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ABSTRACT

In this article, we present an analytical model to calculate the perturbation of the magnetic vector potential due to a non-conducting inclusion 
in a liquid metal translated at constant velocity. The model is valid for a low magnetic Reynolds number, Rem, and a low shielding parameter, 
Sω. We establish that the first order perturbation of the vector potential can be directly obtained from the value of the unperturbed 
eddy-current calculated at the location of the inclusion. An ECFM (Eddy-Current FlowMeter) device has been designed to validate the model 
and to study the frequency effects of the eddy-current and the volume of one inclusion and its location. We observe a good agreement between 
the model predictions and experimental data within the limit of the validity of the model. Based on scaling analysis, we show that a unique 
relation exists between the perturbation of the emf (electromotive force) measured with the ECFM and the volume of the inclusion and its 
location, which reflects the self-similarity of the model solution.

https://doi.org/10.1063/1.5055062

I. INTRODUCTION

When a flow of electrically conducting liquid undergoes an AC
magnetic field, the presence of non-conducting inclusions modifies
the electric current distribution. Understanding, predicting, and
experimenting the distribution of the induced currents is important
for fundamental magnetohydrodynamics and geophysics and is a
key issue in many manufacturing processes or nuclear industry.1–4

In this article, we propose a theoretical model of the perturbed mag-
netic vector potential caused by the distortion of eddy-currents
around an inclusion immersed in a liquid metal flow. For a small
magnetic Reynolds number, Rem ¼ μ0σ0UL (where μ0, σ0, and
U are the magnetic permeability of the vacuum, the electrical con-
ductivity, and the velocity of the liquid, respectively, and L is the
length scale of the flow), this model predicts the effects of the main
physical parameters, such as the location and size of the inclusion,
the frequency, and the electrical properties of the liquid metal. The
model is compared and agrees very well with experiments and shows
that the location and the volume of the inclusion determine the
perturbation of the vector potential through an explicit relation.

Maxwell first developed a multipolar model to characterize
the equivalent electrical conductivity of a two-phase medium com-
posed of a conducting continuum phase containing a dispersion of
non-conducting spherical inclusions.5 This model is valid for DC
electromagnetic fields but is not adapted to experiments in AC

fields.4 The main theoretical approach that takes into account the
Faraday induction is due to Bowler who has modeled the electric
field in a medium containing a flaw of different conductivity.6 The
model is based on the Green function method and requires a
numerical modelling to solve a Fredholm integral equation for the
current density perturbation. This model predicts correctly the
location and the size of surface defects. Furthermore, the hydrody-
namics of a liquid metal flow with inclusions requires the coupled
resolution of the Maxwell and the Navier-Stokes equations. In the
case of the DC magnetic field, direct numerical simulations showed
that the Lorentz force significantly modifies the wake and the inclu-
sion dynamics.7,8 Finally, recent experimental studies show that the
presence of a particle can be detected with a permanent magnet by
the so-called Lorentz force velocimetry technique.9 In this paper,
we focus on the magnetic field perturbation by a liquid flow with a
single inclusion in an AC external field. The paper is organized as
follows: the model is presented in Sec. II and the experimental
setup that has been designed to explore the validity range of the
model is depicted in Sec. III. Then, the results are presented and
discussed in Sec. IV.

II. PERTURBATION MODEL

We consider a model of a liquid metal flow in a cylindrical
duct that advects one non-conducting spherical inclusion of radius
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Rb (Fig. 1). The present model is based on the determination of
the magnetic vector potential, A, in the presence of the inclusion.
The electromagnetic field is generated by an external primary coil
P supplied with AC current Ie, corresponding to a volume current
density je. The perturbation of A is responsible for the difference
of the magnetic flux through the secondary coils S1 and S2 when
the liquid metal is flowing through the three coils. The device
based on these principles is currently used to measure the flow rate
and is called ECFM (Eddy-Current FlowMeter).10

