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a b s t r a c t

The present work is a discussion on hydrogen solubility and diffusivity in the TiAl-L10
system using first-principles calculations. First, ground-state properties of the TiAl-L10
system are presented and discussed using elastic, phonon and thermal properties. They

are compared with literature results. After having analyzed the geometry of L10 using the

space-group theory, ten potential interstitial sites for hydrogen insertion were identified

(among which the various octahedral and tetrahedral sites). After relaxation, only three

configurations remained stable, but one site was significantly more stable than the others.

The interactions between hydrogen and metal atoms are then described and analyzed by

computing different quantities such as phonon properties, charge transfers, formation

volumes and elastic dipoles. Diffusion mechanisms were then studied by analyzing the

possible displacements at the atomic scale, and the diffusion coefficient of H atoms in TiAl

was finally computed. Results how that H diffusion is strongly anisotropic.
Introduction

The development of new forming and manufacturing tech-

niques, such as Spark Plasma Sintering (SPS) [1] or additive

manufacturing (SLM, EBM) [2,3], has made it possible to use

several materials (intermetallics and ceramics) that haven't
been used for process reasons. Among the various classes of

advanced materials, there has been a renewed interest in

TiAl-based alloys. They have almost never been used, because

of manufacturing issues (i.e., poor ductility at room temper-

ature, problems in manufacturing processes). Today's new

experimental opportunities make it possible to use them

fewer machining steps. Hence the recent interest in TiAl al-

loys [1,2]. Indeed, they are lighter than Ti alloy systems and

have equivalent elastic properties. TiAl alloys have been
acet.fr.
widely considered as interesting structural materials for

blades in high temperature applications. In-depth theoretical

and experimental studies of their properties and behavior are

rare, compared to what can be found for other unary [4e6] or

binary systems [7,8].

Among failure modes, hydrogen embrittlement is a

mechanism known to cause the ruin of metallic materials by

reducing fracture toughness, increasing fatigue and leading to

corrosion cracking. The mechanisms involved in hydrogen-

induced interface weakening have always been worthy of in-

terest [9e11], and the formation of sur-abundant vacancies

(SAV) [12e14] can also explain hydrogen embrittlement in

structural materials. However, these mechanisms do not fall

directly within the scope of this paper. Before studying these

complex mechanisms of interaction between hydrogen and

the system it is important to understand the solubility of
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hydrogen in systems but also to predict its diffusion coeffi-

cient. In the literature, there are few studies on the solubility

and diffusivity of hydrogen in TiAl-L10. Three theoretical

works address H solubility [15e17]. Authors show that H

insertion should happen in octahedral sites, but they do not

indicate and describe which insertion sites. In terms of

diffusivity data, Wang [17] only studied a few migration

mechanisms but didn't compute diffusion coefficient values.

Few studies have addressed the mechanisms of hydrogen

solubilityand/ordiffusivity inbinarysystems.Experimentshave

been mostly conducted in pure systems [4,18e21]. The present

work is a complete study on hydrogen insertion and diffusion in

the TiAl system. It includes a discussion on the interactions be-

tweenhydrogenandmetallicatoms,andastudyonthediffusion

mechanisms involved. Some contradictory values of H diffu-

sivity were reported in the literature [22e25]. We will therefore

compare anddiscuss ourpredictions in the light of these results.

To that end, the article is organized as follows. Section

Methodology summarizes the method and calculations de-

tails. In section Ground state properties of the TiAl-L10
structure, the ground states properties of the TiAl-L10 sys-

tem are presented and discussed. The interactions between

hydrogen and metal atoms are then investigated in section

Hydrogen solubility. In section Hydrogen diffusivity, the

diffusion mechanisms at the atomic scale are subsequently

discussed. To conclude, hydrogen diffusion coefficients based

on explicit formulas are presented.
Methodology

First-principles calculations were performed using the Vienna

ab initio simulation package (VASP) [26]. The Perdew-Burke-

Ernzerhof (PBE [27]) exchange and correlation functional

were used. Spin polarized self-consistent Kohn-Sham equa-

tions were solved using projector augmented wave (PAW)

pseudo-potentials [28] but no magnetism was found. The

plane-wave energy cut-off was set to 600 eV, and 10� 10� 10

G-centered Monkhorst-Pack meshes [29] were used to sample

the first Brillouin zone (for 3� 3� 3 super-cell). The lattice

relaxations were introduced by using a conjugate-gradient

algorithm. Forces applied on the ions and shapes of the sys-

tem were relaxed.

