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To generate or maintain a turbulent flow, one needs to introduce kinetic energy. This energy injection 
necessarily fluctuates and these power fluctuations act on all turbulent excited length scales. If the power is 
injected using forces proportional to the velocity, such as those common in shear flows, or with a force 
acting at the largest scales only, the spectrum of these fluctuations is shown to have a universal inertial 
range, proportional to the energy spectrum.
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During the famous 1961 conference on turbulence,
convincing evidence was presented in support of
Kolmogorov’s 1941 theory [1] of turbulence. Indeed a
measurement of the energy spectrumEðkÞ in a tidal channel
[2] showed a power law scaling proportional to k−5=3.
At the same conference, Kolmogorov himself presented a
correction to his theory [3]. Inspired by a remark of Landau,
he illustrated that the 1941 picture of an inertial range
depending on the mean energy flux was flawed, since large
spatiotemporal fluctuations of the energy flux, determined
by the energy injection mechanism, should lead to a
correction of the −5=3 power law scaling. It was realized
that scaling relations could depend on the, necessarily
nonuniversal, energy injection mechanism.
However, the energy injection might be more universal

than perhaps expected. The reason for this is that the energy
input is not only determined by the precise input mecha-
nism, but also by the impedance of the flow itself. Clearly, a
force cannot work if it is applied orthogonal to the velocity
of a fluid element. The work done by a force through its
interaction with a flow is investigated in the present Letter.
The fluctuations of the energy input, or power, have been

studied previously, in particular in experimental flows
between rotating disks [4,5]. Some universality was
observed in the shape of the probability density functions
(PDFs) [6,7]. A model for the shape of these PDFs could be
derived using a Gaussian assumption [8]. Further inves-
tigations of the power fluctuations include a numerical
study of shear flow [9] and an investigation of the particular
case of wave turbulence [10]. More recently the study
of power fluctuations was revisited in the context of
Lagrangian statistics [11,12]. The related quantity of
subgrid-flux fluctuations, important for large eddy simu-
lation strategies, was considered in some detail [13,14].

Most of these studies investigated the PDF of the power
fluctuations, not their spectrum. Only minor attention was
given to temporal spectra in experiments [15]. In wind
farms, the spectral distribution of the power spectrum has

received some more attention, since electricity fluctuations
are directly related to the power fluctuations in the
incoming turbulence [16–20]. These studies exclusively
focus on the time domain.
We will focus here on the wave number spectrum of the

power fluctuations in turbulence using theoretical consid-
erations and direct numerical simulations (DNSs). It will be
shown that the power fluctuation spectrum contains a
universal scaling range at high Reynolds numbers even
when the probability density function of the fluctuations
can differ from flow to flow.
We consider the incompressible Navier-Stokes equa-

tions, and in particular the fluctuations of the velocity
ui ¼ Ui − hUii, where Uiðx; tÞ is the velocity field and
the angular brackets denote an ensemble average. In
a statistically homogeneous flow the fluctuations are
governed by

∂tui þ ∂jðuiujÞ ¼ −∂ipþ νΔui þ fi ð1Þ

combined with the constraint ∂iui ¼ 0. The fluctuating
pressure is indicated by p, ν is the kinematic viscosity and f
is the applied force field per unit mass of fluid. The kinetic
energy balance takes a particularly simple form

dthKi ¼ hPi − hϵi; ð2Þ

where the energy is given by K ¼ uiui=2 and ϵ is the
dissipation and the energy injection is given by,

P ¼ uifi: ð3Þ

Obviously in a steady state we have hPi ¼ hϵi, But locally
there is no reason for P ¼ ϵ. We can define the fluctuations
by P0 ¼ P − hPi and ϵ0 ¼ ϵ − hϵi, and it is in particular P0
that we will focus on.
Let us start by answering the following question: is it

possible to define a forcing such that P0 is zero everywhere?
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In other words, is it possible to inject the same amount of
energy uniformly in space? Since it is only possible to
inject energy if the scalar product of the velocity and the
applied force is nonzero [see Eq. (3)], it is impossible to
inject energy in stagnation points of the flow. Furthermore,
since ui is a continuous, zero-mean quantity, stagnation
points will exist and, at these points, no energy can be
injected. Therefore, even if we control perfectly the applied
force, in practice no turbulent flow can exist without power
fluctuations. Power fluctuations are thus ubiquitous and we
will investigate some of their properties in the following.
We will in the following consider the forcing

