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ARTICLE

Selectively exciting quasi-normal modes in open
disordered systems
Matthieu Davy1 & Azriel Z. Genack2

Transmission through disordered samples can be controlled by illuminating a sample with

waveforms corresponding to the eigenchannels of the transmission matrix (TM). But can the

TM be exploited to selectively excite quasi-normal modes and so control the spatial profile

and dwell time inside the medium? We show in microwave and numerical studies that

spectra of the TM can be analyzed into modal transmission matrices of rank unity. This

makes it possible to enhance the energy within a sample by a factor equal to the number of

channels. Limits to modal selectivity arise, however, from correlation in the speckle patterns

of neighboring modes. In accord with an effective Hamiltonian model, the degree of modal

speckle correlation grows with increasing modal spectral overlap and non-orthogonality of

the modes of non-Hermitian systems. This is observed when the coupling of a sample to its

surroundings increases, as in the crossover from localized to diffusive waves.

DOI: 10.1038/s41467-018-07180-3 OPEN

1 Institut d’Electronique et de Télécommunications de Rennes, University of Rennes 1, 35042 Rennes, France. 2 Department of Physics, Queens College and
Graduate Center of the City University of New York, Flushing, NY 11367, USA. Correspondence and requests for materials should be addressed to
A.Z.G. (email: genack@qc.edu)

NATURE COMMUNICATIONS |          (2018) 9:4714 | DOI: 10.1038/s41467-018-07180-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:genack@qc.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Transmission of a monochromatic wave through a static
sample is fully described by the transmission matrix (TM),
t. The TM is a subset of the scattering matrix which pro-

vides the coupling of a system to its surroundings. In the last
decade, there has been growing interest in measuring the TM to
control the flow of waves through random systems and optical
fibers1,2. Shaping the incident waveform illuminating a sample
makes it possible to manipulate the net transmitted flux and its
spatial intensity profile for applications in medical imaging and
communications. For instance, a scattering medium can appear to
be transparent or opaque when the incoming wavefront is
adjusted to correspond to the first or last transmission eigen-
channels3–9. The intensity can also be focused through random
media at a selected point in the output by adjusting the incident
wave so that all transmission channels interfere constructively at
that point1,10.

The elements tba of the TM are the field transmission coeffi-
cients between the N channels leading toward and away from
opposite ends of a sample, a and b, respectively. The TM was
initially studied in order to explain the scaling of the conductance
of wires at zero temperature11,12. Classical and quantum trans-
port are connected by the dimensionless conductance, which is
the conductance in units of the quantum of conductance, (e2/h).
The dimensionless conductance is equal to the average trans-
mittance, g= 〈T〉, where 〈⋅⋅⋅〉 represents the average over a ran-
dom ensemble. The crossover to Anderson localization occurs at
g= 1; waves are localized for g < 1 and diffusive for 1 < g <N/2.
The transmittance is the sum of all flux transmission coefficients,
|tba|2, which equals the sum of the N eigenvalues τn,
T ¼ ΣN

a;b¼1 tbaj j2¼ tr tty
� � ¼ ΣN

n¼1τn
11,12.

In principle, the degree of control over transmission in diffu-
sive samples is strong because the distribution of transmission
eigenvalues is wide. This distribution is bimodal with a peak near
unity containing g “open” channels and a second peak corre-
sponding to “closed” channels with values that are exponentially
small in the ratio of the sample length and the transport mean
free path, L=‘6,12–14. In practice, however, measurements of the
TM are incomplete so that the dynamic range over which
transmission can be controlled is limited4,15–17. Because the dwell
time and the energy density profile inside a medium excited in a
specific eigenchannel are correlated with the corresponding
transmission eigenvalue, exciting transmission eigenchannels also
provides a measure of control over the dwell time and the spatial
distribution of energy within a random medium3,5–9,18. The full
diversity of dwell times is given by the eigenvalues of the Wigner-
Smith time-delay matrix, known as the proper delay times, which
are constructed from the spectrum of the scattering matrix19–22.

Another approach to controlling propagation within random
or structured media might be to manipulate the incident wave to
preferentially excite specific quasi-normal modes23 which have
different lifetimes and spatial profiles. Modes of open systems are
solutions of the wave equation over the volume of the random
medium with outgoing radiation boundary conditions24–26. In
resonating structures for which the complex eigenvalues and
eigenvectors can be found analytically or numerically, the field for
any source excitation can be reconstructed from the coherent
superposition of modal contributions26,27. Beyond the indepen-
dent contribution of each mode, the resultant field depends cri-
tically upon the interference between the fields of modes that
overlap spectrally and spatially. Modal coupling plays a key
role in describing the physics of photonic systems such
as chaotic cavities28–32, coupled cavities or waveguides33,34,
optical resonators27,35, quantum plasmonic36,37 or disordered
media30,38–40.

