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Recent prospective studies have shown that dysregulation of the immune system may precede the development of B-cell lym-

phomas (BCL) in immunocompetent individuals. However, to date, the studies were restricted to a few immune markers, which

were considered separately. Using a nested case–control study within two European prospective cohorts, we measured plasma

levels of 28 immune markers in samples collected a median of 6 years before diagnosis (range 2.01–15.97) in 268 incident

cases of BCL (including multiple myeloma [MM]) and matched controls. Linear mixed models and partial least square analyses

were used to analyze the association between levels of immune marker and the incidence of BCL and its main histological

subtypes and to investigate potential biomarkers predictive of the time to diagnosis. Linear mixed model analyses identified

associations linking lower levels of fibroblast growth factor-2 (FGF-2 p 5 7.2 3 1024) and transforming growth factor alpha

(TGF-a, p 5 6.5 3 1025) and BCL incidence. Analyses stratified by histological subtypes identified inverse associations for MM

subtype including FGF-2 (p 5 7.8 3 1027), TGF-a (p 5 4.08 3 1025), fractalkine (p 5 1.12 3 1023), monocyte chemotactic

protein-3 (p 5 1.36 3 1024), macrophage inflammatory protein 1-alpha (p 5 4.6 3 1024) and vascular endothelial growth fac-

tor (p 5 4.23 3 1025). Our results also provided marginal support for already reported associations between chemokines and

diffuse large BCL (DLBCL) and cytokines and chronic lymphocytic leukemia (CLL). Case-only analyses showed that Granulocyte-

macrophage colony stimulating factor levels were consistently higher closer to diagnosis, which provides further evidence of

its role in tumor progression. In conclusion, our study suggests a role of growth-factors in the incidence of MM and of chemo-

kine and cytokine regulation in DLBCL and CLL.

Introduction
B-cell lymphomas (BCLs) are the most common hematopoi-
etic cancers in both men and women in the developed
world.1,2 The strongest and most consistent risk factors are
related to altered immunity conditions including HIV infec-
tion or iatrogenically induced immune suppression after
transplantation.1 However, the prevalence of these conditions
is too low to explain the majority of BCL cases. This has led
to the hypothesis that minor perturbations in immune func-
tion among otherwise immunocompetent individuals could
be related to future BCL risk.

Few prospective studies have reported on the possible
association linking BCL risk and circulating levels of immune
markers. These studies have suggested an increased risk of
BCL and or its subtypes with increased blood levels of solu-
ble CD (sCD)23,3 sCD27,3–5 sCD30,3–7 soluble interleukin
(sIL)-2R,8 tumor necrosis factor (TNF),9 sTNF-R1,10 sTNF-

R2,10,11 BCA-1,5,12 TNF-a,10,12 soluble vascular endothelial
growth factor receptor (sVEGFR)2,11 sIL-6R13 and IL10,9,10,14

while IL138 was negatively associated with the risk of BCL.
Most of these studies investigated the associations looking at
proteins separately. However, as many immune markers are
pleiotropic and exert multiple (overlapping) effects, methods
modeling possible joined effects of these molecules may be
more appropriate to investigate future risk of BCL.

In our study, we use blood samples collected years before
clinical diagnosis to interrogate the relationship between pre-
diagnostic blood levels of a large panel of cytokines, chemo-
kines and growth factors and future risk of BCL and its main
histological subtypes. We investigate the marginal relation-
ship of each inflammatory biomarkers separately through
univariate analyses, and consider the potential for a joint
effect of these markers through penalized multivariate models
(in our case, partial least square [PLS]). Exploiting the

What’s new?

B-cell lymphomas (BCL) are frequent in immunocompromised individuals, but most BCL cases are thought to occur as a conse-

quence of minor immune perturbations in otherwise immunocompetent individuals. Here the authors prospectively examined a

panel of immune markers in the blood from 268 patients afflicted with BCL and paired controls. The data uncover a functional

role for growth factors (i.e. FGF-2, TGF-alpha) in the incidence and progression of multiple myeloma, a BCL subtype, and under-

score the importance of chemokine and cytokine regulation in diffuse large B-cell lymphoma and chronic lymphocytic leukemia.
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prospective nature of our biosamples, we also seek for (com-
binations of) biomarkers that would be indicative of the time
elapsed between protein measurement and clinical onset.

Material and Methods
Study subjects

The EnviroGenoMarkers (EGM) study15 is based on partici-
pants from two existing prospective cohorts: the Italian com-
ponent of the European Prospective Investigation into
Cancer and Nutrition (EPIC-Italy)16 and the Northern Swe-
den Health and Disease Study (NSHDS).17 In both cohorts,
blood samples were (prospectively) collected from healthy
subjects at enrolment. This study was approved by the com-
mittee on research ethics at the relevant institutions.