fi ¼ αijuj þ βi; ð4Þ

where αij and βi are both functions of space and time, and
where β is the component of the force orthogonal to the local
velocity u. It is thus the part that does not inject energy. This
forcing is fairly general. For instance, in a large class of
turbulent flows the energy of the fluctuating turbulent field is
supplied by the average velocity field, which corresponds to
the case αij ¼ ∂jhUii. The linear forcing scheme, widely
used in DNS [21] corresponds to αij ¼ αδij.
We will consider the specific case where α is not

determined by the fluctuating flow properties, but only
by externally imposed parameters. The case of homo-
geneous shear flow is an academic example of such a
forcing. The average injected energy is then given by

hPi ¼ αijhuiuji ð5Þ

and evidently β does not appear in this expression. The
variance of the fluctuations is given by

hP02i ¼ αijαmnhuiujumuni − hPi2: ð6Þ

Working out a Gaussian estimate for the fourth order
velocity correlations, we find

IP ≡ hP02i
hPi2 ¼ αijαmnðhuiumihujuni þ huiunihujumiÞ

hPi2 : ð7Þ

For the linear forcing we find then, using isotropy,
IP ¼ 2=3, whereas for homogeneous shear ∂zhUxiwe have

IP ¼ 1þ ρ−2uw; ð8Þ

with ρuw ¼ huwi=ðhu2i1=2hw2i1=2Þ, where u and w are
velocity fluctuations in the streamwise and cross-stream
direction, respectively. We have therefore the interesting
feature that the energy injection intensity is directly related
to the anisotropy of the flow. In experiments and simu-
lations of homogeneous shear flow [22] ρuw ¼ Oð0.5Þ so
that IP is around 5. The Gaussian estimate shows therefore
that the injection intensity can strongly vary between

different flow types. What we will now investigate is
how these fluctuations vary as a function of scale.
The fluctuation spectrum is defined as

EPðkÞ ¼
Z
jkj¼k

hP0ðkÞP0ð−kÞidSk ð9Þ

where the integration is performed over spherical shells of
radius k (the wave number) such that

Z
EPðkÞdk ¼ hP02i: ð10Þ

In these and following expressions, Fourier coefficient are
recognized by their argument (k, p, or q). The power
spectrum writes then

EPðkÞ ¼
Z
jkj¼k

ZZ
hfiðpÞuiðk − pÞfjðqÞujð−k − qÞi

× dpdqdSk: ð11Þ

Without further information on the nature of the forcing
function f , we cannot make any predictions on the scaling
of the spectrum EPðkÞ. We will therefore consider the
following two specific cases. The first one is a compact
forcing at the large scales. The second one is a forcing
reminiscent of the influence of a mean velocity gradient on
a turbulent flow.
In the first case, where the forcing is confined to the

largest scales, or smallest wave numbers, we can follow a
reasoning similar to the one of Batchelor, Howells, and
Townsend in deriving the shape of the temperature spec-
trum in low Prandtl number convection [23]. Let us
consider that f acts at the smallest wave numbers around
jkj ¼ kf, while we are interested in the scaling of EPðkÞ for
k ≫ kf. In this range of scales (jk − pj ≫ jpj) we can
assume statistical independence of the velocity mode fiðpÞ
and uiðk − pÞ, so that we can split the fourth order
correlation,

EPðkÞ ≈
Z
jkj¼k

ZZ
hfiðpÞfjðqÞihuiðk − pÞujð−k − qÞi

× dpdqdSk: ð12Þ

Furthermore, orthogonality of Fourier coefficients, and
k − p ≈ k leads to,

EPðkÞ ≈ hfifjiϕijðkÞ ð13Þ

where ϕijðkÞ¼
R
jkj¼khuiðkÞujð−kÞidSk and ϕiiðkÞ¼2EðkÞ.