In large complex systems, it is generally not possible to solve
for the eigenvectors of the wave equation, but important

properties of a system and its coupling to its surroundings can
be determined from the statistics of scattering spectra and their
analysis into modes or energy levels. Great emphasis has been
placed on the probability distributions of level spacings41–43 and
level widths28,32,44. However, the statistics of level widths and
spacings do not directly yield the statistics of scattering because
the scattered wave also reflects the interference between modes
and the degree to which modal speckle patterns are correlated.

Here we consider the degree of modal selectivity that can be
achieved in random media by manipulating the incident wave-
form. We approach the problem by analyzing the spectrum of the
TM into its modal components in locally 2D N–channel samples.
The complex modal frequencies and amplitudes are found by
decomposing the spectra of the elements of the TM into a
superposition of spectral lines via Breit-Wigner theory30,45,46

tba ωð Þ ¼ Σn
tnba

ω� ωn þ iΓn=2
¼ Σnt

n
baφnðωÞ: ð1Þ

Here φn(ω)= (ω− ωn + iΓn/2)−1 is the frequency variation of
excitation of the field associated with the mode with central fre-
quency ωn and linewidth Γn, and tnba is the complex field trans-
mission coefficient associated with the nth resonance. Each
resonance is then associated with a modal transmission matrix
(MTM), tn, which is built upon the coefficients tnba, and is the
contribution of a mode of the scattering medium to the TM23. An
MTM therefore provides the incoming wavefront that maximally
enhances the energy in a specific mode. However, modal selec-
tivity becomes more challenging as the degree of modal overlap
increases in non-Hermitian media.

Results
Modal decomposition in the effective Hamiltonian formalism.
The coupling of a system to its surroundings can be analyzed in
terms of an effective Hamiltonian. The coupling is described via
the 2N×2N scattering matrix S expressed in terms of the M×M
effective Hamiltonian Heff as28–30,47–49

S ¼ 1� iVT 1
ω�Heff

V: ð2Þ

Here V is a real M × 2N matrix describing the coupling of the
M modes of the closed system to the exterior via the 2N channels
in the leads on both sides of the sample. The non-Hermitian
effective Hamiltonian is

Heff ¼ H0 �
i
2
VVT; ð3Þ

where H0 is the Hermitian Hamiltonian of the closed system. The
poles of the S matrix occur at the complex eigenvalues ~ωn of Heff ,
~ωn ¼ ωn � iΓn=2. Two sets of eigenvectors are associated with
these eigenvalues. These are the right jϕni and left hφnj
eigenvectors, which are the transpose of one another,
hφnj ¼ ðjϕniÞT . The eigenfunctions of Heff are bi-orthogonal
and satisfy the following orthogonality condition due to the time-
reversal symmetry of Heff , hϕ�njϕmi ¼ δnm. As a result of the
imaginary part of Heff , the eigenfunctions are complex.

The modal decomposition of the TM may be expressed in
terms of the complex vectors |WLn|2 and |WRn|2 which couple the
eigenstates φn to the scattering wavefunctions ξL and ξR in the left
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and right leads, respectively29,

tðωÞ ¼ �i
XM
n¼1

WRnW
T
Ln

ω� ωn þ i Γn2
: ð4Þ

We identify the MTM of the nth mode at resonance as
tn ¼ �iWRnW

T
Ln= Γn=2ð Þ. The MTM for each mode is of unit

rank since it is the product of the vectors WRn and WT
Ln. In

principle, the coupling of the eigenfunctions of the closed system
to the leads, and therefore vectors WRn and WLn, depend on
frequency. However, in the case of resonances with high quality
factors Qn= 2ωn/Γn, which are explored in the experiments
described below, we can take WRn(ω)=WRn(ωn)=WRn and
WLn(ω)=WLn(ωn)=WLn. The TM is then expressed as a
superposition of MTMs with modal transmission coefficients
for Lorentzian lines defined at the resonance frequency. The
decomposition of the TM into MTMs and the properties of the
MTMs are demonstrated below in microwave experiments.

Experimental setup. Measurements of the TM are performed in a
two-dimensional cavity containing randomly positioned disks

(see Fig. 1a and Methods for details). Spectra of the N ×N TM are
measured between two arrays of N= 8 emitting and receiving
antennas on the left and right sides of the cavity, respectively.
Measurements are carried out in the frequency range 10.7–11.7
GHz in a scattering sample of 300 randomly distributed 6-mm-
diameter aluminum disks. The sample is weakly localized and
modal spectral overlap is moderate. The coupling strength ~Ta of
the antennas to the sample is determined using the mean value of
the reflection parameter at each antenna, Saah i, ~Ta ¼ 1� Saah ij j2
gives ~Ta � 0:99 so that the antennas are strongly coupled to the
cavity.