The EPIC project is a European network of prospective
cohorts that was set up to examine relationships of cancer
risk with nutrition and metabolic risk factors.18 Between
1993 and 1998, EPIC Italy completed the recruitment of
47,749 volunteers (15,171 men and 32,578 women, ages 35–
70 years) in five different areas covered by cancer registries.16

After providing informed consent, a blood sample was col-
lected as well as detailed information on dietary and life-style
habits using standardized questionnaires (http://epic.iarc.fr/
research/quest.php). Incident primary cancer was identified
by automated linkages to cancer and mortality registries,
population offices of all municipalities where participants
reported to be residing, hospital discharge systems and peri-
odic personal contacts (in Naples).

The NSHDS cohort contains three sub-cohorts, of which
we solely used samples from the V€asterbotten Intervention
Program. A total of 80,000 healthy individuals aged 40–60
years were recruited between 1985 and 2008 and were asked
to complete a self-administered questionnaire collecting
demographic, medical and lifestyle information as well as a
separate self-administered food frequency questionnaire.
Informed consent was obtained from all participants and a
medical examination was conducted during which a blood
sample was taken. Incidence cancers occurring among cohort
members during the study period were identified by linkage
with the Swedish Cancer Registry and the local Northern
Sweden Cancer Registry.

For both cohorts, within 2 hours of blood collection,
blood samples were processed for the isolation of buffy coats
and other fractions which were placed in cold storage (liquid
N2 in EPIC-Italy and 2808C in NSHDS). Samples were
transported on dry ice to the laboratory and stored for a
short period at 2808C before analyses.

For each incident BCL case identified within the two
cohorts, one random control was selected among all cohort
members alive and free of cancer at the time of diagnosis of
the index case matched by cohort, center, gender, date of
blood collection (6 6 months) and age at recruitment (6 2.5
years). Information from the two studies was integrated into
a single database and standardized. Lymphoma cases were
classified into subtypes according to the SEER ICD-O-3

morphology codes.19 We considered multiple myeloma (MM)
together with all other BCL subtypes and hereafter in the text
BCL includes MM.

We first analyzed samples from 100 case–control pairs
(phase 1), which were subsequently supplemented with an
additional 181 case–control pairs to increase the power of the
study (147 cases in NSHDS, 34 cases in EPIC-Italy) (phase
2).19 After further subtype characterization and review, 11
cases were reclassified (Hodgkin’s lymphoma [n5 6]; T-cell
lymphoma [n5 1]; and unknown (n5 4)) and excluded
from further analysis along with their matched controls.
Moreover, two cases without suitable control samples were
excluded. The final number of included successfully analyzed
samples was 268 BCL cases and 268 controls (Table 1).
Median time between blood collection and diagnosis of BCL
was 6.2 years (range, 2.01–15.97) in NSHDS and 5.4 (range,
2.03–11.47) in EPIC-Italy.

For 224 case–control pairs (from both cohorts), full-
resolution DNA methylation data were also available from
Illumina Infinium Human Methylation 450 platform using
standard protocol and preprocessing/normalizing steps as
described elsewhere.20 From these profiles, using an estab-
lished deconvolution approach,21 we estimated the proportion
of the following six blood components: CD4, CD8 and natu-
ral T-cells, B-cells, monocytes and granulocytes.

Measurement of immune markers

Blood samples were collected in citrate (Italy) or ethylene
diamine tetraacetic acid (EDTA) (Sweden) tubes and proc-
essed by centrifugation within 2 hrs after collection. We mea-
sured a large panel of inflammation-related proteins (n5 32)
including IL1b, IL2, IL4, IL5, IL6, IL7, IL8, IL10, IL12, IL13,
interferon alpha (INF-a), INF-g, TNF-a, eotaxin, IL1 recep-
tor antagonist (IL1-RA), sIL-2RA, INF-g-induced protein 10
(IP10), granulocyte–macrophage colony stimulating factor
(GMSCF), epidermal growth factor (EGF), fibroblast growth
factor 2 (FGF-2), fms-like tyrosine kinase receptor-3 (Flt3)
ligand protein (Flt3ligand), fractalkine, granulocyte colony-
stimulating factor (GCSF), melanoma growth stimulatory
activity/growth-related oncogene (GRO), monocyte chemo-
tactic protein-1 (MCP-1), MCP-3, macrophage-derived che-
mokine (MDC), macrophage inflammatory protein 1 alpha
(MIP-1a), macrophage inflammatory protein 1 beta (MIP-
1ß), soluble CD40 ligand (sCD40L), transforming growth fac-
tor alpha (TGF-a) and VEGF in stored plasma samples of all
cases and controls using the milliplex HCYTOMAG-60K and
HSCYTMAG-60SK kits (Millipore, Billerca, MA), according
to the protocol described by the manufacturer. All measured
markers have previously been investigated at least in one
study, except fractalkine, MCP-3 and INF-a.

