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ABSTRACT

The oxalate route offers a controlled approach to synthesize pure Ba;_,Sr,TiO3 (BST) (0 < x < 1) nanoparti-
cles (¢~ 150 nm in diameter). Reduced BST dense nanoceramics were obtained by spark plasma sintering
(SPS) and then annealed for a short time to reach colossal permittivity (€', = 10%) with low dielectric losses
(tan 6=0.03) at 1 kHz and 300 K. The effects of Ba-Sr substitution on structural, microstructural and elec-
trical properties were analyzed. Comprehensive analysis of the electrical properties indicates that polaron
hopping, mediated by Ti3* ions and oxygen vacancies is the main contributing mechanism to colossal per-
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mittivity in Ba-rich BST compounds. Substitution of Ba by Sr reduced the contribution of polaron hopping
and led to a decrease of real and imaginary parts of permittivity, while preserving interfacial polariza-
tion and yielding better temperature stability. The lowest temperature coefficient of capacitance, or TCC
(variation of capacitance between 310K and 450K) value, i.e., 44 ppm K-, is obtained for SrTiOs.

1. Introduction

Barium strontium titanate (Ba;_4SrxTiO3, BST) is an intensively
studied and well-known solid solution for various electronic appli-
cations such as capacitors [1,2], positive temperature coefficient
resistors [3], phase shifters [4], and gas sensors [5]. BST compounds
are synthesized through a variety of methods like coprecipitation
[6,7], sol-gel synthesis [8], hydrothermal [9], and solid-state [10]
reactions. When conventionally sintered, BST bulk ceramics show
high relative permittivity with low losses (¢/; = 103 and tan § =0.03)
and a variable Curie temperature [11,12].

Since the turn of the century, there has been renewed interest in
compounds with colossal effective permittivity elicited by manipu-
lation of extrinsic polarization mechanisms [13-17]. Then, in order
to better understand the origin of colossal permittivity, a number
of researchers have analyzed electrical behavior of these materials.
Recently, fast firing processes, such as spark plasma sintering (SPS)
or microwave sintering, were employed to achieve colossal permit-
tivity in BT based ceramics [6,18-20]. In these fast-fired materials,
mixed valence state of the cations due to extrinsic defects, localized
in the vicinity of grain boundaries, was proposed as a mechanism
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at the origin of colossal permittivity [21,22]. In addition, it was
shown that semi-conductive grains are separated by thin insulat-
ing grain boundaries, leading to internal barrier layer effect (IBLC)
for colossal permittivity in BT [21-23]. The properties of BT can be
easily tuned by the substitution of Ba2* by Sr2* cations. The aim
of this paper is to understand the effect of Ba-Sr substitution on
the dielectric properties of a series of Ba;_xSrxTiO3 (0 <x < 1) solid
solutions.

2. Experimental procedure
2.1. Powder synthesis and spark plasma sintering

BST (0 <x<1) nanopowders were synthesized by an oxalate
coprecipitation route. The procedure is described in a previous
paper [24] and the same procedure was used in this work. Briefly,
BaCl,-2H,0 (Prolabo), SrCl,-6H,0 (Aldrich) and lab-made TiOCl,
solution (15wt.% of Ti) were used as precursors. The precursors
were weighed in appropriate proportions to control the powder
stoichiometry, dissolved in water and added to an ethanolic oxalic
acid solution. The solution was stirred and aged for 5 h, then cen-
trifuged and dried overnight at 80°C. The oxide powders were
obtained after calcination at 850 °C for 4 h in static air.

To densify the BST nanopowders, SPS was carried out using a
Dr. Sinter 2080 device from Sumitomo Coal Mining (Fuji Electronic



Industrial, Saitama, Japan). The same processing parameters were
used for all the compositions. The sintering procedure has been
optimized in previous work [24]. Briefly, 0.5¢g of each batch was
loaded in an 8-mm-inner-diameter graphite die. A sheet of graphite
paper was inserted between the punch and the powder as well as
between the die and the powder for easy removal of the pellet after
sintering. Powders were sintered in vacuum (residual cell pressure
<10Pa). A pulse pattern of twelve current pulse periods followed by
two periods of zero current was used. A heating rate of 25°C/min
was used from 600 to 1150°C, where a 3-min dwell time at the
sintering temperature was applied. An optical pyrometer focused
on a small hole at the surface of the die was used to measure
and monitor the temperature. A uniaxial pressure of 75 MPa was
applied for 2 min before reaching the dwell temperature. After the
3-min dwell, the electric current was switched off and the pres-
sure was released. In situ dilatometry-based shrinkage curves for
the different powders were recorded during the sintering process.
The as-sintered pellets showed a thin carbon layer on the surface
due to graphite contamination from the graphite sheets. This layer
was removed by polishing the surface. In a previous work [18], the
presence of residual carbon due to SPS processing technique was
determined through the spectrometric quantification of CO, and
appeared to be very low with a concentration of 93 ppm. Samples
appeared dark blue, consistent with the presence of Ti3* caused by
the reducing atmosphere used during SPS (low vacuum and carbon
environment) as previously demonstrated using X-ray photoelec-
tron spectroscopy (XPS) [25]. SPS pellets were finally annealed for
15 min at 850°C in an oxidizing atmosphere in an attempt to par-
tially restore the oxygen stoichiometry.

