Tau spectral method. The analytical results are corrobo-
rated by 2D direct nonlinear numerical simulations performed
using a finite element method.

2. Mathematical formulation

We consider a rectangular cavity with large aspectratioA = L/H,
where L is the width in horizontal ¥’ direction and H is the height of
the cavity in the vertical y’ direction (the gravity acceleration is
g = —gV). The cavity is filled with a porous medium which is sat-
urated by a binary fluid and the Soret effect is taken into account.
This cavity is delimited above and below by two metal plates of uni-
form thickness, h. Neumann boundary conditions for temperature
(i.e. a fixed uniform heat flux per unit area, q') are applied on the
outer horizontal surfaces of the composite layer at y’ = —h and at
y' = H + h. The vertical walls (x' = 0, X’ = L), are impermeable and
insulated. All the boundaries are assumed to be rigid and imperme-
able. We also assume that Darcy’s law is valid, and that the
Oberbeck-Boussinesq approximation is applicable. The thermo-
physical properties of the binary fluid are considered constant
except for the density in the buoyancy term, which varies linearly
with the local temperature T' and the mass fraction C':

p = po[1 = Pr(T' = To) — Bc(C' = Co)], 1)

where g; and f. are the respective thermal and mass expansion
coefficients of the binary fluid, and the temperature, Ty, and
concentration, Co, both correspond to the reference state. The value
P, is the fluid mixture reference density at T =To and C = Co. Finally,
T' is the dimensional temperature and C' the mass fraction of the
denser component. We also use the other standard assumptions
such as local thermal equilibrium between the phases and
negligible viscous dissipation.

Thus the governing conservation equations for mass, momen-
tum, energy and chemical species for the bulk are:

tq

____¢ h 3

'
»
»

q

q

Fig. 1. Saturated porous medium of height H and length L bounded by two horizontal plates of thickness h. The upper and lower surfaces of the system are subject to a

uniform heat flux. The vertical sidewalls are assumed to be perfectly insulated.



2 K F;
Vi = —E L(T' +1C)

(pc)p%Jr (pc)f\_/’ VT, = 7, V°T), 2)
&%+ V. VC = V- (D'VC +Cy(1 - Cy)D;VT),

where V' is the Darcy velocity, T, the temperature inside the porous
bulk, v the kinematic viscosity, (pc), and (pc); are the respective
heat capacities of the saturated porous medium and the fluid, 2,
the effective thermal conductivity of the saturated porous medium,
€* its porosity, and ¢’ is the stream function. As usual the equation
of continuity is satisfied by introducing the stream function accord-
ing to: ' = 9¢’'/dy’ and V' = —9¢’ /OX'.
In the two plates bounding the porous medium, the conduction
heat transfer equation are:
T/
(pe)s % = iV°Ty,
T/
(pe) 52 = V7T,

3)

where T; and T are the temperature inside the lower and upper
plates, respectively, and (pc), and /4 are the heat capacity and the
thermal conductivity of the solid plates. We assume that the bound-
ing plates are made from the same material and are of equal thick-
ness. The reference scales are H for the length, a/H for the velocity
with a = 4,/(pc); (a is the effective thermal diffusivity of the porous

mixture system), H*/(J,/ (pc),) for the time ((pc), is the effective
volumetric heat capacity of saturated porous medium),
AT = qH/%, for the temperature, AC = —ATCo(1 — Co)(D;/D") for
the mass fraction, where D; and D" are, respectively, the thermod-
iffusion and mass-diffusion coefficient of the denser component.

The dimensionless mathematical formulation of the problem is
given by:

V2 = —RaZ(T; +y0),
Ty, | 2
M4V . VT, = V2T,

ot

X+ V.VC=L(VC-VTy), (4)
% = OCVZT]7
% = OCV2T3.