The study of migration processes was conducted using

CLIMB-NEB simulations [30] on 3� 3� 3 super-cells. Transi-

tion states energieswere computedwith the same accuracy as

stable position energies.

The vibrations were computed for stable and transition

states in order to calculate attempt rates, Gxy and verify the

stability of configurations. The phonopy package was used [31]

to calculate inter-atomic force constants (IFC), vibration free

energies and phonon band structures.
Fig. 1 e Schematic representation of the TiAl-L10 structure

indicating all the interstitial positions that were tested.
Ground state properties of the TiAl-L10 structure

The TiAl-L10 structure belongs to space-group 123 (P4/mmm,

tP2). It is a tetragonal structure, where Ti atoms occupy the

Wyckoff position 1a (0, 0, 0) and Al atoms the 1d position (1/2,

1/2, 1/2). The L10 structure can be depicted as an ordered face-
centered-tetragonal structure (in the z direction), where the

two types of atoms alternate (002) atomic planes. It should be

noted that this structure is very similar to a bcc structure, but

it is not one. The closed phase, which is the TiAleB2 phase, is

not stable. The TiAl-L10 structure corresponds to a structure

deformed in one direction (here the c axis). The structure is

displayed in Fig. 1.

The DFT values of the ground-state of the TiAl-L10 struc-

ture (lattice parameters and formation energies) are reported

in Table 1 and compared to theoretical and experimental re-

sults found in the existing literature (as well as to those of the

reference phases). It can be noted that the lattice parameters

and formation energies found experimentally [32,33] are in

excellent agreement with our theoretical values and those of

the literature [15,34]. The difference between PBE values and

experimental values is small, about 0.5%. As expected, the

lattice parameters of Mehl results [34], computed using the

LDA functional, are slightly smaller than ours. But our results

are similar to those presented by Chen [15] (GGA-PBE

calculations).

The electronic band structure and density-of-states of TiAl

are plotted in Fig. 2. The system is found metallic with a high

density of states (nðεf Þx 1.8 states per primitive cell). The s

states of Al atoms hybridizewith the s and p states of Ti atoms

at low energy, in the range of ½�9;�3� eV. Near the Fermi level,

εf , interactions are between the d states of Ti atoms and the p

states of Al atoms.

The elastic properties of the TiAl-L10 and those of the

reference states (Ti-hcp and fcc-Al) were afterwards

computed using the finite displacements method as imple-

mented in VASP (computed on the primitive cell, with 20�
20� 20 k-meshes). Values found are compared to theoretical

and experimental data in Table 1. One first notes that the
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Table 1 e Theoretical and experimental lattice parameters ao and co (in �A), formation energies (Ef, in eV/atom), bulk (B, in
GPa) and Young (E, in GPa) modulus, elastic constants (Cij, in GPa) and Poisson coefficient (n).

ao co Ef B n E

Ti (hcp) this work 2.938 4.657 e 112 0.32 123

GGA [20] 2.932 4.648 e 112 e e

exp. 2.945 4.544 e 112 e e

TiAl (L10) this work 3.999 4.076 �0.407 114 0.25 171

GGA [15] 3.991 4.072 �0.407 e e e

LDA [34] 3.90 4.05 e 127 0.24 198

exp. 3.97e4.01 [32,33] 4.04e4.08 [32,33] �0.392 [32] 110 [35] e 183 [35]

Al (fcc) this work 4.04 e e 78 0.35 72

exp [36]. 4.05 e e 78 e e

C11 C33 C44 C66 C12 C23

Ti (hcp) this work 176 188 43 47 82 76

GGA [20] 173 180 44 45 82 76

exp [37]. 172 180 44 45 82 76

TiAl (L10) this work 171 172 112 64 88 85

LDA [34] 188 190 126 100 98 96

exp [35]. 186 176 101 77 72 74

[33] 187 182 109 81 75 75

Al (fcc) this work 105 e 33 e 65 e

exp [36]. 106 e 31 e 65 e
elastic constants of reference states, Cij, are reproduced with

accuracy, see Ref. [20] and references cited for Ti and Ref. [36]

for Al. Indeed, the discrepancy as low as < 5%. For the bct TiAl

structure, there are six independent constants, i.e. C11, C33,

C44, C66, C12 and C23. The values of C11 and C33 on one hand and

those of C12 and C23 on the other are close to each-other. This

can be explained by the low tetragonal nature of the system. It

can also be noted that the values of Cif in TiAl-L10 and in Ti-

hcp systems are very close. As expected, LDA simulations

lead to smaller lattice parameters, shorter inter-atomic bonds,

and therefore higher elastic constants. Our values agree well

with theoretical (GGA) values found in the literature [15].