2.2. Material characterization

The chemical composition of the different oxide powders was
determined using inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) with a JY 2000 device (Horiba Jobin Yvon,
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Kyoto, Japan). The morphology of the powders was observed with
a field emission gun scanning electron microscope (FEG-SEM, ]SM
6700F, JEOL, Tokyo, Japan) and the particle size was determined
by Image] software [26]. The grain boundaries thicknesses were
observed with a high resolution transmission electron micro-
scope (HRTEM, JEM 2100F, JEOL, Tokyo, Japan). The crystalline
structure was investigated by X-ray diffraction analysis using
a D4 Endeavor X-ray diffractometer (CuKa; =0.154056 nm and
CuKa; =0.154044 nm; Bruker AXS, Karlsruhe, Germany) from 20°
to 80° (2-theta). The density of the pellets was determined by the
Archimedes method using an AR] 220-4M balance (KERN, Murnau-
Westried, Germany). Prior to electrical measurements, the ceramic
disks were coated with thin gold electrodes (thickness ~30nm)
by sputtering (108 Auto, Cressington Scientific Instruments, Wat-
ford, U.K.). The relative permittivity and the dielectric losses were
obtained from impedance measurements using a 4294A Precision
Impedance Analyzer (Agilent Technologies, Palo Alto, CA) in the
range of 40-100 kHz at room temperature and an applied ac voltage
of 1V. For temperature dependence of the dielectric properties, the
electroded samples were placed in a closed cycle cryogenic work-
station (CTI 22, Cryo Industries of America, Manchester, NH) and
measurements were taken as a function of temperature (40-300K)
using an Agilent 4284A LCR meter.

3. Results and discussion
3.1. Microstructure, X-ray diffraction and density

Fig. 1 shows the FEG-SEM images of the starting powders. The
morphology of the particles is roughly homogeneous and trans-
forms from a spherical shape for BaTiO3 (BT) to a cubic shape for
pure SrTiO3 (ST). The average particle size decreases as the stron-
tium content increases, from 150 +40 nm for BT to 80 4+ 20 nm for
ST.

Bao.eSro.4TiO3

Fig. 1. FEG-SEM micrographs of Ba;_,SryTiO3 powders.



Table 1

Grain size of the powders and ceramics, structure, lattice parameters and density of the Ba;_,SryTiO3_s samples.

Composition Particle size Ceramic grain Powder Ceramic Lattice parameters (A) Density
(nm) size (nm) structure structure (densification%)

BaTiOs_s 150 240 T+C T+C a=3.9938+0.0003 5.90(98.0)
¢=4.0295+0.0003

BagSro2TiO5_5 130 180 T+C T+C a=3.9771+0.0005 5.79(99.2)
€=3.9883 +0.0005

BageSro4TiOs_5 120 130 C C a=3.9700 +0.0002 5.60(98.9)

Bag4Sro6TiO5_5 110 115 C C a=3.9422 +0.0005 5.44(99.4)

Bag,SrosTiO5_5 95 120 C C a=3.9220 +0.0005 5.25(99.3)

SrTiOs_s 80 500 C C a=3.9040 +0.0003 5.06(99.0)

T : tetragonal, C : cubic.

Fig. 2. FEG-SEM micrographs of Ba;_SryTiO3_s fractured dense ceramics.

All the sintered ceramics had density values above 98% of theo-
retical (Table 1), even after a very short (3 min) sintering treatment
performed at low temperature (1150°C). The FEG-SEM images
obtained from fractured surfaces of the pellets confirm little to
minimal porosity as well as homogeneous microstructure (Fig. 2).