The problem under consideration depends on eight non-
dimensional parameters: the thermal Rayleigh number,
Ra = (gp;KATH)/(av) (K is the permeability of the porous medium);
the separation ratio = —(f¢/pr)(D;/D")Co(1 — Co); the Lewis
number Le = a/D"; the normalized porosity, ¢ = &*(pc);/(pc),; the
thermal diffusivity ratio, o =as/a, where as= A/(pc), and
a, = 4/ (pc), are respectively the thermal diffusivity of the solid
bounding plates and the porous medium; the thermal conductivity
ratio, d = As/4,; the ratio of the plate to the porous layer thickness
é = h/H, and the aspect ratio of the cell A= L/H.

In the present study, the intensity of the thermal buoyancy forces
is expressed only in terms of the thermal Rayleigh number, Ra.

The corresponding dimensionless boundary and interface con-
ditions are:

for y=0, %—7;:%%—7;, Ti=T,, =0, %_%_];:0:
for y=1, 88—2/3:%%—7;, T,=T;, ¢=0, g_g_aa_];:
for y=1+34, 88_23:%1

()

The full system of equations admits the following equilibrium
(i.e. basic) solution: T p =-y/d+ T4, Top =Tq—Yy,T3p =(1-y)/
d+T,—1,V=0,Co=y—1/2,

where T, is initial non dimensional temperature. Ouattara et al.
[19] studied the linear stability of this solution. They found analyt-
ically the critical Rayleigh number beyond which this solution
loses its stability either via a stationary bifurcation or a Hopf
bifurcation.

They showed that, for v > ,;, with:

51d%6* + 70ds® — 12ds — 10

Vi = 10Le(1 + 2d5)* — 51d°6* — 70d5® + 12ds + 10

This solution loses its stability via a stationary bifurcation lead-
ing to an unicellular flow with the corresponding critical Rayleigh
number:

B 12(1 + 2do)
T 1+y(2leds +Le+ 1)

Rags

Remark 1: if d — oo, the walls which delimit the porous layer
are infinitely conductive compared to the porous layer satu-
rated by the binary fluid. So, ,,,; — 1/((40Le/51) — 1) and Rac
— 12/(Le ), a result which has already been obtained by
Charrier-Mojtabi et al. [12].

Remark 2: if § — O, the plates become infinitely thin and the heat
flux is directly imposed on the porous layer saturated by the bin-
ary fluid. So, ,,,; — —1/(Le + 1) and Racs — 12/(1 + y(Le + 1)), a
result which was found by Yacine et al. [20]. This last result
shows that for uniform heat flux imposed on the horizontal
walls, it is possible to obtain the separation of the components
for any binary solution with positive Soret coefficient, whereas
for isothermal boundary conditions this operation is only possi-
ble should y > y,,; — 1/((40Le/51) — 1) be satisfied [12].

3. Analytical solution of the unicellular flow
3.1. Parallel flow approximation

For the limiting case of a shallow cavity A >> 1, we considered
the parallel flow approximation which has been used by many
authors (c.f. Elhajjar et al. [13]) to determine the velocity (or
stream function), the temperature and mass fraction fields. The
unicellular flow is then given as follows:

Puni = %m‘(J/)'-, Tlum' :A1X +f1 (.y)7
T3uni = Asx +f3(y)§

where A;, (i=1, 2, 3), and m are, respectively, the gradients of the
temperatures and mass fraction along the x -axis. With these
assumptions and for the steady state, the system given by Eqgs. (4)
is reduced to a set of ordinary differential equations which may
be solved using Maple:

Touni = Aox + fL(¥);

Cuni = mx +g(y)7 (6)

d_zdigm = —Ra(A; + ym),

d* Aoy
T — 1ot

dy
‘fy—fgzo.