In the model, we assume that the velocity field of the liquid
metal is not perturbed by the magnetic field. Indeed, the magnetic
interaction number is lower than unity due to a small advective
time (Reynolds number . 1000), a hypothesis that is confirmed by
previous experiments.4 For the gauge r � A ¼ 0, the induction
equation for the non-dimensional vector potential is

r2A ¼ nSω
@A
@t

� nRemu�r� A� je, (1)

where n ¼ 1LM(r) is the characteristic function of the liquid metal
volume (n ¼ 1 in the liquid metal and 0 outside of the duct and in
the inclusion). Note that the current density je is non-zero in the
primary coil P only. In Eq. (1), the scalar potential gradient is
neglected because of the absence of applied potential on the bound-
aries and Rem � 1. The characteristic time is ω�1, the inverse of
the electrical current pulsation. The scale factor for A is also
defined as μ0J

eL2, where Je is the amplitude of the external current
density. The shielding parameter Sω ¼ μ0σ0ωL2 corresponds to the
square ratio of L and the magnetic skin depth.11 Note that the first
two terms on the right-hand side of Eq. (1) correspond to magnetic
induction by Faraday and velocity effects.

In the absence of inclusion, the unperturbed vector potential
amplitude A0 defines the “base” field for the liquid metal and obeys
the same equation (1). For the geometry considered in this model
with a uniform axial velocity, A0 is orthoradial. The solution of
Eq. (1) is obtained from the Green function method as

A0(r) ¼
ð
VP

G(r, r0)je(r0)dV(r0), (2)

where VP is the volume of the primary coil P and G(r, r0) is the
scalar Green function given by12,13

G(r, r0) ¼
ðþ1

�1
Ci(r

0)I1(kir)þ Di(r
0)K1(kir)½ � e j2πζ(z�z0)dζ: (3)

In this equation, the i index corresponds to three different domains:
i ¼ 1 for the liquid metal, i ¼ 2 for the gap between the liquid
and the coils, and i ¼ 3 for the region external to the coils. We define
k2i ¼ (2πζ)2 þ j 2πζRem þ Sωð Þ for i ¼ 1 and k2i ¼ (2πζ)2 for
i ¼ 2, 3. In Eq. (3), the position is given in cylindrical coordinates
with the origin at the P coil center. The constants Ci and Di are deter-

mined from the jump conditions: [G(r, r0)]iþ1
i ¼ 0, @G(r, r0)

@r

h iiþ1

i
¼ 0,

for i ¼ 1, 2, except for the z position of the Dirac source where
@G(r, r0)

@r

h i3
2
¼ 1. In Eq. (3), I1 and K1 are the modified Bessel func-

tions.14 Note that the induction in the metal, characterized by the
imaginary part in k1, is responsible for a phase shift between A0 and
the reference je.

In the presence of one advected inclusion located at a distance
h from the duct wall, the vector potential perturbation is
Aα ¼ A� A0. For standard experimental conditions, the advection
time is much larger than ω�1, which implies Rem � Sω. Based on
this scale separation, the time derivative in Eq. (1) corresponds to
the fast variations at the scale ω�1. Consequently, Aα obeys at first
order in Rem to the following equation:

r2Aα � nSω
@Aα

@t
� nbSω

@A0

@t
, (4)

where nb ¼ 1b(r) is the characteristic function associated with the
inclusion volume Vb. For a characteristic length L ¼ Rb, which is
small when compared with the skin depth, Sω � 1, and consider-
ing the expansion Aα ¼ SωA1

α þ S2ωA
2
α þ � � �, Eq. (4) leads to a

Poisson equation

r2A1
α ¼ �nb

@A0

@t
¼ nbj0 � Sω

�1, (5)

where nbj0 is the non-perturbed eddy-current in Vb obtained from
the base field A0 (2). This equation shows that the first order pertur-
bation of the vector potential due to a non-conducting inclusion is
simply governed by the induced base field at the location of
the inclusion. However, this perturbation is not damped by a
diffusion-induction mechanism and does not generate eddy-current.
To take into account induction, it should be necessary to consider
the second order of Aα perturbation. The electrical current is zero
in the inclusion, and the spatial distribution of j0 around the inclu-
sion is modified in j0 þ Sωj1α , where j

