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 17 
Abstract 18 

Osmoregulated periplasmic glucans (OPGs) are general constituents of many 19 

Proteobacteria. OPGs are important factors required for full virulence in many pathogens 20 

including Dickeya dadantii. D. dadantii causes the soft-rot disease on a wide range of plant 21 

species. The total loss of virulence and motility of opg-negative strains of D. dadantii is 22 

linked to the constitutive activation of the RcsCDB phosphorelay deduced from expression 23 

analysis of genes of the RcsCDB regulon. Here, the in vivo level of constitutive activation of 24 

the RcsCDB phosphorelay opg-negative strain was demonstrated by direct analysis of the 25 

phosphorylation level of the RcsB regulator protein by using a Phos-tagTM retardation gel 26 

approach and was correlated with the  phenotype and the expression of gene of motility. 27 
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 32 
1. Introduction 33 

Osmoregulated periplasmic glucans (OPGs) are oligosaccharides found in the envelope of 34 

most Proteobacteria (Bohin and Lacroix, 2006). The backbone is synthesized by the two 35 

products of the opgGH operon and consists of β,1-2 linked glucose units to which the 36 

branches are attached by β,1-6 linkages. These glucans belong to the common virulence 37 

factors of many Proteobacteria zoopathogens and phytopathogens such as Pseudomonas 38 

aeruginosa (Mahajan-Miklos et al., 1999), Brucella abortus (Arellano-Reynoso et al., 2005) 39 

or Dickeya dadantii (Page et al., 2001). 40 

Dickeya dadantii is a phytopathogen Enterobacteria that causes soft rot disease in a wide 41 

range of plant species (Perombelon, 2002). This opportunistic pathogen devastates 42 

economically important crops in storage facilities or in growing plants. In D. dadantii, opgG 43 

or opgH mutant, completely devoid of OPGs, show a pleiotropic phenotype including loss of 44 

motility (Page et al., 2001), induction of a general stress response (Bouchart et al., 2007) 45 

and complete loss of virulence on potato tubers and chicory leaves (Page et al., 2001). All 46 

these phenotypes suggest an impairment in the perception of the environment. This 47 

hypothesis was confirmed by the restoration of motility and virulence on potato tubers by 48 

inactivation of the RcsCDB phosphorelay regulatory system in strains devoid of OPGs. 49 

Phosphorelays (also called two component systems) are the key of gene expression 50 

plasticity in response to environmental variations. The RcsC sensor has both kinase and 51 

phosphatase activities (Clarke, 2010). Under various stimuli, the transmembrane RcsC 52 

sensor activates, its kinase activity increased, RcsC autophosphorylates and transfers its 53 

phosphate group to its cognate cytoplasmic response regulator, RcsB, via the intermediate 54 

transmembrane protein RcsD. In turn, RcsB regulates the expression of numerous target 55 

genes affecting various cellular processes including repression of virulence and motility 56 

(Cano et al., 2002, Majdalani and Gottesman, 2005). In contrast, when the RcsC sensor 57 

phosphatase activates and dephosphorylates the RcsB regulator, virulence and motility 58 

occurs. 59 

Loss of OPGs leads to a constitutive activation of the RcsCDB phosphorelay system. 60 

Restoration of virulence and motility was obtained in the opgG by secondary mutations 61 

decreasing the activation level of the RcsCDB phosphorelay. This was the case for the opgG 62 



rcsC2, the opgG rcsC or the opgG rcsBD56N double mutant strains. In these strains, the 63 

secondary mutation encoded a mutated RcsC2 protein with an increased phosphatase 64 

activity, no RcsC protein or a non phosphorylatable RcsBD56N protein respectively (Bouchart 65 

et al., 2010, Bontemps-Gallo et al. 2013). The phosphorylation of the RcsBD56N protein is 66 

impossible since its phosphorylatable aspartic acid residue at position 56 was changed in 67 

an asparagine residue. These conclusions about the activation level of the RcsCDB 68 

phosphorelay system in the wild-type and the different mutant strains were classically 69 