Using the boundary conditions (5) and due to the fact that the
species are also conserved in time throughout the porous cavity,
thereby satisfying [,Cuni(x,y)dxdy = 0, we obtain the following
expression for the stream function:



. 1
Puni = ‘//O(y _yz)a with WO = ERG(AZ + 1//m), (8)

and the following expressions for f,(y).f,(¥),f;(¥) and g(y) by
integration:

[i0)=-%+8

f2(y) = —¥oh (y;—y% —y+ 5

f3(J’):—a+%6A2 %—1+ﬁ; ®
gy = Dol T MO 2@ 2y 1) (),

Expressions for A, and m may be found using the fact that, at
steady state, the total heat transfer through any cross section per-
pendicular to the x axis and the mass flow of the component of
mass transfer fraction C,,; are both zero. We obtain Egs. (10) and

(11):

/ 6T1um d + /] < 6T2um 27 2uni TZum a(f)um>dy /]Jﬂi 8’23);@ dy _ 0,

Ox 0,
(10)
and
1
[ (2sgre-m s )ay=o a1
0 oy
which leads to the following expressions for A, and m:
2 — —
A = #, and m — _ Leyghs _ 52Lew0 304, . (12)
Vo + 30 + 60ds Le“y5 + 30

Due to the continuity of the temperature field inside the cell, we
deduce that A; = A3 = A;.

Using the assumptions already mentioned and the correspond-
ing boundary and interface conditions (5), we find the following
expressions for the stream function, the mass fraction and the tem-
perature in the three regions:

Quni = Vo1 =)y,
T]uni :AZX_¥+/))

Touni = Axx — l//OAZ (_ - _)
T3uni = AaX —%-F%-F%—

Cyni = mx + Yo

y+B (13)

1+ 8,

(Ag+mLe)(1-2y)(2y2—2y-1) | (1-mA)
12

+558 —y.

We note that the value, g, is arbitrary due to the Neumann
boundary conditions. On combining the expressions for A, and m,
given in (12), with the expression for v, it is found that,

Vo(2Le*yd — 5dyy2 — 2b*d,) = 0, (14)
where,

b=5/4,

d; = Ra Le* — 12[1 + Le*(1 + 24d)], (15)

dy = 48Ra[1 + (1 + Le(1 + 25d))] — 5761 + 2ds).

Eq. (14) admits the trivial solution y, = 0 and the remaining 4th
degree equation reduces to a 2nd degree equation.
From the above result, it follows that the solutions of Eq. (14) are:

1/2
O,ig<d1i\/df+Lezdz> } (16)

Eq. (16) indicates that five solutions are possible. One of these
solutions, namely v, = 0, corresponds to the rest state, and while
this is always possible it may not stable. The first signs +and -

Yo =

correspond to counterclockwise and clockwise unicellular circula-
tions respectively. Due of the property of symmetry, specific to
the horizontal configuration, the unicellular flows are symmetrical
in pairs. This result is obtained with Eq. (16) giving the values of
+y,. The direction of rotation of the convective cells is defined by
the stream function ,(1 —y)y (Eq. (12)). Moreover, the sign of
the mass gradient m is directly connected to v, (Eq. (18)). For labo-
ratory experiments, to induce a flow in one direction or the other, it
is sufficient to tilt the cell, very slightly compared to the horizontal
and return to the horizontal situation once the unicellular flow is
established.

As indicated by the relation (16), if: df + Lé*d, < 0, the Eq. (14)
has 4 imaginary roots. Then, only the equilibrium solution is pos-
sible. If d; >0 => df +Le*d, > 0, in addition the product of the
roots of this 2nd degree equation in 3 is positive then the Eq.
(14) has, in addition to the equilibrium solution, two real and
two imaginary solutions; d; >0= Ra (1+y(2leds+
Le+1)) > 12(1 + 2do) and this inequality leads to:

 12(142ds)

V> - 1+2do = Ra > Raes = 157 16 3team) (17)
 12(142ds)

l// <- 1+Le( 1+2do = Ra>Ra; = 1+y(1+Le+2Leds)

Using the analytical solution of the unicellular flow, we deter-
mined indirectly the critical Rayleigh number beyond which the
equilibrium solution loses its stability [14].