Please refer Chen's article [15] for a discussion on elastic

constants. The Young modulus of the TiAl system is signifi-

cantly higher than that of Ti-hcp, which also explains why

this structure is interesting.

Finally, the phonon properties of TiAl-L10 were computed

using the finite displacements approach on a 3� 3� 3 super-

cell. From the forces calculated on super-cells with a

reduced number of atomic displacements, IFCs were deduced

using the phonopy package [31]. The plots of the phonon band

structure and the projected density-of-states (calculated on
Fig. 2 e Electronic band structure along high symmetry k-point

projected states on atoms. The Fermi level is set at 0eV.
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40� 40� 40 q-meshes grids) are displayed in Fig. 3. As ex-

pected, the motions in the acoustic dispersion curves are

almost entirely associated with Ti atoms. The frequencies of

Ti atoms are lower in energy than those of Al atoms, which is

consistent with the fact that Al atoms are lighter than Ti

atoms.

The dispersion curves around q ¼ G, associated with the

sound velocities, do not show any anomaly. Since the masses

of Al and Ti atoms are close, there is no gap between the op-

tical and the acoustic branches of the phononmodes in Fig. 3.

From these phonon properties, the phonon free energy, the

heat capacity (Cv) and then the zero-point energy of the H

atom inserted in the systemwere computed. For instance, the

Debye temperature, QD ¼ 559 K, was computed from the heat

capacity. This is in excellent agreement with the value found

in the literature: 584 K.
Hydrogen solubility

The insertion of H atoms inside TiAl will now be analyzed. The

present work focuses only on the solubility of H in the bulk.
s and electronic density-of-states of the TiAl-L10 structure,

Til~S == I 
Als -
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A 0 0.05 0.1 0.15 0.2 0.25 

nb of states 



Fig. 3 e Phonon band structure (vBAND) and the projected

density-of-states of TiAl-L10 of a 3� 3� 3 super-cell (54

atoms). Energies are expressed in THz. The phonon

density-of-states is projected on atoms: the blue line

corresponds to the vDOS of the Ti atom and the orange line

corresponds to the Al atom. (For interpretation of the

references to colour in this figure legend, the reader is

referred to the Web version of this article.)

Table 2 e Wyckoff positions and site symmetry.

1b 1c 2e 2f

(0, 0, 1/2) (1/2, 1/2, 0) (0, 1/2, 1/2) (0, 1/2, 0)

(1/2, 0, 1/2) (1/2, 0, 0)

2h 4i 4m 4n

(1/2, 1/2, �zh) (0, 1/2, zi) (xm, 0, 1/2) (xn, 1/2, 0)

(1/2, 1/2, zh) (1/2, 0, zi) (�xm, 0, 1/2) (�xn, 1/2, 0)

(0, 1/2, �zi) (0, xm, 1/2) (1/2, xn, 0)

(1/2, 0, �zi) (0, -xm, 1/2) (1/2, -xn, 0)

4k 4o 8r

(xk, xk, 1/2) (xo, 1/2, 1/2) (xr, xr, zr) (�xr, �xr, zr)

(�xk, -xk, 1/2) (�xo, 1/2, 1/2) (�xr, xr, zr) (xr, �xr, zr)

(�xk, xk, 1/2) (1/2, xo, 1/2) (�xr, xr, �zr) (xr, �xr, �zr)

(xk, �xk, 1/2) (1/2, �xo, 1/2) (xr, xr, �zr) (�xr, �xr, �zr)

Table 3 e Formation energy (Ef , in eV), zero-point energy
(Hv, in meV) and enthalpy of formation (Hf , in eV) of H
atom in different “stable” configurations (see text).