Decomposition into MTMs. The modes can be found from an
analysis of the spectrum of the TM as a superposition of MTMs
using Eq. (1). The set {ωn, Γn} is extracted via the Harmonic
inversion (HI) method from the inverse Fourier transform of
spectra of transmission coefficients tba(ω)45,50,51 (see Methods).
The coefficients tnba of tn are then found from the fit of trans-
mission coefficients in the time domain. The flux transmission
coefficient between two channels, |tba(ω)|2, and the underlying
modal transmission coefficients between the channels for each
mode, tnba

�� ��2 φnðωÞ
�� ��2 are shown in Fig. 1b. The transmittance and
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Fig. 1 Experimental setup and decomposition of the TM into modes. a Experimental setup with the top plate removed to show the cavity with 300
randomly-positioned aluminum disks. The TM is measured between the 8 antennas on the left and right sides of the cavity. b Transmission (blue curve)
between two channels, |tba(ω)|2, and its reconstruction found using HI (dashed red curve) in the [11–11.5] GHz range. The thin lines are modal strengths in
transmission, tnab

�� ��2 φnðωÞ
�� ��2. c The measured transmittance, T(ω)= Σab|tba(ω)|2, (blue curve) and its reconstruction from the MTMs (dashed red curves),

as well as the modal contributions Tn(ω) to the transmittance (thin lines). d The spectrum of transmission eigenvalues τi(ω) and the first (blue crosses)
and second (orange crosses) eigenvalues of the MTM on resonance are shown in a semilog plot. The second eigenvalue of the measured MTM is typically
two orders of magnitude smaller than the first
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the contribution Tn ωð Þ ¼ Σba tnba
�� ��2 φnðωÞ

�� ��2 of each mode to T(ω)
are shown in Fig. 1c. The reconstructions of the transmission and
of the transmittance from the modes and the measurements of
these quantities are in excellent agreement.

The degree of modal overlap may be expressed as the ratio of
the mode width and spacing δ= δω/Δω, where δω= < Γn > is the
average linewidth of modes and Δω= < ωm+1− ωm > is the
typical spacing between neighboring modes. In random media,
the degree to which modes overlap spectrally tracks the spatial
extent of the eigenstates in the interior of the sample and so the
crossover from diffusion to localization44,46,52,53. When reflection
at the interface is weak, the ensemble average of the ratio of the
level width to level spacing gives the Thouless number, which is
equal to the conductance g44. Modes of the medium are generally
exponentially peaked within the sample when δ < 1 and extended
when δ > 1. Here the average linewidth is 〈Γn〉 ~9MHz and the
degree of modal overlap is δ ~ 1.2. The high average modal
quality factor Q= 3300 justifies the assumption that the coupling
vectors between the quasi-normal modes and the antennas are
independent of frequency.

An additional check is placed on the accuracy of the modal
decomposition of the TM when the fit to transmission is carried out
simultaneously at several points in the sample: the rank of MTMs
found in the fits of transmission must be close to unit rank, as
predicted by Eq. (4). This additional check is not possible when a
single spectrum of a transmission coefficient is decomposed into
modes with use of HI, as has been done in studies of chaotic
cavities45. Spectra of the transmission eigenvalues of the measured
TM, τi(ω), are compared in Fig. 1d to the transmission eigenvalues
of modes found from the diagonalization of tnt

y
n. The second modal

eigenvalue is typically smaller than the first by a factor of 10–2. The
dominance of the first modal eigenvalue supports the predicted
decomposition of the TM into MTMs of unit rank. This is further
confirmed in measurements with smaller modal overlap (Supple-
mentary Note 1) in which the ratios of the second and first modal
eigenvalue are substantially smaller. The ratio is still smaller in
simulations for samples with modal overlap comparable to that in
experiments indicating that the quality of the modal decomposition
is degraded by noise in the measurements.

We find that when the first and second eigenvalues of the MTM
are close in value, the results are likely to be spurious. The modal
analysis is limited here to samples with moderate modal overlap. For
higher modal overlap, spurious resonances may appear in the modal
analysis due to the contributions of modes with large linewidth which
cannot be resolved and to modes that lie outside the frequency range
but still contribute since their linewidth is broad.