On studying the sign of the discriminant of this 2nd degree
algebraic equation, we determined that there are three regions (I,
II, Il) in (, Ra) space where this equation admits, respectively,
0, 2, or 4 real solutions associated with different flow structures.
In Fig. 2 we present, for Le =3, d =1, 6§ = 0.01, these different
regions of (Ra, ) -space and the various analytical expressions of
different curves delimiting the three regions of the plane (i, Ra).

3.2. Optimization of the dimensional separation gradient

The separation, S = mA, is defined as the difference in the mass
fractions of the denser component in the vicinity of left and right
vertical walls of the horizontal cell.

60 4real i
Ra , s\"]‘:‘;‘;‘;’i 2 real solutions (1)
H
A
\\ e | o 12(1+2d5)
i C T l+y(2Lled 6+ Le +1)
Ra 0 real solution (1) ;
i _12(Le’(1+2d8)+1)

Ra
: sug Ie?
|

—

0 ;
i
12(1+2d5) : v,
Rag=—"— 220 i
1+y(2Led 6 + Le +1) :
1
i
i 0 real solution (1)
2 real solutions (1) :
i
i
H
i
-40 !

4 /0

-1
Y ST ea+zds) VY

(98]

Fig. 2. Various analytical expressions of different curves delimiting the regions
of the plane (y, Ra) where the problem admitE]O, 2 or 4 real solutions.

(Le=3,d=1,6=0.01). ¢, = > - 5 = and
2doLe[1 + Le + 2Le“ (14 do)] + 1+ Le + Le” + Le

12(Le — 2y)(1+2do) + 1) — (Le+1) +2 [—x//(ZLed:5+Le+1)(2Leda‘(Lez —y)+(Le+1)(Le—y— 1)}"2

' Le?



On replacing A, by its value in the expression for m (Eq. (12)),
we obtain an expression for m as a function of y,. The dimension-
less mass fraction is then given by:

~150y0(2Leds + Le + 1)
(Le*y2 + 30)(60d5 + 2 + 30)

where ), is a non-zero root of the Eq. (14). Eq. (14) may be solved
easily for Ra:

2(Le*y% +30)(60ds + y2 + 30)
5(Le*y2 + 60Leddy + 30Ley + 30y + 30)°

where Ra = (gf;KATH)/(av) = FATH with F = (gf;K)/(av).

The dimensional value of the separation between the ends of
the cavity is given by: S =m'L=Co(1 - Co)2ZATML/H
where: m" = Co(1 — Co) % Am = EATm with E = Co(1 — Co) 2. The
non-dimensional mass fraction m is only function of Ra = FSTH
whereas the expression m’ is doubly dependent on AT:

— EATm(FATH).

For a given binary solution in a cavity of length L, the optimal
separation corresponds to the maximum of m’" as a function of
the two variables H and AT. This optimum exXists if the following
system of equations admits a solution

{?T"J—E%T( —FAT ) =

om —E(m+ FATHYR) =

(18)

(19)

— dm
0=m=Ragg 20)
0 = m=-Radm

The system (20) admits only a single solution, m = 0. Hence this
problem admits an optimum which is only function of H for fixed
AT or as a function of AT for fixed H (cf. Fig. 3 given m", which is
function of H and JT). We observe that the mass fraction m" varies
weakly when AT increases for fixed H. For fixed values of H, the
equation m + Ragit = 0 leads to m§ + Ra gt = 0.

This last equation depends only on v, since Ra, m, gjf“, f}d:" are
functions solely of the following fourth degree equation for i,:

Le*yg + (20Le*ds + 10Le* + 10)y3 — 600ds — 300 = 0 (21)

Once the roots, yp, Of this algebraic equation have been found,
the value of the optimal Rayleigh number Ra,p, is obtained by
replacing vy by its expression in Eq. (19). Ra,, = FAT,,H is thus
fixed, which implies that AT, is also fixed since F and H are fixed.
The maximum value for m" is then given by:

Vi 2 I
AN
e '»"/’n 'l" i I/

K ':o'o'o/l l{,' I,'
::: 'l' o l, :,I l, "1, ,/

Fig. 3. Real mass fraction gradient m", function of the temperature difference AT
and the cell thickness H, for Le=5, =0.1,5=0,d=4.