nb 1b 1c 2e 2f 4i
atom

e e e e zi ¼ 0.2452
Ef 16 0.389 �0.069 0.974 0.869 0.220

54 0.417 �0.078 0.934 0.861 0.232

128 0.383 ¡0.076 0.871 0.828 0.226

Hv �1 þ14 unst. unst. þ91

Hf 0.382 �0.062 e e 0.317

T iAI-LlO 
12 ,---.---.---.-------.-----. I 

10 

L -'---'---'---~ --- o 25 
Wave vector Partia l density of states 
Understanding the effects associated with interface segrega-

tion requires first and foremost to understand what is

happening inside the material. In particular, focus has been

put on the infinite dilution solubility of hydrogen; for instance,

vacancy-hydrogen interactions were not taken into consid-

eration. The different positions in the L10 structure (space-

group 123), where interstitial elements can be inserted, were

identified: 1b, 1c, 2e, 2f, 2h, 4i, 4k, 4m, 4n, 4o and 8r Wyckoff

positions. Atomic positions are given in Table 2 and most of

them are displayed in Fig. 1. The L10 structure can be viewed

as a bcc structure distorted along z. But the bcc structure only

has one tetrahedral site and one octahedral site. Here, due to

the symmetry break, it can be safely assumed that 1c and 2e

sites are two distinct octahedral sites surrounded by four Ti

atoms and two Al atoms, and that 1b and 2f sites are also two

distinct octahedral sites, surrounded by four Al atoms and two

Ti atoms. Regarding tetrahedral sites, there are three different

positions: 4n, 4m and 4i sites. It can be noted that, contrary to

what Chen [15] andWang [17] concluded, there are more than

two octahedral sites and one tetrahedral site. The insertion of

interstitial elements in the TiAl-L10 system is thus more

complex than expected.

Atomic positions and shapes of super-cells were fully

relaxed, and insertion energies (Ei) of H atoms in interstitial

sites were computed from different super-cell sizes (2� 2� 2,

3� 3� 3 and 4� 4� 4) to verify the accuracy and atomic
positions of each configuration. This energy corresponds to

the insertion energy at 0 K of H in the TiAl system. Ei is

expressed by:

Ei ¼ Eo½TiAlþH� � Eo½TiAl� � 1
2
Eo½H2� (1)

where Eo½TiAlþ H� and Eo½TiAl� are the DFT energies of the

super-cell, with and without hydrogen respectively. Eo½H2� is
the DFT energy of the H2 molecule (including spin effects).

Final position energies are given in Table 3 for stable config-

urations only. Here, the effect the size of the super-cell is low;

thus, from the small super-cells, the insertion energy is well

converged.

After having minimized the forces (and stress), five sta-

ble positions were found: 1b, 1c, 2e, 2f and 4i. In the other

configurations, hydrogen moves and relaxes in one of the

five stable positions aforementioned. Results show that one

of these configurations is nevertheless significantly lower in

energy than the others: the 1c position with an insertion

energy equal to �76 meV. It corresponds to the octahedral

site composed of four Ti atoms and two Al atoms in the

first-nearest neighboring positions. It is located on the top

face of the unit-cell (along the c direction). It should

correspond to the configuration found by Chen [15]. Our

value agrees well with the value Chen found [15] (about �90

meV). The other positions on faces (2e) and edges (1b and

2f) of the super-cell box are less stable, at least 400 meV

higher in energy than the 1c position. Wang's results [17]

indicate that O1 is more stable than O2 (0.350 eV) and T

https://doi.org/10.1016/j.ijhydene.2019.03.110


(0.209 eV). As far as position is concerned, we can say that

our results are in good agreement with Wang's.
To verify the stability of the sites, the inter-atomic con-

stants (IFC) were computed from 3� 3� 3 super-cells. When

plotting frequencies along high symmetry points of the first

Brillouin zone, two sites (2e and 2f) show two imaginary fre-

quencies associated with H atoms, as can be seen in Fig. 4.

These positions are therefore dynamically unstable and

can be identified as second-order transition states [21]. Veri-

fications were conducted in order to make sure they occupy

local maximums. These results will be helpful to reduce the

number of possible jumps in the reasoning below. Therefore,

only 1b, 1c and 4i positions are stable.