We see that when the forcing is constrained to the large
scales, the power-spectrum is proportional to the spectral
tensor ϕijðkÞ. In the case of an isotropic forcing, this shows
that



EPðkÞ ≈
2

3
hfifiiEðkÞ: ð14Þ

This result shows that, for an isotropic large-scale forcing,
the power spectrum scales proportional to the energy
spectrum. The fluctuations of the energy injection remain
thus not confined to the forced scales but are distributed
over all scales.
We can now ask what the relevance of this result is in the

case where the forcing is not an artificial forcing confined
around kf, but where the kinetic energy is generated
through the interaction of the turbulence with an externally
imposed velocity gradient. In that case we cannot directly
assume independence of the forcing spectrum and the
velocity modes at large wave numbers in order to simplify
Eq. (11). Let us consider the simplest case, fi ¼ αui,
corresponding to a linear forcing, acting on all scales. Since
we have in this case a direct relation between the power and
the kinetic energy, P ¼ fiui ¼ 2αK, the power spectrum is
now,

EPðkÞ ¼ 4α2EKðkÞ; ð15Þ

where EKðkÞ is the kinetic energy fluctuation spectrum
such that,

Z
EKðkÞdk ¼ hðK − hKiÞ2i: ð16Þ

Since the integral of this spectrum yields the square of the
kinetic energy fluctuations, a fourth order velocity corre-
lation, one might expect that it does not scale like the
kinetic energy spectrum, which is associated with a second
order velocity correlation. This is actually not so, and the
asymptotic wave number dependence of both spectra is the
same. Indeed, the spectrum EKðkÞ has received some
attention in the past [24–27], and is known to scale as

EKðkÞ ∼ huiuiiEðkÞ: ð17Þ

Therefore, even in this case where the forcing is not
constrained to the largest scales, the small scales are
obeying a sweeping scaling [28]. Such results are fairly
robust, even when flows are not strictly isotropic. Indeed,
the first evidence of the validity of Gaussian (or sweeping)
scaling for higher-order spectra was obtained in mixing
layer and atmospheric boundary layer flows [24]. We will
check these ideas now.
We carried out direct numerical simulations (DNS) of

isotropic turbulence in a periodic box at a resolution of
5123 grid points. Details of the pseudospectral code can be
found in Refs. [29,30]. Three different types of forcing
were considered. f1: a deterministic forcing keeping the
volume-averaged energy at the large scales constant [31].
This forcing was applied at the wave modes with k < 2

ffiffiffi
2

p
.

f2.: a stochastic forcing where the energy injection is given
by an Ornstein-Uhlenbeck process [32], also applied at the
wave modes with k < 2

ffiffiffi
2

p
. f3: a linear forcing, fi ¼ αui

[21,33] applied to all scales. These forcing procedures
allow the turbulence to reach a statistically steady state with
a Reynolds number Rλ ≈ 130 along with η=Δx ≈ 0.75,
with η ¼ ν3=4=ϵ1=4.
In our simulations a close to statistically steady state is

obtained where the mean production equals approximately
the mean dissipation. The normalized variance of the
dissipation rate fluctuations hϵ02i=hϵi2 ≈ 1.6 for the
three flows. The values of the variance of the power fluctu-
ations are however significantly different, hP02i=hϵi2 ¼
1.1; 4.2; 0.8 (for f1; f2; f3, respectively). This difference is
also illustrated in the visualizations of the power during the
steady state, shown in Fig. 1. It is observed that the power
fields are qualitatively different. For instance, in the third
forcing scheme the injected power can only be positive,
whereas negative values are observed in the other
two cases.
This is further illustrated in Fig. 2(a), where it is

observed that the PDFs of the power are very different
in shape. On the contrary, the PDFs of the dissipation rate
fluctuations are nearly identical (not shown). Analytical
expressions can be derived for the power fluctuation PDFs
assuming Gaussianity of the velocity fluctuations, at least
for forcing f3, where the shape of the PDF should resemble
a χ2 distribution. We will not further focus on this, but we
stress that the shapes of the PDFs indicate that the
power fluctuations generated by the three different forcing
schemes are quite different.
In Fig. 2(b) it is shown that the length scale distribution is

not so different. The spectra of forcing scheme 1 and 2 are
very similar, with a power law exponent close to −5=3. The
third forcing yields a power fluctuation spectrum that is
shallower, with a slope close to −1. It seems thus that for
the first two forcing schemes, which are confined to the
largest scales, the predicted scaling is observed. However,
for the linear forcing, applied at all scales, a strong
deviation is observed. In the following we will try to
understand this difference. In particular we will show that
also for this case a −5=3 scaling is expected to appear, be it
at higher Reynolds numbers.
The statistical independence, invoked to derive the

scaling relations is in the present case equivalent to the

FIG. 1. Visualizations of the power input in the turbulent flows.
From left to right forcing schemes f1, f2, and f3.
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assumption of Gaussianity. Indeed, the sweeping scaling
was derived by assuming joint-Gaussian velocity statistics
[24,27]. Even though Gaussian estimates give for certain
quantities good order-of-magnitude estimates, certain
features are completely missed. For instance, the net
energy transfer between scales is zero for joint-Gaussian
velocity fluctuations. Furthermore, the dissipation rate
fluctuations are severely mispredicted if Gaussianity is
assumed [34–36]. Is this the case here?
The Gaussian estimate of the power spectrum for linearly