deduced from expression analysis of genes regulated by this phosphorelay. 70 

In the present study, we showed the variation of activation level of the RcsCDB 71 

phosphorelay system in different genetic background by direct observation of the RcsB 72 

phosphorylated and non phosphorylated protein forms separated with a Phos-tagTM 73 

acrylamide gel retardation approach(ref phos tag). We demonstrated that the loss of OPGs 74 

severely increases the phosphorylation level of the RcsB protein and  this constitutive 75 

phosphorylation repress motility . 76 

 77 

2. Materials and Methods 78 

2.1 Bacterial strains, media and growth conditions 79 

Bacterial strains and plasmids are described in Table 1. Bacteria were grown in Lysogeny 80 

broth (LB) (Bertani, 2004) at 30°C (D. dadantii) or 37°C (Escherichia coli). Antibiotics were 81 

used at the following concentrations for D. dadantii: gentamicin at 2 µg.ml-1, 82 

chloramphenicol at 12.5 µg ml-1, and kanamycin at 25 µg ml-1, spectinomycin at 50 µg ml-1. 83 

Ampicillin was used at 50 µg ml-1 for E. coli. 84 

 85 

2.2 Plasmid constructs and protein purification  86 

Plasmid used for the expression of the His tagged-RcsB, pNF410, was previously described 87 

in Bontemps-Gallo et al., 2013. For the construction of the His tagged-RcsBD56N, a DNA 88 

fragment encoding the mutated rcsBD56N gene was amplified by PCR using pNFW374 as 89 

template, with the rcsBacf (CACCATGAGCAATCTAAACGTAATTATTGCAG) and rcsBacr 90 

(CGCCGGCAAGAGCATTACTC) primers, cloned into the His-tag expression vector 91 



pET100/D-Topo® (Invitrogen Life Technologies) to give pNFW491. The His-tagged RcsB 92 

and RcsBD56N proteins were expressed in E. coli BL21(DE3) and purified according to 93 

Bontemps-Gallo et al., 2013.  94 

 95 

2.3 Production of the phosphoramidate 96 

The phosphoramidate (PA) used to phosphorylate the RcsB Protein in vitro was synthesized 97 

by reaction of phosphoryl chloride with ammonium as described by Sheridan (Sheridan et 98 

al., 1972). 99 

 100 

2.4 Analysis of RcsB phosphorylation in vitro 101 

Phosphorylation reactions of purified RcsB or RcsBD56N were performed with 5 µg of 102 

proteins in 50 mM Tris-HCl, pH7.5, 100 mM NaCl, 10 mM MgCl2 and 2 mM β-103 

mercaptoethanol. PA was added to a final concentration of 15 mM to initiate the reaction. 104 

After 0, 15 or 30 minutes of incubation at room temperature, the reactions were stopped by 105 

addition of SDS-PAGE loading buffer (final concentration: 50 mM Tris-HCl pH6.8, 2% (w/v) 106 

SDS, 10% (w/v) glycerol, 20 mM DTT, 0.02% bromophenol blue). The mixtures were 107 

resolved using phosphoprotein affinity gel electrophoresis as described in Barbieri and 108 

Stock, 2008, with minor modifications. Briefly, Phos-tagTM acrylamide gels were composed 109 

of a 10% resolving solution [10% (w/v) 37.5:1 acrylamide/N,N’methylenebisacrylamide, 110 

375 mM Tris (pH8.8) and 0.1% (w/v) SDS, 125µM Phos-tagTM acrylamide and 250 µM 111 

MnCl2] and a 4% stacking solution [4% (w/v) 37.5:1 112 

acrylamide/N,N’methylenebisacrylamide, 125 mM Tris (pH6.8) and 0.1% (w/v) SDS]. The 113 

gels were run at 4 °C under constant voltage (150 V) with standard running buffer (0.1% 114 