The zero-point energies (ZPE) of stable configurations,

Hv½H�, were then computed from these IFC:

Hv½H� ¼ Fv½TiAlþ H� � Fv½TiAl� � 1
2
Fv½H2� (2)

where Fv are the Helmholtz free energies computed on fine q-

mesh grids using IFC, i.e.:

Fv ¼ �kBT lnZ ¼ kBT
X3N
n¼1

Z
nnðqÞln

�
2 sinh

�
Zun;q

2kBT

��
dq (3)

un;q are the frequencies in the wave vector q and n, the modes

of the system. For the reference state, H2, 1=2Fv½H2� is equal to

148 meV (the effect of temperature on the molecular partition

function is neglected, see for instance [5,38]). Values are given

in Table 3. It can be noted that the relative stability is un-

changed and that the ZPE is low contrary to what is found in

pure metals [4,20,39].

The phonon band structures and density-of-states of sta-

ble positions are displayed in Fig. 5.

Results show that the insertion of H atoms does notmodify

the phonon properties of the system, and that H frequencies

are located at high energies (> 30 THz). From a numerical
Fig. 4 e Vibrational band structure (vBAND) of H in 2e and 2f site

(i.e., two negative frequencies). Energies are expressed in THz.
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standpoint, the solubility energy of H in TiAl (�0.062 eV,

including the ZPE) is between that of H in Ti-hcp (�0.47 eV [20])

and that of H in Al-fcc (þ0.73 eV [4,21]). In the reference states,

TieH interactions are favored compared to AleH interactions.

When a hydrogen atom occupies a 1c site, it is surrounded by

four Ti atoms, contrary to the configuration of the other sites.

At 1c sites, H atoms in TiAl-L10 have a chemical environment

similar to that of H atoms in the Ti-hcp system. The negative

and low value of hydrogen Hf is in agreement with experi-

mental observations [24,40]. This suggests that the solubility

of hydrogen is low in the TiAl-L10 system.

In order to analyze the interactions between H atoms and

the TiAl system, and to propose an explanation of the relative

stability of H in 1c sites as compared to the other sites, the

Bader charge (B ) [41], the charge transfer and the electronic

density-of-states were computed. Values are listed in Table 4.

Results show that there is a charge transfer fromAl atoms to H

atoms in all configurations. H atoms complete their s shells,

they gain almost one e�.
When a H atom is located in 1c, the charge transfer is

smaller than in the others sites. This charge transfer can also

be seen on the electronic density-of-states. The projected

density-of-states on atoms of the TiAl-L10 structure for all

stable configurations are displayed in Fig. 6. There is a strong

similarity between eDOS if H is located either in a 1b or a 4i

site: presence of a low energy peak (located around �9 eV)

associated with the s shells of H, the p shells of Al and the s

shells of Ti. Moreover, a hybridization can be noticed between

H and Al states, in the range of ½�7;�6� eV, for 4i and 1c sites,

but not for the 1b site. These results clarify the order of sta-

bility of these 3 sites.

The plot of the charge transfer Dr, Fig. 7, defined by:

Dr ¼ r½TiAlþ H� � r½TiAl� � r½H� (4)

shows that the bonds are located between H atoms and Al

atoms in first nearest-neighboring position as suggested by
s. In these cases, results show two imaginary frequencies
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Fig. 5 e vBAND and density-of-states of H in 1b, 1c and 4i sites. Energies are expressed in THz.

Table 4 e Calculated values of the Bader charge (B, in e�) of H atom, of Al atoms (in first-nearest neighboring position of the
H atom) and of Ti atoms (in 1NN of the H atom) atoms, the volume of formation (Uf , in �A3), the volume difference between
the empty and filled volume of Voronoı̈ (dV v, in �A3) and the elastic dipoles (Pij, in eV). The volume of Voronoı̈ of the empty
sites is equal to 8.11, 8.11 and 8.58 �A3 for 1b, 1c and 4i respectively. The number of electrons of each specie used in the
pseudo-potential (labeled y), and the Bader charge of Al and Ti in TiAl-L10 (labeled ‡) are also given.

1b 1c 4i

B H (1y) 2.1 1.9 2.0

Ale1NN (3y, 3.7z) 3.4 3.3 3.3

Tie1NN (10y, 9.3z) 9.3 9.3 9.3

Uf 1.6 1.7 3.5

dV v 0.24 0.31 0.80

Pij
2
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Fig. 6 e Projected density-of-states on atoms of the TiAl-L10 structure with a H atom in sites 1c, 1b and 4i.
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the Bader analysis and electronic density-of-states. It can be

noted that in the 1c configuration, the H atom attracts more

strongly the electrons from its 1NN Ti and 1NN Al atoms, and

form bonds with surrounding atoms. This is not the case in

the other sites.