forced isotropic turbulence is

EPðkÞ ¼ 2kα2
Z
Δ
ð1 − x2ÞEðpÞEðqÞ dp

p
dq
q
; ð18Þ

where x ¼ ðp · qÞ=pq andΔ indicates a subdomain in the p,
q plane where the wave vectors k, p, q can form a triangle.
This integral can be evaluated numerically for a given
energy spectrum. We have, to check the assumption of
Gaussianity, compared the power spectrum from the DNS
with the Gaussian prediction, using in Eq. (18) the energy
spectrum computed from the DNS data. The comparison is
shown in the inset of Fig. 2(b). The Gaussian prediction,
computed from the DNS energy spectrum, very accurately
collapses with the actual power spectrum, except for the
smallest wave numbers. This different behavior is due to
the different nature of the boundary conditions in the two
approaches. Indeed, the theoretical, integral Gaussian
estimate [Eq. (18)] assumes an infinite domain and

periodicity is not taken into account. Nevertheless, for
all wave numbers in the inertial and dissipation range, the
agreement is very good.
The actual reason that the power spectrum for the linear

forcing is not proportional to k−5=3 is that universal scaling
appears at higher Reynolds numbers. In order to illustrate
this, we carried out closure simulations of the eddy damped
quasi normal Markovian type. Indeed the convergence to
asymptotic statistics, as compared to experiments or sim-
ulations, is well predicted by this closure scheme [37]. We
have computed, using the linear forcing, steady states at
Reynolds numbers ranging from 100 to 104. We used the
energy spectra from these simulations to compute the
Gaussian estimate of the power spectrum. The results
are shown in Fig. 3. It is shown that a good collapse is
possible if the spectra are normalized by the mixed scaling
[Eq. (14)], involving huiuii; ϵ, and η. Indeed, in Fig. 3 we
plot

ẼP ¼ EPðkηÞ
α2huiuiiϵ2=3η5=3

; ð19Þ

and the good collapse of these normalized spectra shows
the validity of Eq. (14). Furthermore it is observed that for
the closure results, the convergence of the spectrum to
asymptotic scaling is very slow. In the inset of Fig. 3 it is
observed that at Rλ ¼ 100 the power law exponent is close
to −1, as for the DNS, but that the spectrum becomes
gradually steeper, attaining close to asymptotic scaling
around Rλ ¼ 104. DNS at higher resolution and Reynolds
number should be able to assess this tendency to some
extent, since the largest simulations of isotropic turbulence
[38] allow currently to reach Reynolds numbers of the order
of Rλ ≈ 2 × 103.
With respect to the general applicability of the present

insights one could object that the linear forcing fi ¼ αui is
rather artificial, but the ideas can be transposed to shear
flow. Indeed, shear is the principal turbulent kinetic energy
injection mechanism in the absence of body forces. In the
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case of steady uniform shear S≡ ∂zhUxi, the energy input
is P ¼ −Shuwi. The power spectrum for this case is
EPðkÞ ¼ S2EuwðkÞ, where the shear-stress fluctuation spec-
trum defined as

Z
EuwðkÞdk ¼ hðuwÞ2i − huwi2: ð20Þ

It was shown [39,40] that also this spectrum is proportional
to the trace of the spectral tensor and thereby scales as
k−5=3, so that the above arguments for isotropic turbulence
can be transposed to the very important case of shear flow.
We showed that for a turbulent flow displaying the

Kolmogorov energy spectrum, the power spectrum will
reflect this scaling, following Eq. (14). Thereby the input
fluctuations have a universal equilibrium range. Of course,
it is possible to define a forcing function that will lead to
different scaling, for instance, a forcing spectrum with a
peak at the large wave numbers. However, as long as the
support of the forcing function is confined to large wave
numbers, or with a power-law spectrum steeper than k−1,
the power spectrum will be given by Eq. (14). The next step
in understanding turbulence intermittency is now the
investigation of the fluctuations of the energy flux and
its relation to the power fluctuations in order to understand
if universality is also conserved for that quantity. The
answer to that question definitely needs further research.

This work was performed using HPC resources from
GENCI-CINES.
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