The average grain sizes were calculated using the linear inter-
cept method (ASTM E112). They fall between 2404 50 nm for BT
to 115+ 15 nm for Bag 4Sr TiO3_s and increase to 500 + 50 nm for
ST (Table 1), indicating that moderate grain growth has occurred
during sintering. These data point out that the grain growth from
powder to dense ceramic is higher for ST. X-ray diffraction patterns
of Ba;_4SrxTiO3_g samples are shown in Fig. 3.

Each composition crystallizes in the perovskite structure. No
secondary phase is formed. However, a mixture of cubic and tetrag-
onal perovskite phases is evidenced, essentially by the presence
of the (002) and (200) peaks, for the barium-rich compounds
(x <0.2), while only the cubic phase is observed for x > 0.4. In addi-
tion, a shift of Bragg’s peaks to higher 260 angle is observed as Ba
is substituted by Sr, indicating a decrease of the cell parameters.
Calculated ceramics lattice parameters are reported in Table 1.
The decrease of the unit cell as the strontium content increases
can be explained by the smaller crystal radius of Shannon for Sr2*

cations (158 pm) compared to BaZ* (175 pm) [27]. The decrease of
the tetragonal distortion predicted by the Goldschmidt’s factor as
Sr concentration increases can be quantify. Indeed, by calculating
c/a, we observe a decrease of this ratio from 1.009 for BaTiO3; to
1.002 for BaggSrg,TiOs3. The structure is then cubic for further Sr
contents.

3.2. Dielectric properties

The dielectric response of the BST (0 < x < 1) nanoceramics were
investigated in the frequency range of 40-100 kHz (Fig. 4).

As can be seen in Fig. 4, colossal permittivity up to 10° with
low dielectric losses (tan § <0.05) was achieved for most of the
compositions (0 < x < 0.6). The values for €' and tan § measured at
1kHz and 300K are reported in Table 2.

It was observed that relative permittivity and dielectric losses of
BST compounds gradually decreased as Sr content increased while
still maintaining colossal permittivity up to 10% with low dielec-
tric losses (tan § =0.03) for x=0.8. It is worth noticing that the
BST nanoceramics samples in this work exhibit much higher per-
mittivity compared to the results in the open literature [28-33].
For instance, Fu et al. [28] prepared the solid solution BaySrq_,TiO3
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Fig. 3. XRD patterns of Ba;_,Sr,TiO3 (0 <x < 1) materials (a) powders and (b) ceram-
ics; inset: 44-60° 20 angle enlargement.

ceramics through solid-state reaction followed by conventional
sintering. They reported permittivity values, at room temperature
and for 1kHz, ranging between 1500-3000 for increasing barium
content. The combination of mechanosynthesis and spark plasma
sintering has been used for the first time for the Ba-Sr-Ti-O sys-
tem by Hungria et al. [31]. While the ceramics exhibited nanosize
grains, low permittivity values were observed, 1400 for BaTiO3 and
200 for SrTiO3 respectively. Gao et al. [33] used an organosol syn-
thesis to prepare BaggSrg4TiO3 nanoparticles with average grain
size of 35 nm. The authors used spark plasma sintering to prepare
nanoceramics showing a maximum permittivity value of 3000.

These examples show the importance of each step of the ceramic
process which were controlled in our work to obtain colossal per-
mittivity values in the BST ceramics: oxalate coprecipitation to
synthesize homogeneous powder of controlled morphology, size
and stoichiometry, SPS sintering to obtain ceramics with nanosize
grains and reduced titanium cations and a short annealing treat-
ment to retain oxygen sub-stoichiometric compounds.

The permittivity and the losses of BST compounds as a function
of temperature (300-450K) are shown in Fig. 5. Colossal permit-
tivity is observed over a wide temperature range (300-450K).
The ferroelectric-paraelectric transition, corresponding to the
tetragonal-cubic phase transition is seen only for pure BT ceram-
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of frequency for the Ba;_,SrxTiO3_s nanoceramics at 300 K.

Table 2
Dielectric properties of the Ba;_Sr,TiO3_s hanoceramics.

Composition € (1kHz,300K)  tané(1kHz,300K)  TCC(103K-1)

BaTiO5_g 729000 0.05 1.9
BapsSro2TiOs5 388000 0.04 15
BaggSro4TiOs.s 174000 0.03 3.6
Bap4SrosTiOs.s 115000 0.03 33
Bap>SrosTiOss 30800 0.03 0.5
SITiO5_s 6300 0.01 0.04

ics by a peak of €; occurring at the same temperature (Tc =396 K)
whatever the frequency until 100 kHz.