Both the volume of formation (Uf ) and the volume of Vor-

onoı̈ were computed. Uf is given by:

Uf ¼ V½TiAlþH� � V½TiAl� (5)
where V½Y� is the volume of the super-cell with and without

the H atom, and dV v:

dV v ¼ V ½TiAlþH;V� �V ½TiAl;V� (6)

where V ½Y;V� are the volumes of Voronoı̈ of the system Y

calculated with and without hydrogen, computed with the

same lattice parameters V. They characterize respectively the

global and local steric effects. Both Ufx 1 �A3 and dV v are

relatively small. When H atoms are inserted in TiAl, the steric



Fig. 7 e Contourmaps of the charge transfer, Dr, when sites

are filled: from top to bottom, H in 1b ((110) direction), 1c

((1e10) direction) and 4i ((100) direction) sites. Pink circles

represent Al atoms, brown circles Ti atoms and black

circles the H atom. (For interpretation of the references to

colour in this figure legend, the reader is referred to the

Web version of this article.)

Fig. 8 e Representation of seven H-atom jumps between

1b, 1c and 4i sites: red arrows are “unacceptable” jumps

(see text) and black arrows are “acceptable” jumps. (For

interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this

article.)
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effect on the system is only local. Both volumes indicate that

hydrogen insertion only induces a local (but low) strain on the

system.

Finally, we computed the elastic dipole tensors, Pij, on 3�
3� 3 super-cells with the same method used in Ref. [39] (the

convention is here “þ” for the system),

Pij ¼ Vo$sij (7)

Due to the symmetry of the system, diagonal compo-

nents are not equivalent in all directions, just as C atoms in
iron [42,43]. Components are smallest (< 1.2eV) in the case

of 1c sites, elastic effects are thus minimal. It can be noted

that both the steric effects and the electronic interactions

have an influence on position stability. As a result, the

insertion of H atoms only has a small and local impact on

the TiAl system.
Hydrogen diffusivity

The diffusion mechanism will now be discussed. The main

difficulty is to describe how H atoms can diffuse in an

energy landscape such as the one generated by the TiAl

crystal. Wang [17] studied the diffusion of H in TiAl. As

explained previously, it is difficult to determine the exact

position from his simulations. However, he studied two

migration energies: between O1 and O2 sites, which is equal

to about 0.91 eV, and between O1 and T sites, about 0.21 eV.

However, as stated below, several jumps are possible.

Again, with no additional specifications, it is difficult to

identify which jumps were studied.

In the discussion that follows, we only studied jumps be-

tween stable sites, i.e. between 1b, 1c and 4i sites. Eight paths

were therefore examined, see Fig. 8 (the 1c-1c jump via 2f, in

the (001) plan, is not represented).

NEB calculations [30] were conducted on 3� 3� 3 super-

cells so as to find the transition states. Five intermediate po-

sitions were used for each jump. After having identified a

https://doi.org/10.1016/j.ijhydene.2019.03.110


transition state, its IFC was systematically computed in order

to verify it and to calculate its attempt rate Gxy. The energy

landscapes of the eight paths are depicted in Fig. 9.

Values are summarized in Table 5.

Firstly, results indicate that only three paths can be

considered as acceptable jumps; indeed, some jumps are

impossible due to the energy landscape of the TiAl-L10 struc-

ture. In the case of a direct jump between two first-nearest-

neighboring 4i sites for instance, there is an intermediate

stable position (1b). When a H atom in 4i wants to go to

another 4i site through a 2e or a 2f site, NEB simulations show
Fig. 9 e Eight NEB calculations for H
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1b-1b via2e -e-

> 0.2 
.,!c. 
>, 

e 
Q) 
C 
w 0.0 

lb lb 

-0.2 
0 0.5 1.5 2 2.5 3 3.5 

1.2 

1.0 
2f 

> 0.8 
.,!c. 
>, 0.6 Cl 

cii 
C 
w 0.4 

0.2 le 
1c-1 cvia2f -e-

0.0 
0 0.5 1.5 2 2.5 

path [in A] 
0.6 

> 0.4 
.,!c. 
>, 

e 4i 
Q) 
C 
w 0.2 

le 1c-4i-e-
0.0 

0 0.5 1.5 

0.8 

2f 

0.6 

> 
.,!c. 
>, 0.4 e 
Q) 
C 
w 

0.2 

4i 4i 
4i-4i via 21 -e-

0.0 
0 0.5 1.5 2 

path [in A] 
that 2e and 2f sites are the transition states. As stated previ-

ously however, these sites have two imaginary frequencies

(see Fig. 4), indicating that they are not first-order transition

states. In the following, we thus ignore these possibilities.