AT,
H

The analytical expressions of yp, Ra,, and AT,, are determined
with Maple software, but are too lengthy to include here. In order
to illustrate the results, we only give their associated numerical
expressions for fixed values of Le, y, 6 and d:

For Le =100, y = 0.1, d =29 and ¢ = 1, 0, we obtain respectively
Wop = 0.0548, 0.0547, Ra,, = 2.391, 1.983 and AT,, = 21.055, 17.462.
We therefore deduce that:

m =E

M(FAT,,H) (22)

mr o (6=1) 04569
mr_.(5—0) 04609

For Le =232,y =0.1,d =29 and 6 = 1, 0, we obtain respectively
Wop = 0.0236, 0.0236, Ray, = 1.033, 0.949 and AT,, =9.097, 8.353.
We therefore deduce that:

=0.991.

0.4566
Ml ( 04584

For Le =232, =0.2,d =29 and 6 = 1, 0, we obtain respectively
Wop =0.0236, 0.0236, Ra,, =0.517, 0.494 and AT,, = 4.553, 4.350.
We therefore deduce that:

m(3=1) 0.4566
mr (56— 0) 04584

We note that the change from y = 0.1 to = 0.2, which corre-
sponds to many binary mixtures with a positive Soret coefficient,
slightly modifies the optimal parameters defined previously. For
larger values of the Rayleigh number, Ra = 10, Le = 232,  =0.2, d
=29 and 6 =1, 0, we obtain respectively ¢, = 0.146, 0.355 and m
=0.144, 0.060. We thus deduce theoretically and numerically, for
a cavity with an aspect ratio equal to 10 the separation values, S
=1.44, 0.60, as indicated in Fig. 6. We can conclude that the opti-
mum separation is not modified by taking into account the charac-
teristics of the walls. By contrast, the value of S is strongly affected
for large values of Ra. The measurements of the mass fraction gra-
dient are made for temperature differences very much higher than
those leading to the optimum of separation. The calculation of the
thermodiffusion coefficients from these measurements would
therefore be imprecise if we do not take into account the nature
and the thickness of the walls.

max(5 _ 1)

550 = 0.996.

=0.996.

4. Numerical simulations

This problem has also been studied numerically by solving sys-
tem (4) with the associated boundary (5) using a finite element
method (as provided by the COMSOL Multiphysics software). We
considered two bounded domains with A=10 and A =20, since
we wish to compare the results for this confined geometry to those
obtained analytically for a cell of large aspect ratio, A >> 1. We used
a rectangular grid system, which is better-suited to the rectangular
shape of the cavity. The spatial resolution was: 200 x 30 for A= 10
and 300 x 50 for A =20. We will show that the numerical results
are quite the same for the central portion of the cavity for the
two cases, which shows that the parallel flow approximation used
earlier is accurate.

It was stated earlier that the separation is defined as the differ-
ence of the mass fraction of the denser species between the two
ends of the cavity: S= mA. In order to reduce the perturbation
effects on the calculation of S due to the nonparallel flow near
the two vertical sidewalls, we plot the curve C = f(x) at a given
value of y (y = 0.5, for instance) and we calculate the slope of the
curve, which is a straight line except near the vertical sidewalls
of the cavity. The values of the slope obtained analytically are
found to be in good agreement with the numerical results.



To illustrate our study, we consider the water/ethanol mixture
used by Platten et al. [21], with water (60.88 wt%) and y = 0.2.
The average temperature of the mixture was 22.5 °C. The proper-
ties of this binary mixture for T=22.5°C are given in Table 2.
The studied cell was made of copper alloy with 1 cm thick horizon-
tal plates, 1 cm thick porous layer and its length was 10 cm. The
cavity was filled with a porous medium consisting of glass spheres
saturated by the water/ethanol mixture.