Modal selectivity. The strength of excitation of an individual
mode is maximized when the incoming wave on the left or right
excites the sample with the optimal modal patterns W�

Ln and
W�

Rn, respectively. These are the complex conjugates or the time-
reversal of modal speckle patterns at the sample boundaries.
Using Eq. (4), the vector of the transmitted field for an excitation
of the sample from the left with the normalized optimal wave-
form, vn ¼ W�

Ln=WLn, can be expressed as

Emax ωð Þ ¼ tðωÞvn ¼ �i
W2

Ln

ω� ωn þ i Γn2

WRn

WLn

�iΣm≠n
WT

LmW
�
Ln

ω� ωm þ i Γm2

� �WRm

WLn
:

ð5Þ

The first term in Eq. (5) gives the contribution of the nth mode
to transmission for maximal coupling and the sum in the second

term gives the contributions of other modes. Apart from
the Lorentzian function, the energy in the mode to which
the field is maximally coupled is equal to WLnk k2 WRnk k2.
This can be compared to the average energy for a
normalized random incoming waveform vrand which is

WT
Lnvrand

�� ��2D E
WLnk k2¼ WLnk k2 WRnk k2=N . The energy in the

mode for maximal coupling in an N-channel system is therefore
enhanced by a factor N using the optimal modal pattern. This
property is a consequence of the unit-rank of the MTMs. At the
same time, the contribution to transmission of the selected mode
vanishes for any incoming vector orthogonal to the optimal
modal pattern WLn. Residual transmission is due to the
contributions of neighboring modes.

Excitation of specific quasi-normal modes differs from
excitation of transmission eigenchannels. The eigenchannels
and eigenvalues of the TM can be found via a singular value
decomposition in which the TM at a single frequency is expressed
as the product of three N ×N matrices, t ωð Þ ¼ UΛVy. Here Λ is a
diagonal matrix whose elements are the singular values

ffiffiffiffi
τi

p
, and

V and U are unitary matrices and correspond to the waveforms of
the transmission eigenchannel on the input and output of the
sample, respectively. In contrast to modes, which have a
Lorentzian spectrum, the eigenchannels are defined at a specific
frequency; a new set of transmission eigenvalues and eigenchan-
nels must be computed at each frequency5,23,54,55. However, the
spectral characteristics of the channels can be obtained by
decomposing the transmission eigenchannels into modes23,54.
When a single mode dominates transmission, the MTM for this
mode is close to the first eigenchannel. At the resonance, the first
transmission eigenvalue is, τ1 ωnð Þ ¼ WLnk k2 WRnk k2= Γn=2ð Þ2.
When several resonances overlap, however, the first transmission
eigenchannel is a combination of modal contributions of several
modes.

Experimental demonstration of modal selectivity. To explore
the degree of modal selectivity for different incident waveforms,
the field coefficient within the medium ea(x, y, ω) is measured
using a wire antenna inserted through subwavelength holes (see
Methods). The contributions of modes inside the medium,
enaðx; yÞ, are then obtained from a fit of the coefficients
ea x; y;ωð Þ ¼ Σne

n
a x; yð ÞφnðωÞ using the set of resonances {ωn, Γn}

obtained from the modal expansion of the TM. The spatial energy
distribution for each mode is reconstructed from the contribu-
tions of modal field patterns due to the eight incoming channels
summed to give the optimum incident modal pattern.

For isolated modes, strong modal discrimination is readily
accomplished by tuning to resonance. The strength of excitation
is enhanced over the average of random excitation by a factor of
N by adjusting the incident wavefront to the optimal modal
pattern. In Fig. 2, we consider two weakly overlapping modes at
f1== 11.434 GHz and f2= 11.461 GHz with linewidths of Γ1/
(2π)= 3.75 MHz and Γ2/(2π)= 4.84MHz. This gives a degree of

modal overlap between the modes of δ12 ¼ ΓnþΓnþ1
2

h i
=ðωnþ1 �

ωnÞ of 0.15. The two modes are spatially distinct and peaked at
different points within the sample, as seen in Fig. 2a. For maximal
coupling to the first and second modes, the transmission is seen
in Fig. 2c, d to be enhanced by a factor of close to N= 8 at the
resonance of the two modes in comparison transmission for a
random incoming wavefront shown in Fig. 2b. The energy density
inside the medium at resonance then closely matches the spatial
distribution of the mode, as seen in the insets of Fig. 2c, d. In
contrast, for vanishing coupling to the first mode using the third
singular vector of the MTM, the first mode does not contribute to
transmission and the energy density is due to the contribution of
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weakly overlapping modes, as seen in Fig. 2e. The energy density
is concentrated at the beginning of the sample and falls rapidly
into sample. Thus, specific modes can be selected using optimal
modal incident wave patterns when the modes overlap weakly.