1
α ¼ @A1

α
@t ��Sω. Consequently,

we expect an increase of dissipation in a thin layer surrounding the
inclusion. Finally, in Eq. (5), nbj0 is understood as the source term
of the Poisson equation. Note that, at the first order of Sω, the total
electrical current density still respects the conservation equation in

FIG. 1. Non-conducting inclusion advected by a flowing liquid metal and
detected by an Eddy-Current FlowMeter (ECFM): P is the primary coil excited
by an AC current Ie. S1 and S2 are two secondary coils, and U is the velocity
of the liquid metal flow. The magnetic flux is measured with S1 and S2.
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the whole volume and its normal component at the inclusion boun-
dary is O(S2ω) � 1.

The solution of Eq. (5) is

A1
α(r)� Sω ¼ � 1

4π

ð
Vb

j0(r
0)

jr� r0j dV(r
0): (6)

The perturbation of the vector potential is obtained from the distri-
bution of the non-perturbed eddy-current field j0 at the location of
the inclusion. A similar approach is developed in order to analyze
the perturbation of the Lorentz force due to an insulating defect in
a conducting medium.15 An example of jj0j(z), where z is the axial
coordinate, is displayed in Fig. 2 for two different depths h and for
a given pulsation. Here, the non-perturbed current density jj0j is
given in SI units. As expected, jj0(z)j is maximum at the center of

the P coil for both depths and decreases by a factor � 2 at the
center of the two S coils. We note that the major part of the elec-
tromagnetic energy is localized in the liquid metal just under the
three coils. As the liquid metal flows, the inclusion crosses the
ECFM and sees the j0 distribution corresponding to its depth
position. Then, the ECFM monitors the perturbation of the eddy-
currents during the inclusion displacement.

III. EXPERIMENTAL SETUP

In order to validate the perturbation model for one inclusion,
we design a specific experimental setup with an ECFM as depicted
in Fig. 1. The three coils have the same radius RS ¼ 35mm and a
length of 20 mm (P) and 10 mm (S1 and S2). For all the experi-
ments, the phase and intensity of je are imposed using a transcon-
ductance amplifier. The ECFM is translated at a constant velocity
U varying between 1 and 103 mm=s (Rem � 0:025), around a
ceramic tube (MacorTM) containing a static liquid metal (galinstan
GaInSn, σ ¼ 3:46� 106 S=m, diameter 2R ¼ 25mm). The non-
conducting inclusion is a polymer bead (Visijet® M3 Crystal) of
various radii (Rb ¼ 1, 1.5, 2, and 2.5 mm) made by 3D printing
(3D Systems ProJet 3500 HD with a precision of +0:025mm).
The beads are fixed at different depths (h ¼ 3 and 6 +0:25mm)
with a thin thread of diameter 50 μm (Fig. 3). The perturbation of
the voltage difference between S1 and S2 caused by the inclusion,
ΔVα , is obtained by demodulation of the AC voltage signal using a
lock-in amplifier (HF2LI-MF Zurich Instruments). The values of
ΔVα are then averaged over ten acquisitions with a standard devia-
tion of � 2 μV. We observe that the measured signal is sensitive to
the presence of the inclusion for the whole ranges of frequency
(between 5� 102 and 2� 104 Hz), inclusion size Rb, and position
h. The study in frequency points out that the model is valid only at
low frequencies, typically between 5� 102 and 2� 103 Hz, in
agreement with the model hypothesis. In this frequency range, the
skin depth varies between 12.1 and 6.1 mm. With these values,
we find Sω=Rem 	 3 and Sω � 0:3; hence, the assumption Rem �
Sω � 1 is verified except for large beads and high frequencies.