Due to thermodiffusion, and for \y > 0, the denser component of
the mixture moves towards the cold wall at the top of the cell and
the other one moves towards the hot wall at the bottom of the cell.

- S

This unicellular flow advects one of the components of the mixture
towards the right hand end of the cavity and the other one towards
the left hand end, and this leads to a horizontal stratification of the
concentration field. Figs. 4 and 5 show the iso-concentrations and
the streamlines for Le = 232, = 0.2, and Ra = 4 with and without
the influence of walls (d =29, §=1) and (d =0, § = 0), and we
obtain S =2.04 and S = 1.86, respectively. It is essential to note that
the importance of species separation is underestimated by not tak-
ing into account the influence of the surface thicknesses.

Fig. 6 shows the variation of separation with the Rayleigh
number, Ra, for Le =232 and = 0.2 with (d =29 and 6 =1).

&

(b)

mmol

(©)

Fig. 4. Isoconcentrations (a) and streamlines (b) and isotherms (c) for Le = 232, y = 0.2, Ra = 4, (without taking account the presence of the walls), S = 1.86.

(b)

(c)

Fig. 5. Isoconcentrations (a), streamlines (b) and isotherms (c) for Le =232, = 0.2, Ra=4, d = 29, 5=1, S=2.04.



and without (d = 0, § = 0) the influence of the walls. It should be
noted that, due to the reference scale used for the concentration
field, the separation S may be greater than 1. The optimum separa-
tion has the same value with or without influence of the walls but
it varies significantly when Ra > 2.5. These numerical results are
in good agreement with the theoretical part developed in Sec-
tion 3.2. The analytical solution predicted by the present theory,
as represented by the solid line, is observed to be in very good
agreement with the numerical results represented by the black
dots.

5. Linear stability analysis of the unicellular flow

In order to study the stability of the unicellular solution
(®unis T1unis T2unis T3uni, Cuni ), it is convenient to rewrite the governing
equations using the perturbations of the stream function ¢,
temperature 0, 0,, 03 and concentration c:

01 = Truni — Trunis
C= E‘um‘ - Cuni§ (23)

02 = Touni — Touni;

¢ = Quni — Punis
03 = T3y — T3uni§,

where (Puni, Truni, Tounis T3uni, Cuni) are the disturbance fields. The dis-
turbances are developed in normal modes as the cell is quite of infi-
nite extension:

(¢,01,02,05,¢) = [@(y), 01(¥), 02(¥), 03(y),

In the above expansion, the disturbances (@ (y),0:1(y),
02(y),03(y),c(y)) are the amplitudes of the stream function, tem-
peratures and the mass fraction, the value k is the wave number
in the horizontal direction and ¢ is the temporal exponential
growth rate of the perturbations. We introduce the new variable,
1 = ¢ — 6,, for convenience. The system of linear ordinary differen-
tial equations can be written as:

c(y)] exp(ikx + at) + c.c,

(D* — k)¢ = —iRak[02(1 + ) + y],

(D = K%)05 = 00, + ikt 2t + Ay 28 — ikp P

(D> —K*)n =Le (80— +ik 0“5”"‘) (n+ 02) +mLe%) — ikqLe %,
(D* K)o, =1,

(Dz _ k2)03 093

(24)

where D = 9/9y. The corresponding boundary conditions are:

5
Taking in account the influence of walls (d=29, § = 1)
— — = Without influence of walls (5 =0)
44 @  Numerical solution

Separation (S)

Fig. 6. Separation versus Rayleigh number for Le = 232, y =
(0, 1).

0.2,d=(0,29)and 5 =

061

fory--s.  SL-o,
fory =0, %_?:é% 01 = 04, qﬁ:O,g—’;:O;
fory=1, %3,3 %%i b =05, ¢= 081; 0;
fory=1+35, %(;/3

(25)

The results of direct numerical simulations show that the uni-
cellular solution loses its stability via a stationary bifurcation.