(w/v) SDS, 25 mM Tris and 192 mM glycine) and stained with Coomassie Blue.  115 

 116 

2.5 Analysis of RcsB phosphorylation in vivo 117 

At mid-log phase, equivalent of 1 ml of 0.15 OD620nm of D. datantii cells was harvested by 118 

centrifugation and pellets were immediately lysed with 12.7 µl of 1M formic acid, 119 

solubilised by 5 µl of 4X SDS-PAGE loading buffer and neutralized by 2.8 µl 5 N NaOH. 120 

Samples were quickly loaded onto gels containing 35 µM Phos-tagTM acrylamide and 70 µM 121 

MnCl2 prepared and run as described before. After 10 min wash with transfer buffer (25 122 



mM Tris and 192 mM glycine) supplied with 1 mM EDTA, followed by 10 min wash with 123 

transfer buffer without EDTA, gels were transferred  to nitrocellulose membranes using a 124 

Trans-Blot® TurboTM Blotting system (Bio-Rad) with a pre-programmed protocol (2.5 A, up 125 

to 25 V, 7 min). Western blotting against RcsB were performed as described in Bontemps-126 

Gallo et al., 2013. When required, purified RcsB or RcsBD56N protein (2.5 µg) were 127 

phosphorylated by a 30 min incubation at room temperature with PA, as described 128 

previously. RcsB or phosphorylated RcsB proteins were added to bacteria prior lysis. 129 

 130 

2.6 Quantification of the phosphorylated RcsB protein amount. 131 

Phosphorylated RcsB and RcsB were quantified by determination of the area intensity of 132 

each band with the software Quantity One (Bio Rad) after staining with coomassie blue or 133 

detection by Western blot. Quantification of phosphorylated RcsB was expressed as the 134 

ratio of the phosphorylated RcsB amount divided by the sum of the RcsB and the 135 

phosphorylated RcsB amounts as described elsewhere (Barbieri and Stock, 2008). 136 

 137 

2.7 Dosage fusion 138 

….  139 

2.8 Analyse motility nage et fliC antibodies 140 

 141 

3. Results and Discussion 142 

3.1 Phosphorylated RcsB (RcsB-P) migrate slower than RcsB 143 

The method to observe the phosphorylated form of cytoplasmic regulators proteins is 144 

available when the phosphate group is linked to a serine, threonine or tyrosine because the 145 

linkage is relatively stable.  In the case of bacterial phosphorelays, the phosphate group is 146 

linked to an aspartate residue for the cytoplasmic regulator. Unfortunately, in this last case, 147 

linkage is highly unstable and since recently, observation of thse kind of phosphorylated 148 

proteins was impossible. 149 

In 2008, Stock’s lab published a method allowing separation of the phosphorylated and the 150 

non-phosphorylated forms of phosphorelay regulators (Barbieri and Stock, 2008). This 151 

method relies on Phos-tagTM: a dinuclear metal complex acts as a specific phosphate-152 

binding agent. In a Phos-tagTM acrylamide gel, the Phos-tagTM linked to acrylamide 153 



molecules interact with the phosphorylated form of the protein which migrates slower than 154 

the non-phosphorylated protein allowing the separation of both forms of the protein.The 155 

method was first applied in vitro on RcsB since method must be adapted to each regulator 156 

(dixit Stock ref). Purified RcsB was phosphorylated in vitro by the phosphodonor 157 

phosphoramidate (PA) (Lukat et al., 1992). 5 µg of RcsB was incubated different times with 158 

or without PA (see materials and methods), samples were loaded onto a Phos-tagTM 159 

acrylamide gel and RcsB was revealed with coomassie blue after migration. Without PA 160 

added, a single band, corresponding to the non-phosphorylated RcsB form (called RcsB) 161 

was observed (lanes 1 and 2, Fig. 1A). In contrast, a retardation of migration of 57% and 162 

61% of the band was observed (lanes 3 and 4, Fig. 1A) when PA was added during 15 min 163 

and 30 min respectively. This strongly suggests that the shifted band corresponds to the 164 

phosphorylated RcsB form (called RcsB-P) but indicating that in our conditions, PA was 165 

unable to phosphorylate all RcsB. The same experiment was performed with the non 166 

phosphorylatable RcsBD56N protein (lanes 5 to 8, Fig. 1A). In these lanes, a single band 167 

migrating as the single band of lanes 1 and 2 was observed. These data indicate that the 168 

lower band corresponded to RcsB, that the upper band corresponded to RcsB-P and that PA 169 

phosphorylates the proper aspartic residue of RcsB. These conditions allowed us to analyze 170 

the stability of the phosphorylation of RcsB in vivo. 171 

Fin de la correction 172 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 173 