In Fig. 2f, we show the average over the cross-section of the
modal strength inside the medium for maximal and vanishing
coupling to the first mode at f1= 11.434 GHz. The contribution
of the mode is maximum for the optimal incident modal pattern
and should vanish for the orthogonal waveforms. For vanishing
coupling, the intensity is seen to fall exponentially within the
sample and transmission is more than two orders of magnitude
below that for maximal coupling, in agreement with the ratio
between the first and second modal eigenvalues.

We next consider selectivity in a case of two strongly
overlapping modes (Fig. 3). The modes at f1= 11.763 GHz and
f2= 11.773 GHz with linewidths Γ1/(2π)= 12.1 MHz and Γ2/(2π)

= 16.6 MHz have the modal overlap factor δ12= 1.35. The spatial
profiles of the two modes are seen in Fig. 3a to be more extended
than the modes discussed previously with δ12= 0.15 and to be
very similar. In addition to enhancing the contribution of the
maximally excited mode, maximal coupling is seen in Fig. 3c, d to
enhance the contribution of the neighboring mode in comparison
to a wavefront that has not been optimized. The modal
transmission associated with the second mode is enhanced by a
factor 4 for maximal coupling to the first mode.

The distributions of energy density for a random wavefront
and for the first transmission eigenchannel at a frequency midway
between the two resonances ω0= (ωn + ωn+1)/2, are seen in
Fig. 4a, b to be primarily mixtures of the modal spatial patterns of
the two neighboring modes shown in Fig. 354. Nevertheless, it is
possible to preferentially excite a single mode by adjusting the
incident wave to match the pattern of one of the nearby resonant
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modes. In Fig. 4c, d, the energy density at the frequency between
the modal resonances is shown for maximal coupling to one or
the other of the modes. In each case, the energy density matches
the spatial distribution of the selected mode shown in Fig. 3a. The
degree of modal selectivity between two modes achieved by
maximizing the input for one of the modes is reduced as a result
of the hybridization and spectral broadening of the modes of the

closed system when the sample is coupled to its surroundings. We
will see in the theoretical analysis and measurements below that
the similarity in modal patterns in the interior of the sample seen
in Fig. 3a is a consequence of the bi-orthogonality of the
eigenfunctions and the correlation between them.

The degree of modal selectivity can be further enhanced at the
expense of the net excitation of the mode by exciting with a
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waveform that is orthogonal to the neighboring mode. In the case
of two overlapping modes, this is achieved by illuminating the
sample with an incident wavefront aW�

L1 þ bW�
L2 with coeffi-

cients a and b satisfying the condition, a
WT

L2W
�
L1 þ bWT

L2W
�
L2 ¼ 0. The contribution of the second mode

therefore vanishes so that the desired modes is perfectly selected
relative to the second mode. Because of the correlation of modal
speckle pattern, this also suppresses the excitation of the selected
mode.

Mixing of eigenfunctions
Nonorthogonality matrix. Equation (4) shows that the con-
tribution to the output speckle pattern of the mth mode for the
incident waveform that couples maximally to the nth mode at
resonance, ω= ωn, is equal to

Cmn ¼
Wy

LmWLn

ωn � ~ω�
m
: ð6Þ

The matrix C involves the degree of correlation between the
modal patterns at the input. It can be related to the Bell-
Steinberger nonorthogonality matrix U, which gives the correla-
tion over the volume between the eigenfunctions φn of the
system32,56. The elements of U given by the scalar product,
Umn ¼ ϕymϕn can also be expressed in terms of the vectors Wn, in
the absence of losses that are not due to the coupling of the
antennas to the system.

Umn � ϕymϕn ¼ i
Wy

mWn

~ωn � ~ω�
m

ð7Þ

Here, the vector Wn with 2N elements is the concatenation of
the two vectors WLn and WRn. In Hermitian systems, U is the
identity matrix since the modes are orthogonal over the volume.
However for non-Hermitian systems, the diagonal elements of U,
which are the inverses of the phase rigidities of the eigenfunc-
tions, Unn= 1/ρn, increase with modal overlap32,57,58. The phase
rigidity, ρn � hϕ2ni= ϕn

�� ��� 	2
, can be expressed in terms of the

degree of complexness of the eigenfunctions of Heff,

q2n ¼ Im ϕn
� �2D E

= Re ϕn
� �2D E

, as ρn ¼ ð1� q2nÞ=ð1þ q2nÞ39. For
traveling waves, the real and imaginary parts of the eigenstates are
the same on average so that qn= 1 and ρn= 0. In contrast, for
isolated resonances, the eigenfunctions coincide with the real
eigenfunctions of the closed system and ρn → 1. In random media,
the degree of complexness and the phase rigidity track the
transition from the diffusive to localized regime59.