ForLe=232,d=29,6=1and | = 0.1 >\ 4 = 0.022, we deduce
the value of the critical Rayleigh number leading to the onset of the
unicellular flow: Ra = 0.52. Starting from this first transition, we
found only the unicellular flow for Ra slightly higher than Rac.
Gradually increasing the Rayleigh number value, we found not
only unicellular flow but another bi-cellular flow also stable. This
bi-cellular flow was obtained only by modifying the initial condi-
tions. Continuing this procedure, we found not only these two
types of solutions but a flow with three convective cells and then
the unicellular flow and flows with 2, 3, 4 cells equally stable, again
with Ra < Ra.; = 46. When the unicellular flow loses its stability, for
Ra > 46 = Ra., the other flows maintain their stability up to values
higher than Ra.. Multiple variety of multicellular flows (with two
to eleven cell structure) exist and are linearly stable even for Ra <
46 and for a large range of values of Ra > Ra¢,. This peculiarity for a
horizontal porous layer saturated by binary mixture and subjected
to vertical uniform heat flux differs from the classical case where
the horizontal cell is heated from below and where the horizontal
walls are maintained at uniform constant temperatures T; and To.

The maximum value of the stream function and the kinetic
energy as a function of the Rayleigh number, for unicellular flow,
are represented respectively in Figs. 7 and 8 for Le =232,d =29,
= 1. The analytical solution obtained is in good agreement with
the results of direct numerical simulation.

We restrict ourselves in this study to this stationary transition
for positive separation ratios. In this case, the mechanical equilib-
rium solution loses its stability via stationary bifurcation and leads
to a unicellular flow only for values of > ;.

The resulting linear problem is solved by means of a sixth order
pseudo Tau-Galerkin method. The boundary conditions for ¢(y)
and 7(y) are known so the following expansions, which satisfy
these boundary conditions, are used:

0,06 m  Numerical uncellular solutions

Analytical unicellular solutions

0,05
0,04 1

5

< 0,034
0,02

0,01

Ra

Fig. 7. Maximum stream function versus Rayleigh number for unicellular solution.
For Le=232, ¢ =0.2,d=29 and 6 =1.
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= Numerical unicellular solution i
Analytical unicellular solution

0,006

0,004
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0,002

0,000
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Fig. 8. Kinetic energy versus Rayleigh number for unicellular solution. For Le = 232,
Yy =02d=29and 6=1.
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eW)=> fu(1-y)y" and

n=1
2 N-2
ny) =di +d, (y2 - §y3> +Y dnay™ ' (1-y)%
n=1

Using the boundary conditions: 2:0-=% — 0 and 2:0219 — 0
the general solutions of the perturbation equations for the bound-
ing plates are given respectively by:

01 (y) _ B1 (ek(y+2($) + e—ky) and 03 (y) _ Bg (ek(y—2(1+($)) + e—ky).

The four boundary conditions, (25), which are associated with
the perturbation 6,(y), are all coupled to the perturbations 6, (y)
and 05 (y). The function 0,(y) is then written in the following poly-
nomial form: 0,(y) = S =Vby".

The writing of these four boundary conditions satisfied by 6, (y)
allows the determination of the first four coefficients (b;,i = 1 to 4)
of 0,(y) function of B; and Bs and b; for i > 4.

The critical values of the Rayleigh number Ra,, and wave
number k., are obtained for =0 and for four values of
W = Y, using approximations from the third to the sixth order.

Table 1

Critical values of Rayleigh number Ra., and the wave number k., associated with the
transition from the unicellular to multicellular one, Le =232, d =29, =3, ¢ = 0.5 and
for different values of > y,,; and three order approximations.