 174 

3.2 The lysis with formic acid had no effect on the RcsB-P amount 175 

The in vivo analysis required rapid lyse of bacteria with formic acid before loading onto the 176 

gel (Barbieri and Stock, 2008). Because the phospho-aspartate bond is very unstable, it was 177 

important to check both the effect of the formic acid and the lysis of cell on the stability of 178 

RcsB and of the RcsB-P phospho-aspartate bond. To do this, 5 µg of purified RcsB or RcsB-P, 179 

phosphorylated by PA, was added to an rcsB null mutant strain of D. dadantii (NFB7279) 180 

prior lysis with formic acid. Lysates were then loaded onto a Phos-tagTM gel. As controls, the 181 

same amount of RcsB and RcsB-P without bacteria were loaded onto the same gel. The same 182 

experiments and controls were performed with the RcsBD56N. After run, RcsB was revealed 183 

by Western blot. When the lysate of the NFB7279 strain was loaded onto the gel alone, RcsB 184 



was not detected (lane 1, Fig. 1B). A similar amount of RcsB was revealed when RcsB was 185 

added to the NFB7279 strain before lysis (lane 2, Fig. 1B) or when RcsB was loaded alone 186 

onto the gel (lane 6, Fig. 1B). The same two bands in similar amount, corresponding to RcsB 187 

(53%, lower band) and RcsB-P (47%, upper band), were revealed when RcsB 188 

phosphorylated by PA was added to the NFB7279 strain before lysis (lane 3, Fig. 1B). The 189 

same two bands in similar amount, corresponding to RcsB (52%, lower band) and RcsB-P 190 

(48%, upper band), were revealed when RcsB phosphorylated by PA was loaded alone on 191 

the gel (lane 7, Fig. 1B). The same conclusions can be drawn when RcsBD56N was used 192 

instead of RcsB except that only one band was observed corresponding to the non 193 

phosphorylated form of RcsB (lane 4, 5, 8, 9, Fig. 1B). Taken together, these results indicate 194 

that neither cell lysate nor formic acid affect the RcsB stability or the RcsB-P phospho-195 

aspartate bond stability and that the two forms of RcsB are separated within a cell lysate. 196 

These results allowed us to analyse the RcsB phosphorylation in vivo. 197 

 198 

3.3 The phosphorylation of RcsB is increased in a strain devoid of OPGs 199 

We previously showed that the RcsCDB phosphorelay was constitutively activated in an 200 

opgG strain devoid of OPGs and constitutive activation was resumed by secondary 201 

mutations reducing the activity of the RcsCDB phosphorelay (see introduction). These 202 

conclusions were deduced from expression analysis of genes regulated by the RcsCDB 203 

phosphorelay. To confirm these results, the level of in vivo phosphorylation of RcsB was 204 

performed using the Phos-tagTM approach in the same strains (Fig. 1C). As expected, no 205 

RcsB was detected in the rcsB strain (lane 7, Fig. 1C). As expected, in the rcsBD56N, only one 206 

band was observed corresponding to the RcsB form (lane 6, Fig. 1C). In the wild-type strain 207 