The completeness of the eigenfunctions implies the sum rule
ΣmU

2
nm ¼ 160. The positive diagonal elements of Umatrix and the

negative off-diagonal elements are enhanced as the degree of
modal overlap δ increases. In the weak coupling regime, the
diagonal elements are of order 1 + δ248, while the magnitude of
off-diagonal elements increase as −δ58.

Equation (7) shows that the non-orthogonality of eigenfunc-
tions over the volume yields a non-vanishing degree of
correlation between modal speckle patterns at the interface. In
the case of maximal coupling to a mode, the off-diagonal
elements are also responsible of the non-vanishing of the
contribution of the neighboring modes as shown by the
similarity of Eqs. (6) and (7). However, two differences can be
observed. First, Cnm involves Wy

LmWLn instead of
Wy

mWn ¼ Wy
LmWLn þWy

RmWRn. Since WLn and WRn are statis-
tically independent random variables, we may apply the central
limit theorem and approximate Wy

mWn � 2Wy
LmWLn for N>>1 .

Second, the denominator of Eq. (6) depends on ωn � ~ω�
m instead

of ~ωn � ~ω�
m. However, in the case of strongly overlapping

resonances, the spacing between the central frequencies ωn−
ωm is much smaller than the linewidths Γn and Γm so that ωn �
~ω�
m � �iΓm=2 and ~ωn � ~ω�

m � �i Γn þ Γmð Þ=2. For resonances
with similar linewidths, we therefore obtain Cnm ~ Unm. The non-
orthogonality of eigenfunctions therefore yields a non-vanishing
degree of correlation between modal speckle patterns.

We define the modal selectivity for maximal modal coupling as
the ratio of the strength of the selected mode in transmission over
the incoherent sum of strengths of all modes

Smode ¼
TnðωnÞ

ΣM
m¼1TmðωnÞ

� Cnnj j2
Σm Cnmj j2 : ð8Þ

A diagonal matrix C would correspond to perfect modal
selectivity with Smode= 1. However, for non-Hermitian systems,
modal selectivity falls below unity due to off-diagonal elements of
Cnm. Thus the bi-orthogonality of the eigenfunctions of a non-
Hermitian system reduces the degree of modal selectivity for
maximal coupling to a mode. This is illustrated in the analytical
analysis of a two-level non-Hermitian effective Hamiltonian
model.

Two-level effective Hamiltonian. The modes of the system are
expressed in the basis of the two modes of the closed cavity39,40

Heff ¼
ω1 0

0 ω2


 �
� i
2

Γ11 Γ12
Γ12 Γ22


 �
ð9Þ

The parameters Γnm are given by, Γnm ¼ Σ2N
c¼1V

c
nV

c
m, where the

vectors Vn represent the coupling of the closed system to the
leads (see Eq. (1))39. The parameter γ= Γ12 is the coupling
parameter between the resonances. Diagonalizing Heff gives the
eigenvalues ~ω1;2 ¼ 1

2 ðω2 þ ω1Þ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � γ2

p � i
4 Γ11 þ Γ22ð Þ, with

ϵ ¼ ω2 � ω1ð Þ � i
2 ðΓ11 � Γ22Þ. The eigenvectors |ϕn〉 of the

effective Hamiltonian Heff can be written in the basis {|ψn} of
the unperturbed eigenvectors of the Hamiltonian of the closed
system H48

jϕ1i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
p 1

�if


 �
; jϕ2i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

p if

1


 �
: ð10Þ

The mixing of the two eigenstates depends on the single
parameter, f ¼ γ=ðϵþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2 � γ2
p Þ. The degree of complexness of

the eigenfunctions is the same for both modes, q21 ¼ q22 ¼ f 2. In
the present case of the two-level Hamiltonian, q2n increases from 0
for isolated modes (γ � ϵ) to unity for f= 1, which is the case of
an exceptional point at which the eigenvalues ~ω1 and ~ω2
coalesce61.

The two-level Hamiltonian model is illustrated in Fig. 5 by the
eigenfunctions of two hybridized modes at f1= 11.260 GHz and
f2= 11.266 GHz, which are isolated from other modes but
overlap strongly with a degree of overlap between the modes of
δ12= 5.5. The eigenfunctions are normalized following the bi-

orthogonality condition,
R drϕ2nðrÞ ¼ 1. There is a strong

similarity between Re(ϕ1) and Im(ϕ2) and between Im(ϕ1) and
Re(ϕ2), as anticipated in Eq. (10). The eigenfunctions give q21 ¼
0:86 and q22 ¼ 0:4. The two values are not equal because of the
weak overlap with other modes. We observe in Fig. 5e, f that
when the incident wave is maximally coupled to the first or
second mode, the transmission spectra and the contribution of
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the two modes are very similar. The correlation between the

incident waveforms WL1 and WL2, Wy
L1WL2

��� ���=ð WL1k k WL2k kÞ is
0.98. The modal mixing of two strongly overlapping modes and
its impact on the modal selectivity are further confirmed in finite-
element simulations in Supplementary Note 2.