The temperature coefficient of capacitance, TCC (variation of
capacitance between 310-450K), is determined according to Eq.

(1):

1 C(max) — C(min)

TCC = EE10K) * 450K —310K

(1)

The lowest value of TCC, 44 ppmK~!, observed for the com-
position SrTiO3_g (Table 2), is lower than the values reported for
temperature stable capacitors, i.e., in the BaTiO3-Bi(Zny;Ti; )03~
BiScO3 system [6]. In the following sections, we will discuss about
more details for the possible mechanisms, explaining the tem-
perature stable dielectric properties of BST compounds by using
corresponding physical models such as Debye relaxation, universal
dielectric response (UDR), and hopping polarization models.
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3.3. Polarization mechanisms in BST compounds

To investigate the relaxation phenomena observed in BST
nanoceramics, the dielectric properties of each composition were
measured as a function of temperature (40-300K) at different fre-
quencies. Fig. 6 shows the dielectric data for one Ba-rich (x=0.2)
and one Sr-rich composition (x=0.8), respectively, which exhibit
distinctly different dielectric relaxation behavior.

Debye-like dielectric relaxations were observed for both com-
positions, and the maximum of €/ shifts to higher temperature
as frequency increases, indicating frequency dependent relaxation
process may exist in the compounds. In the Debye model, the relax-
ation frequency and the activation energy can be extracted by using
the equation below:

V="V exp (k%) (2)
where vg, kg, and E, are the pre-exponential factor, the Boltzmann
constant, and the activation energy for relaxation, respectively. As
such, the relaxation temperatures at different frequencies were
extracted from the maximum of € for each of the BST compounds
and plotted in the Arrhenius form to determine the activation
energy

It can be clearly seen in Fig. 7 that BaggSrg,TiO5_s shows two
different slopes corresponding to two activation energies, while
distinct slope change was not observed for Bag,SrggTiO3_s. This

result indicates that, similar to BT [22], BST compounds with
high barium content might have two different polarization mech-
anisms, possibly hopping polarization combined with interfacial
space charge polarization, while Sr-rich BST might have only one
polarization mechanism.

It is also well known that Jonscher’s UDR model can be applied
to explain dielectric polarization in colossal permittivity materials,
which can be described by the following equations [34],

. tan (%’)fs‘%ro
€= —

fer=AMf (3)

where o and s represent the temperature dependent constants, €g
and f are the permittivity of free space and experimental frequency
(f = w/27), respectively,and A(T)is equal to { tan (sm/2) o € }.
Thus, one can extract the value of the exponent s by plotting
log (€'t x f) vs. log (f). It should be mentioned here that a s value
as closer to 1 implies that the polarization charges are more highly
localized [35].

Fig. 8 shows the real and imaginary parts of dielectric per-
mittivity for BST (x=0.2) and BST (x=0.8) samples as a function
of frequency (40-100kHz) at different temperatures (40-300K).
Dielectric relaxation has occurred at each temperature, given that
distinct relaxation peaks of imaginary part of permittivity were
observed for the compositions. Furthermore, the relaxation peaks
shift to lower frequencies as temperature decreases, which indi-
cates that thermally activated relaxation phenomena is involved in
the material.

Fig. 9 presents (€¢’; x f) vs. f plots in log-log scales for the same
samples. For the Ba-rich BST (x=0.2) compound, high temperature
slope is close to 1, which is different from the value of the low
temperature slope, indicating that dielectric polarization is more
localized at high temperature region.

As we mentioned in the previous work [22], the slope change
in log(€'r x f) vs. log(f) plot as temperature decreases is asso-
ciated with the hopping polarization which becomes inactive at
lower temperatures due to insufficient energy to overcome energy
barrier for polarization. However, for the Sr-rich BST compound
(x=0.8), no slope change was observed for the different tempera-
ture regions. Thus, one can expect that hopping polarization might
not be present in Sr-rich BST compounds.

To further investigate this possibility, it is important to recall
the thermally activated hopping polaron (THP) model [36], where
the maximum of €] is proportional to the number of polarons par-
ticipating in hopping polarization by,

p Np?