(lane 1, Fig. 1C), a low amount of RcsB-P (11% upper band) was observed as compared to 208 

the RcsB amount (89%, lower band). In the opgG strain (lane 2, Fig. 1C), an increased 209 

amount of RcsB-P (23%, upper band) as compared to RcsB (77%, lower band) was 210 

observed as compared to the wild-type but RcsB remained more important. In the opgG 211 

rcsC2 (lane 3, Fig. 1C), in the rcsC2 (lane 4, Fig. 1C), in the rcsC null mutant (lane 5, Fig. 1C), 212 

and in the rcsBD56N (lane 6, Fig. 1C) strains, RcsB-P cannot be detected. These data 213 

confirmed the results observed by Bouchart et al. (2010). In addition, they showed that in 214 

wild-type cells, the RcsB-P form is present in very limited amount and that a moderate 215 



increase in RcsB-P (opgG strain) is sufficient to confer the pleiotropic phenotype observed 216 

in D. dadantii. The direct analysis of phosphorylation level of regulators of phosphorelays is 217 

of a great interest particularly for determination of the phosphorylated to non 218 

phosphorylated ratio of regulator imposible to do with analysis of gene expression but 219 

remains difficult to use systematically because adaptation of the method is required for 220 

each new phosphorelay studied is time consuming. 221 

 222 
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 271 
Legends to figures 272 

Figure 1: Separation of RcsB and RcsB-P by Phos-tagTM polyacrylamide gel electrophoresis 273 

and detection in vivo by Western analysis. 274 

A. Phosphorylation of RcsB in vitro. Each lane contains 5µg of either purified wild-type 275 

RcsB (lanes 1 to 4) or RcsBD56N (lanes 5 to 8) incubated in presence of 15mM PA, during 276 

0 min (lanes 2, 6), 15 min (lanes 3, 7) and 30 min (lanes 4, 8) or in absence of PA (lanes 277 

1, 5) before loading onto the gel. After migration, RcsB and RcsB-P proteins were 278 

visualized by coomassie-stained Phos-tagTM gel. 279 

B. Stability of RcsB and phospho-aspartate of RcsB-P during cell lysate processing. Purified 280 

RcsB (lane 2), RcsB-P (lane 3) or unphosphorylatable RcsBD56N (lanes 4-5) were mixed 281 

with rcsB mutant strain before treatment with formic acid as described in Materials and 282 

Methods. As controls, rcsB cell lysate (lane 1), RcsB protein (lanes 6) RcsB-P (lane 7)  283 

and RcsBD56N protein (lanes 8, 9) were also loaded on the gel. Revelation of RcsB was 284 

performed by Western blot analysis after electrophoresis on Phos-tagTM gel. Lanes were 285 

PA is noted indicated that RcsB (or RcsBD56N) was treated 30 min with PA prior to lysis. 286 

C. Phosphorylation of RcsB in vivo. Cell lysates of wild-type (lane 1), opgG (lane 2), opgG 287 

rcsC2 (lane 3), rcsC2 (lane 4), and rcsC (lane 5), rcsBD56N (lane 6) and rcsB (lane 7) 288 

mutant strains of D. dadantii were subjected to Phos-tagTM acrylamide gel 289 

electrophoresis and Western blot analysis. 290 
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 302 

Table 1 303 

Strain Genotype a, b Source or Reference 

Dickeya dadantii 

EC3937 Wild-type Laboratory collection 

NFB3591 opgG::uidA-Kanr rcsC2 Bouchart et al., 2010 

NFB3611 rcsC2 Bouchart et al., 2010 

NFB3682 rcsC::Cmlr Bouchart et al., 2010 

NFB3723 opgG::Cmlr Laboratory collection 

NFB7112 rcsB::Cmlr rcsCBD56ND-Sper Bontemps-Gallo et al., 2013 

NFB7279 rcsB::Gmr Bontemps-Gallo et al., 2013 

 

Escherichia coli 

BL21(DE3) ompT, hsdSB, gal, dcm Invitrogen 

 

Plasmids 

pNFW374 pUC18Not- rcsCBD56ND, Ampr Bontemps-Gallo et al., 2013 

pNFW410 pET100/D-topo rcsB, Ampr Bontemps-Gallo et al., 2013 

pNFW491 pET100/D-topo rcsBD56N, Ampr This study 

 

arcsCBD56ND is carried by a Sper mini-Tn5 304 

bCmlr, chloramphenicol resistance; Ampr, ampicillin resistance, Kanr, kanamycin resistance, 305 
Sper, spectinomycin resistance, Gmr, gentamicin resistance. 306 
 307 