The decrease of Smode with increasing degree of modal mixing
is demonstrated analytically in Supplementary Note 3 within the
framework of the two-level Hamiltonian model. By expressing the
average degree of correlation between vectors WL1 and WL2 as a
function of f in the limit N � 1 and f � 1,, we find using Eq. (4)
that Smode only depends upon the modal overlap and f with

Smode � 1þ 4f 2Γ21
4Δ2

12þΓ22

h i�1
, where Δ12= ω2− ω1.

Average modal selectivity. In order to investigate the average
modal selectivity in a large number of samples, we carry out
simulations utilizing the recursive Green’s function method62 in
random quasi-1D samples connected to leads supporting N
channels to find t(ω) (see Methods). Four ensembles with modal
overlap δ equal to 0.08, 0.11, 0.64, and 1.13 are studied. The
number of channels is N= 10 for δ= 0.08, N= 16 for δ= 0.11
and 0.64, and N= 33 for diffusive samples with δ > 1. The HI
method is applied to more than one hundred samples for each
ensemble giving more than 4,000 modes.

The modal selectivity for maximal coupling Smode is shown as a
function of the modal overlap δ in Fig. 6, and compared to Sran
computed for a random incident wavefront. As expected,
maximal coupling enhances modal selectivity, but Smode falls
below the value expected in the case of isolated modes of unity,

even for localized waves. For δ= 0.08, modes overlap and
interfere giving Smode= 0.92. Modal selectivity is seen to decrease
with increasing δ as a result of greater spectral overlap with a
larger number of modes and consequent increased correlation
between their MTMs.

Discussion
We have considered the inverse problem of characterizing and
controlling the modes within the sample on the basis of the
properties of waves scattered from the sample. We have seen that
the road to the control of modes and of wave properties related to
modes runs through the MTM which can be obtained from
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spectra of the TM. We have demonstrated that a single mode can
be excited within the sample even in the case of a moderate modal
overlap. The incident vector of the MTM of unit rank couples
maximally to the mode with an enhancement by a factor N over
excitation by a random wavefront. However, as modal overlap
increases as a result of greater coupling of the modes to the
environment through the boundaries of the sample, the bi-
orthogonality of the eigenfunctions leads to increasing modal
correlation so that the degree of modal control is reduced.

This investigation of selective excitation of quasi-normal
modes in disordered system has been carried out in systems
with resonances with high quality factors. The decomposition of
the TM into MTMs is more challenging for diffusive waves when
the degree of modal overlap is high. However, as Alpeggiani et al.
have demonstrated analytically, the scattering matrix can be
reconstructed from the far-field properties of the eigenmodes for
any degree of overlap26. The modal coefficients depend on all
other contributing modes through a coupling matrix, but MTMs
are still of unit rank. Future studies will be dedicated to exploring
the characteristics of modes and the limits of selectivity in sys-
tems with strong modal overlap. This will advance a more
comprehensive understanding of the relationship between
eigenchannels, time-delay eigenstates and quasi-normal modes of
open system.

Selecting specific modes in samples in which the wave is
localized would make it possible to deliver energy to specific
regions of a sample. In the case of moderate modal overlap in
open random systems, the modes extend over the entire sample,
even in absorbing samples, and so if a single mode or a small
number of modes is selected, it would be possible to deliver
energy to the center of the sample. In contrast, when, many
modes overlap, the average profile of energy density within the
sample is determined by the diffusion equation and is con-
centrated within an absorption depth of the sample La= (Dτa)1/2,
where D is the diffusion coefficient and τa is the absorption time,
and particularly the absorption associated with exciting gain in
the medium63. As a result, light emitted from excited samples
with weakly overlapping modes, in which energy penetrates more
deeply into a random medium, is longer lived than in samples in
with stronger modal overlap. There is therefore greater oppor-
tunity for the emitted photons to stimulate emission before
escaping the sample. The lasing threshold will consequently be
lowered and narrow-line emission will be observed64. In general
the smaller the degree of modal overlap, the more it is possible to
deposit energy into a random absorbing medium. Finding the
MTM and then pumping from the front of the sample64,65 could
thereby lower the threshold of random lasers via coherent
feedback.

Modal decomposition of the TM has been demonstrated with
microwave radiation but is in principle possible in optics. Mea-
surement of spectrally resolved TM has indeed been reported
recently66. Modal selectivity could then be utilized to enhance
light-matter interactions in photonic materials67, solar cells68, or
biomedical optics69. The use of MTMs is not restricted to random
media but can also be applied to structured media such as optical
microcavities31, or photonic crystals70.