From phonon calculations, transition states were character-

ized so as to know whether they are of first-order or not. The

transition state of 1b-1c is found ta be a second-order transi-

tion state. In fine, only two acceptable jumps remain: the direct

jump between 1c-4i sites and the one between 1b-4i sites.

Upon leaving a 1c site, H atoms must go through a 4i site,

which is significantly higher in energy (of at least 320 meV).
atoms along different paths.
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Table 5 e Migration energies (Em
x�y, in eV) of jumps from x

to y. Values marked with the y symbol are second-order
transition states.Written in brackets is the position of the
transition state, the numbers in bold correspond to the
accepted jumps.

y=x 1b 1c 4i

1b e 1.149y 0.498

1c 0.654y 0.963y [2f] 0.184

4i 0.314 0.494 0.732y [2e]/0.645y [2f]

Fig. 10 e Diffusion coefficients of H atoms in TiAl, Dx, Dz

and the ratio Dz=Dx (in log-scale), were plotted as a function

of 1/T. Experimental data, from Refs. [22e25], were added.

Table 6eActivation energies (Ea in eV) and Do (in 10�6 m2/
s) obtained from an Arrhenius fit.

Direction Ea Do

x, y 0.537 1.58

z 0.811 3.04
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For some (unacceptable) jumps, results indicate a high

migration energy ranging from [0.96e1.14] eV. One of these

values could correspond to the value found by Wang [17],

which is 0.9 eV.

The quantum tunneling effects, as described by different

authors in the literature [44,45], were neglected here. The

tunneling effect is a correction to the classical diffusivity

which has to be taken into account at low temperature (below

ambient temperature). The study of hydrogen diffusion pre-

sented here is based on the theory commonly known as the

semi-classical transition state theory. Moreover, the H diffu-

sion is considered as a regular randomwalk, i.e., uncorrelated

with respect to H jumps. The Eyring transition state theory [46]

and the multi-states theory proposed by Landman [47,48] can

now be used to examine diffusion coefficients. According to

these theories, only first-order transition states were taken

into consideration. Second-order transition states like 2e and

2f were left aside, the jump rates of these jumps are arguably

negligible [21].

The characteristic quantity used to quantify the prob-

ability of leaving a site is the jump rate, G. It is computed

by using the following equation:

G½T� ¼ kBT
h

Z TS

Z EI
e�DEm=kBT (8)

where DEm corresponds to the (electronic) transition migra-

tion energy. Z TS is the (vibration) partition function for the

transition state and Z EI is the partition function for the initial

position. Z is expressed by eq. (3).

The diffusion coefficient (see Appendix A) can thus be

expressed using Gbi, Gci, Gib and Gic, where Gxy is the jump rate

of a jump from an x site to a y site:

Dx;y½T� ¼ a2
o

GbiGciðGib þ GicÞ
4GbiGci þ GciGib þ GbiGic

(9)

Dz½T� ¼ 2c2o
GbiGciGicGib

ð4GbiGci þ GciGib þ GbiGicÞ$ðGib þ GicÞ (10)

where ao and co are the lattice parameters of the system. By

combining eqs. (9) and (10), the ratio Dz=Dx is given by:

Dz

Dx
½T� ¼ 2,

�
co
ao

�2

$
GibGic

ðGib þ GicÞ2
(11)

Using DFT values in eqs. (9) and (10), diffusion coefficients

Dx and Dzwere plotted as a function of temperature. They are

displayed in Fig. 10.
Diffusion coefficients were fitted with an Arrhenius law

(D½T� ¼ Doexpð� Ea=kBTÞ), to obtain Do and Ea, the activation

energies. Parameters are reported in Table 6.