FIG. 2. Evolution of the dimensional unperturbed current density with the axial
position for two inclusion depths, as obtained from Eqs. (2) and (3).
R ¼ 12:5mm, ω ¼ 2π � 1000 rad s�1, Ie ¼ 0:17 A. The zones P, S1, and S2
denote the primary and secondary coil positions.

FIG. 3. (a) Experimental ECFM (S1-P-S2) device in translation at constant velocity U around the tube of galinstan. (b)–(d) Modulus, in-phase, and in-quadrature compo-
nents of ΔVα for different bead diameters (red curves 2 mm, yellow curves 3 mm, green curves 4 mm, blue curves 5 mm). Bead distance to the wall h ¼ 3mm. Frequency
1000 Hz. Translation velocity U ¼ 100mm s�1.
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Figure 3 depicts the demodulated signals of ΔVα (modulus,
in-phase, and in-quadrature components with respect to the phase
reference of je ), versus the transit time of the bead through the
ECFM, for various Rb (here, U , ω, and h are fixed). We recall that
the existence of both in-phase and in-quadrature components is a
direct consequence of the phase shift of the base field A0 [Eqs. (2)
and (3)]. The curves present two extrema located approximately at
the limits between the primary and the secondary coils. When the
bead is at the middle of P, ΔVα is zero. Furthermore, the signal
amplitude increases by one decade when Rb changes from 1 to
2.5 mm. This last result shows that the ECFM device is very sensi-
tive to the bead volume. In addition, as observed previously, all the
experiments confirm that ΔVα is independent of U at small Rem.

3,4

IV. RESULTS AND DISCUSSION

By applying the Faraday law on the perturbed potential A1
α in

Eq. (6), one can predict the dimensional induced voltage difference
ΔVα

ΔVα

μ0ωJeR
3
b

¼
X
NS

d
dt

þ
S2

A1
α � dr�

þ
S1

A1
α � dr

� �
, (7)

where the contour integrals correspond to 1 turn of S1 and S2 and
NS is the number of turns of the two secondary coils. Figure 4 com-
pares the model and experiments for two bead positions, h ¼ 3
and 6 mm, with Rb ¼ 1:5mm, at 1000 Hz. The exact solutions of
Eqs. (5) and (6) are compared with an approximated solution of
A1
α in which j0(r

0) � cst in Eq. (6). In this approximation, the value
of j0(r

0) is taken at the location of the inclusion center. The uncer-
tainties on the geometrical parameters R, Rb, and h are an

important cause of deviation between the theoretical and experi-
mental values of jΔVαj. Within the limit of the measurement
uncertainties, we observe a good agreement between the experi-
ments and the model, for both exact and approximated solutions.
The experimental results in Figs. 3 and 4 exhibit a slight dissymme-
try of the two jΔVαj peaks due to the accuracy of the physical
parameters mentioned above responsible for the uncertainty of the
experimental ΔVα ¼ 0 line position.

As expected from the assumptions of the model (Sω � 1), we
find that the model deviates from the experimental results for a
large bead radius (Rb . 2mm) and a high frequency (over 2000
Hz). Henceforth, the hypothesis of a current density j0 uniformly
distributed in Vb gives a very good approximation of ΔVα . Within
this assumption, Eq. (6) simply becomes A1

α(r) � � j0
3jrj, where r is

now the vector position in the whole space from the inclusion
center. For one turn of S1 or S2, the circulation of A1

α in Eq. (7) is
then

þ
A1
α � dr �

Λ

6
jj0j 2E(π, m)þ (m2 � 2)F(π, m)

� �
, (8)

where F(π, m) and E(π, m) are the complete elliptic integrals
of the first and second kind,14 with m2 ¼ 4RS

ρΛ2 and Λ2 ¼
RS þ ρð Þ2þξ2

� �
=ρ2. The radial position of the bead center in the

tube is ρ ¼ R� h, and the axial distance between the bead center
and the plane containing the coil turn is ξ. Incorporating Eq. (8) in
Eq. (7), the right-hand side of Eq. (7) is a function of ω, h, and z.
Note that the ω dependence is contained only in jj0j.