Methods
Experimental setup. The aluminum cavity has length L= 500 mm, width W=
268 mm, and height H= 8 mm and only supports a single waveguide mode in the
vertical dimension over the frequency range of the measurements. The antennas
are waveguide to coax adapters designed for the Ku band (12–18 GHz). Mea-
surements of individual elements of the TM between two antenna arrays are made
with use of electro-mechanical switches and a vector network analyzer. The
channels of the switches that are turned off are matched to a 50Ω load so that the
boundary conditions of the system do not change when different emitting source

and receiving antennas are used. The spacing between two antennas on the left and
right sides of the sample is metallic as seen in Fig. 1a.

The field inside the waveguide is detected by inserting an antenna sequentially
into a square grid of holes which are 4 mm in diameter and spaced by 8 mm
on a side. The transmission coefficient ea (x, y, ω) is measured between each source
antenna and a wire antenna inserted 0.5 mm below the bottom of the 6-mm
thick aluminum cover. The penetration depth of the antenna is small enough
that it does not distort the field profile in the waveguide. The spatial energy
distribution I(x, y) for any incoming vector v is then reconstructed from the
coherent superposition of the fields arising from each source antenna,
I(x, y)= |Σaea(x, y)va|2.

Once the decomposition into modes of the field inside the sample,
ea x; y;ωð Þ ¼ Σne

n
a x; yð ÞφnðωÞ, has been obtained, the modal spatial profile is found

from an average on incoming channels In x; yð Þ ¼ ena x; yð Þ�� ��� 	2
. We also present in

Fig. 2f the modal energy density profile for incoming vector v computed from
Wn x; yð Þ ¼ Σae

n
a x; yð Þva

�� ��2. For maximal modal coupling v=WLn/||WLn|| and for
vanishing coupling v is orthogonal to WLn.

Harmonic inversion. The modal analysis of the TM is performed using the HI
method to obtain the complex modal frequencies ωm � iΓm within a range
ωmin<ωm<ωmax . Following the algorithm described in ref. 50, we choose a Fourier-
type Krylov basis to extract the resonances. The HI method consists of solving a
generalized eigenvalue problem applied to two matrices U ð0Þ and U ð1Þ of dimension
J×J with J ¼ N′dtðωmax � ωminÞ=ð4πÞ which are created from a time signal of
length N′ and time step dt. The generalized eigenvalue problem is
U ð1ÞBn ¼ unU

ð0ÞBn , where un and Bn are the eigenvalues and the eigenvectors,
respectively. The M non-zero eigenvalues yield the M unknown complex fre-
quencies; the associated complex amplitudes can be computed from the
eigenvectors.

However, we may miss a few modes by applying HI to a single spectrum of the
TM since the modal speckle patterns are random vectors. The strength of a
particular mode could thus vanish for a single spectrum when the incoming and
outgoing channels correspond to two nodes of this mode. We therefore include
several spectra from the TM in the generalized eigenvalue problem. We first
perform an inverse Fourier transform of nine field transmission spectra randomly
chosen from the N² spectra of the TM. The time window of the inverse Fourier
transform is taken to be the time domain for which the signals are above the noise

level. We then create 9 matrices U ð0Þ
i and U ð1Þ

i from each time signals si(t). Those 9
matrices of dimensions J×J are then concatenated into two matrices of dimension

3J×3J, U ð0Þ
T and U ð1Þ

T . Because we are seeking for the same set of resonance time

signals si(t), we solve the generalized eigenvalue problem U ð1Þ
T Bn ¼ unU

ð0Þ
T Bn . We

then extract the resonances ~ωn from the significant eigenvalues un. However, this
does not directly provide the associated modal transmission coefficients tnba which
are the elements of the MTMs. These are then obtained from a simple inverse
problem by fitting in the time domain each transmission coefficient of the TM

using Eq. (4) of the main text: tba ωð Þ ¼ Σn
tnba

ω�ωnþiΓn=2
.

Recursive Green’s function simulations. The Green’s functions between points at
the input and output surfaces of a waveguide are obtained by solving the two-
dimensional wave equation ∇2ψ x; y;ωð Þ þ k20ϵ x; yð Þψ x; y;ωð Þ ¼ 0 using the
recursive Green’s function method. The random dielectric permittivity ϵðx; yÞ is
drawn from a rectangular distribution centered on unity. The field transmission
coefficients between each of the incoming modes a and outgoing modes b at
frequency ω, tba(ω), are then calculated using the projection of the Green’s function
onto the modes of the empty waveguide. Spectra of the TM is then obtained by
computing the TM for each frequency over a frequency range which is much larger
than the typical linewidth of the resonances.

Data availability
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