It can be noticed that, the diffusion in TiAl is strongly

anisotropic, many orders of magnitude faster in the x and y

planes than in the z direction. From a numerical standpoint, H

atoms diffuse slower in TiAl than in many other metals [21].

For instance, these diffusion values are lower than those of H

diffusion in pure polycrystalline titanium reported in the

literature [20]. To reduce or enhance hydrogen diffusivity in

metals, textured materials could be used.

Comparing these results to literature data is somewhat

delicate. Five distinct values of H diffusivity in TiAlwere found

in the literature, always measured at room temperature. The

values vary between ½3,10�10;6,10�16�m2=s [22e25]. The onlyH

diffusivity value found in the literature that matches the

result obtained here is the one found by Chen [25], see Fig. 10,

which corresponds to the slowest H diffusivity measured

experimentally. In the present work, the ideal diffusion coef-

ficient was computed from a bulk of g-TiAl. However, the

inherently complex microstructure of TiAl alloys (lamellar

structure), the composition (many solute atoms, Nb, Cr, etc.)

or the stoichiometry of Al and Ti atoms can vary from one

experimental work to another. This could explain the impor-

tant differences between all the values. For instance short-

circuits of interfaces (grain boundaries, g-TiAl/a2eTi3 Al in-

terfaces) could enhance H diffusivity in TiAl materials. All of

these parameters could have enough impact to explain the

discrepancy in the results obtained.
Conclusion

This work presents a complete study on the insertion and

diffusion of hydrogen in the intermetallic TiAl-L10 system. It
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was first demonstrated that hydrogen atoms in TiAl-L10 prefer

occupy 1c octahedral sites. 1b and 4i sites were then identified

as two additional stable configurations admitted by the sys-

tem. However, their insertion energies are significantly higher

than that of 1c sites. Based on electronic properties, charge

transfers and elastic dipoles, it was concluded that 1c sites are

more stable than the others. Distortion effects, both local

(volumes of Voronoı̈) and long-ranged (volumes of formation

and elastic dipoles) were quantified. The competition between

elastic and electronic effects indicate a strong interaction

between hydrogen and the metal.

Upon studying the diffusion of interstitial species, different

paths were meticulously analyzed. Nevertheless, the explicit

expressions of diffusivity given here take into account the

different jumps. Results show that, in the TiAl-L10 system,

hydrogen diffusion is slow and highly anisotropic.
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Appendix A. Multi-states model

In the case treated here, there are three stable sites (1b, 1c and

4i), but there is a limited number of possible jumps, D is

expressed by (following Landman's method [47,48]):

Dx;y½T� ¼ a2
o

GbiGciðGib þ GicÞ
4GbiGci þ GciGib þ GbiGic

(A.1)

Dz½T� ¼ 2c2o
GbiGciGicGib

ð4GbiGci þ GciGib þ GbiGicÞ$ðGib þ GicÞ (A.2)

This formula was obtained by first identifying the number

of non-equivalent positions in the primitive cell. In this case,

for H in the L10 system, there are six non-equivalent sites,

labeled1b, 1c and 4ij, where j2½1;4�. Then, the different

possible jumps fromeach siteswere identified. Two quantities

are thus required: the Laplace transform of the waiting time

density matrix, jðuÞ, and the Fourier transform matrix of the

displacements of hydrogen in TiAl, pðkÞ. jðuÞ is given by:

(A.3)

lb le 4i1 4i2 4i3 4i4 

lb 0 0 2[;b 2[;b 2[;b 2[;b 
K; K; K; K; 

le 0 0 2Cc 2fic 2Cc 2Cc 
K; K; K; K; 

1/J(u) = 4i1 
2[b; 2rci 0 0 0 0 Y. Kc 

4i2 
2[b; 2rci 0 0 0 0 Y. Kc 

4i3 
2[b; 2rci 0 0 0 0 Y. Kc 

4i4 
2[b; 2rci 0 0 0 0 Y. Kc 
where Kb ¼ 8Gbi þ u, Kc ¼ 8Gci þ u and Ki ¼ 2Gib þ 2Gic þ u. Gxy is

the probability of escape from internal state x to another state y.

pðkÞ is given by:

(A.4)

Where

(A.5)

with lx ¼ lx ¼ ao and lz ¼ co. In order to derive Dx;y and Dz, the

procedure suggested by Landmann [48] was then used.
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