We define ΔVw
α as the maximum value of ΔVα reached when

the z-position of the bead is approximately at the limit between the
primary and the secondary coils. At this position, we introduce the
parameter ϒα ¼ ΔVw

α =μ0ωJ
e ¼ R3

bfω(h), where the dimensionless
function fω(h) is the maximum value of the sum in Eq. (7).
Figure 5 displays fω(h) for the geometry of our experimental setup
at different frequencies. It is seen that the function fω(h) decreases

FIG. 4. Comparison between the model (continuous lines) and experiments
(dashed lines): modulus of ΔVα versus time for a 3 mm bead diameter at two
different depths: h ¼ 3mm blue curves and h ¼ 6mm red curves. Frequency
1000 Hz, translation velocity U ¼ 100mm s�1. Inlet: zoom of the model solu-
tions (continuous line: uniform distribution of j0, dotted line: exact solutions).

FIG. 5. Graph of the function fω(h) from Eqs. (7) and (8) for various
frequencies.
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with h and vanishes at the center of the tube (h ¼ R), where
j0 ¼ 0. Figure 6 compares the theoretical values of ϒα predicted by
the model with those of experiments. For h ¼ 3mm, the measure-
ments correctly follow the relation ϒα ¼ R3

b fω(h). On the other
hand, for h ¼ 6mm, the measurements slightly deviate from the
previous relation. For a fixed bead depth h, an increase in frequency
or bead volume also leads to a deviation of the experimental data
from the model prediction. Indeed, as Rb, h, and ω increase, the
induction term nSω@Aα=@t in Eq. (4) becomes non-negligible com-
pared with the Laplacian term r2Aα . In this case, the eddy-current
perturbation is responsible for a spatial decay of Aα , resulting in a

lower value of ΔVα . As a consequence, the model overestimates
ϒα for high Rb, h, and ω and gives an upper limit of the experimen-
tal data.

Finally, if one wants to determine Rb and h from experiments
by the inverse method, one can show that Rb and h are linked by
a unique relation obtained by least squares minimization of the
difference between experimental and theoretical ΔVα at various ω.
This property results from the self-similarity in R3

b and h of the
solutions of the model. As an example, Fig. 7 displays the curve
of this relation in the contour graph of the objective function for
the experimental data obtained with Rb ¼ 1:5mm and h ¼ 3mm.
We observe that the experimental (Rb, h) value belongs to the
minimum Rb � h curve within the limit of the model assumption
(Sω � 1) and the geometrical constraint (Rb , h). Hence, a rea-
sonable estimation of Rb can be determined from “blind” measure-
ments of ΔVα at different frequencies, but the value of Rb can be
characterized precisely if h is known.

V. CONCLUSION

In this article, we have presented a perturbation model of the
vector potential due to a non-conducting inclusion in a liquid
metal flow. The perturbation is calculated from the solution of the
unperturbed current density j0 taken at the center of the inclusion
and distributed all over the inclusion volume. The main assump-
tion of the model is Rem � Sω � 1, corresponding to small values
of Rb, h, and ω. We designed a specific experimental setup in order
to validate the model and we observed a good agreement within
the limit of the hypothesis. An inverse approach shows that a good
order of magnitude of Rb can be determined from experiments at
various frequencies. This work points out that inductive effects
should be taken into account for the study of two-phase liquid
metal flows at higher frequencies. Finally, this model could be
extended to calculate the response of a distribution of dilute inclu-
sions. The approach developed in this article will be of direct inter-
est for the detection of bubbles in the metallurgy process and in
nuclear safety design for sodium-cooled fast reactors.
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