€rmax = 3kgT (4)
E

N = Ngp exp (—ﬁ) (5)

N and p represent the number of hopping polarons and the hop-
ping dipole moment respectively. Ny and E, are the pre-exponential
factor and the activation energy related with relaxation of hopping
dipolesrespectively. By substituting Eq. (4) into Eq. (3), equation for
the thermally activated hopping polaron model can be obtained as,

2
Tenes = (o) exp (-4 (6)
Thus, activation energy for hopping polarization can be calcu-
lated from the In(€”max x T) vs. 1/T plot.
Fig. 10 shows In(€"max x T) vs. 1/T plots for BST compounds
(x=0.2 and 0.8). Activation energies are extracted from the fitting
results. It should be noted that, if hopping polarization is present in
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colossal permittivity material, activation energy of hopping polar-
ization at high temperature region is comparable to the difference
of activation energies at high and low temperatures obtained by
using Debye model (Fig. 7) [22].

This statement seems to hold true for the case of Ba-rich BST
sample (x=0.2), where the activation energy difference from Debye

model (0.081 eV) is well comparable with the activation energy for
hopping polarization in the high temperature region (0.036eV).
However, for Sr-rich BST (x=0.8), the value of In(€"max xT)
remains constant at different temperatures, indicating that no
thermally activated hopping process is present in Sr-rich BST
compounds (Fig. 7). Thus, one can conclude that the colossal per-
mittivity in Ba-rich BST compounds is due to hopping polarization
combined with interfacial polarization, while only interfacial polar-
ization is responsible for Sr-rich BST compounds.

Table 3 summarizes calculated activation energy and extracted
s values for BST (x=0.2 and 0.8) compounds by using Debye, UDR,
and THP models, respectively. The two BST compounds, Sr-rich and
Ba-rich, were again selected for the analysis since those compounds
exhibit most distinct dielectric properties in terms of polarization
mechanisms. As observed by De Souza et al. [37,38], BaTiO3 exhibits
lower oxygen diffusion and surface exchange coefficients {Dg (5,
850°C)=1.2x 10" cm?s~! and kf, (850°C)=3.8 x10~8cms~!}
than SITiO; {Do'(8, 850°C)=2.0x10""Tcm?s~! and K
(850°C)=7.5x10"1cms~1}. Therefore, the faster diffusion
of oxygen during the post annealing treatment in BST compounds,
compared to BT, leads to an increase of the Ti3* to Ti** oxidation
rate, which results in the decrease of hopping dipole concentration
in the material. Furthermore, it is well known that ferroelectricity
of BST decreases as Sr content increases, and transformation from
the ferroelectric phase to the paraelectric phase occurs when the
Sr content increases above 0.3 [39,40]. Nanoceramics displaying
colossal permittivity were achieved in BST materials, made of
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Fig. 8. Variation of the real part (a) and (c) and the imaginary part (b) and (d) of permittivity as a function of frequency and at different temperatures for BaggSro,TiO3_s and

BagSrosTiO3_s nanoceramics.

Table 3

Calculated activation energies and s values for BST compounds using three different analytical models.

BaogSro2TiO3_s

BaO_z Srg_gTi03_5

Debye model(Ex, eV) Low temp
High temp
UDR model (s value) Low temp
High temp
THP model (Ea eV) Low temp
High temp

0.029 0.165
0.110

0.80 0.98
0.99 0.98
0.015 ~0
0.036

semiconducting grains with insulating grain boundaries. The
use of ultrafine chemically homogeneous powders could lead
to the fabrication of very thin dielectric films opening routes to
the miniaturization and development of integrated systems. The
temperature stability of the barium strontium system is observed
without further dopants, which represents a great advantage for
industrial applications.

The use of BST as a dielectric material provides a simple way to
modulate the semi-conductive behavior of the grains and prepare
capacitors with controlled colossal permittivity.

4. Conclusion

The simple coprecipitation process allows to prepare a vari-
ety of pure barium strontium titanate compounds of controlled

cation stoichiometry. Synthesized nanopowders exhibit a per-
ovskite structure based on a cubic lattice for SrTiO3 and a mixture
of cubic and tetragonal lattices with the increase of Ba-content. SPS
sintering leads to dense nanostructured reduced ceramics which
exhibit colossal permittivity values with low associated losses. The
electrical properties were analyzed in detail using Debye, UDR and
hopping polarons models. In Ba rich compounds, the properties
are attributed to polarization mechanisms at the grain boundary
interfaces and to hopping. The decrease of the permittivity value
as the Sr-content increases, is due to a decrease of the hopping
contribution. The composition of Bag gSrg 4TiO3_s can be chosen as
an optimal BST compound for the colossal permittivity material. It
shows the highest value of €' (174,000) and the lowest value of tan
§ (0.03) over a wide temperature range. Moreover, the strontium
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rich BSTreduced nanostructured ceramics exhibit temperature sta-
ble permittivity.
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