Le=232,d =29, §=3 4th order 5th order 6th order

\l/ Ke2 Rac Ke2 Rac Kez Rac
0 3.22 43.06 3.08 38.58 3.08 38.56
0.1 3.31 46.54 3.24 46.81 3.24 46.91
0.4 3.28 47.85 3.24 46.91 3.24 47.28
0.5 3.27 48.53 3.24 47.25 3.24 47.28
0.6 3.26 49.23 3.24 47.62 3.24 47.29

The Lewis number, Le, the thermal conductivity ratio, d and the
aspect ratio, 6 are set at (Le,d,d)=(232,29,3). The case,
Le = 232 corresponds to a liquid binary mixture, like water/ethanol
or water/isopropanol with appropriate mass fraction. We recall
that we have already found that the flow is unicellular when
W = Y, = 0.00623. When \ = 0.1, the linear stability analysis of
the equilibrium solution leads respectively to: Ra.; = 0.517. This
unicellular flow loses its stability at Ra., =46.91 and k., = 3.24 at
sixth order. These results are illustrated in Table 1. It should be
noted that the critical Rayleigh number increases and the critical
wave number decreases when the separation ratio increases. The
results which were obtained for pure fluid (yy = 0) are in good
agreement with those found in [17].

6. Conclusion

In this paper, an analytical and numerical analysis of the species
separation of a binary mixture saturating a porous layer was pre-
sented, taking into account the influence of the bounding plates
of the cell. The cavity is bounded above and below by two thin hor-
izontal and impermeable plates of uniform thickness. These plates
are subjected to a uniform heat flux.

The equations were nondimensionalised in such a way that the
filtration Rayleigh number is based on magnitude of the applied
heat flux applied on the upper and lower sublayers. In addition
to the classical dimensionless parameters of the problem without
the bounding plates being present, two further parameters are
required, namely the conductivity ratio between the solid and por-
ous sublayers, d, and the relative thickness of the bounding plates,
d.

The main objective of this study concerned the influence of the
thickness and the nature of the bounding plates on the thermo-
gravitational separation of the constituents of a binary mixture sat-
urating a porous medium. This separation is possible only in the
presence of a unicellular flow. This unicellular flow should also
be linearly stable. Numerical simulations and the linear stability
of the unicellular flow were then performed. It appears that for
binary solutions with ¥ > v, and for example (Le =232, \ =
0.2, d=29, 6 =3), the mechanical equilibrium solution gives rise
to a unicellular flow for Rac; = 0.26 and the unicellular flow gives
rise to a multicellular flow for Rac; = 47 and k¢, = 3.24. The species
separation is therefore possible for a wide range of Rayleigh num-
bers [0.26, 47]. Moreover the optimal separation is obtained for a
Ragp = 0.52 € [0.26, 47], a domain within which the unicellular flow
is linearly stable.

Knowing the characteristics (Le, \s) of the binary mixture satu-
rating a porous cavity defined by d and 3, the theoretical study
allowed us to obtain the Ra,p, et mg,, values leading to the optimal
species separation. All the results obtained analytically have been
validated numerically. Moreover, we validated our results by com-
paring them with the results obtained in three limiting cases: infi-
nitely thin walls (6 — 0), infinitely conducting walls (d — ~0) and a
mono-constituent fluid (\ — 0).

We have shown that the optimal value of the species separation
of the binary mixture does not depend on the thickness or the

Table 2

Properties for a water (60.88 wt%) - ethanol (39.12 wt%) mixture at a mean temperature of 22.5 °C.
Br Bc P D Dy A v a
7.86-107% -0.212 935.17 432-.1071° 1.37-10712 0.267 2.716-10°¢ 1077
K! - kg-m™! m?s~! m? s ! K! W-m~K! m?s! m?s~!
S D Dy
2.63-1077 1.89-10°1° 6.01-10712
m?s~! m?s! m?s ! K!




nature of the walls. On the other hand, this optimal separation is
obtained for very small values of the Rayleigh number (which also
corresponds to very small porous layer thickness). Experiments
leading to significant species separation to measure thermodiffu-
sion coefficients are performed for larger values of Ra. In this case,
species separation strongly depends on the characteristics of the
walls.
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