Laboratory personnel were blinded with regard to case–
control status. Cases and controls were assayed next to each
other on the same plate in the same batch and a single qual-
ity control sample was run in duplicate with the case–control
sets in each plate. Samples of phase 1 were run once due to
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sample volume limitations while samples in phase 2 were run
in duplicate. Four analytes (IL12, IL1-RA, sIL2-RA and Flt3li-
gand) were excluded from further statistical analyses due to a

high rate of non-detects (>75%). Median intra-batch coeffi-
cients of variation (CV) for all cytokines based on the quality
control duplicates was 14.8 and 5.7 and median inter-batch
CV was 7.7 and 13.3 for phase 1 and 2, respectively (Sup-
porting Information Table S1). Median intra class correlation
coefficient (ICC) of the measured analytes was 0.87 and was
above 0.5, except for MDC and FGF-2 (0.16 and 0.43, respec-
tively) (Supporting Information Table S1). Cytokine levels
measured out of range of the calibration curve (either too
low: <limit of detection (LOD), or too high) and missing
values for covariate (body mass index [n5 8], smoking status
[n5 14], education [n5 16], alcohol intake [n5 41], physical
activity [n5 2]) were imputed based on a maximum likeli-
hood estimation method which was informed by the
observed correlation structure within the data.22 Imputation
of samples <LOD was carried out using the empirical LOD
across all plates as the upper bound. For imputation of sam-
ples with a concentration exceeding the calibration curve, we
used a value of twice the highest observed concentration that
was not out of range as the upper bound. 70% of the retained
markers had <30% imputed values (Supporting Information
Table S1). In all analyses, levels of cytokines were log-
transformed to normalize their distributions. Differences
between cases and controls in baseline continuous covariates
were assessed using paired Student’s t test, and a v2 test for
categorical variables.

Linear mixed models

As proposed elsewhere,19 linear mixed models were used to
investigate the relationship between each of the immune
marker levels separately and the disease outcome. The gen-
eral formulation of the mixed model for a given protein
(continuous variable) observed in participant i (Yi) can be
described as follows:

Yi � a1b1X
i1b2FE

i1uAi1Ei;

where a is the intercept, Ei is the residual error and Xi is a
binary variable indicating whether individual i is a BCL case
or not. FEi is a vector of fixed effect observations for individ-
ual I, including the matching criteria (age, gender and coun-
try), the experimental phase (1 or 2) and as potential
confounders, body mass index (BMI, continuous, in kg/m2),
education (categorical: none, primary, technical/professional,
secondary, university/college), physical activity (categorical:
inactive, moderately inactive, moderately active, active),
smoking status at enrolment (categorical: non-smokers, for-
mer smokers, smokers) and alcohol intake at enrolment (con-
tinuous in g/day). Nuisance variation due to differences
between microtiter plates was modeled through a random
intercept uAi (where Ai denotes the plate on which sample i
was assayed).

The strength of the association between the BCLs (or his-
tological subtypes) case/control status and each protein level
was inferred using a likelihood ratio test comparing the

Table 1. General characteristics of BCL cases and matched controls

Baseline variable
Cases
(n 5 268)

Controls
(n 5 268) p value1

Cohort, n (%)

EPIC-Italy 84 (31.3) 84 (31.3)

NSHDS 184 (68.7) 184 (68.7)

Phase, n (%)

1 96 (35.8) 96 (35.8)

2 172 (64.2) 172 (64.2)

Sex, n (%)

Male 132 (49.3) 132 (49.3)

Female 136 (50.7) 136 (50.7)

Age at recruitment (years)2 53.1 (7.8) 53.1 (7.8) 0.99

Alcohol intake (g/day)2 7.05 (12.5) 8.25 (14.7) 0.32

Body mass index (kg/m2)2 26.36 (3.8) 26.53 (4.1) 0.57

Smoking Status, n (%) 0.80

Never 145 (54.1) 150 (56.0)

Former 68 (25.4) 63 (23.5)

Current 55 (20.5) 55 (20.5)

Highest educational
level, n (%)

0.28

None 4 (1.5) 1 (0.4)

Primary 96 (35.8) 104 (38.8)

Technical/professional 68 (25.4) 56 (20.9)

Secondary 53 (19.8) 65 (24.3)

University/college 47 (17.5) 42 (15.7)

Physical activity
(Cambridge index), n (%)

0.22

Inactive 80 (29.9) 76 (28.4)

Moderately inactive 106 (39.6) 95 (35.4)

Moderately active 68 (25.4) 74 (27.6)

Active 14 (5.2) 23 (8.6)

BCL sub-types, n (%)3

DLBCL 44 (16.4)

FL 39 (14.6)

CLL 42 (15.6)

MM 76 (28.4)

Other subtypes 67 (25)

Abbreviations: CLL, chronic lymphocytic leukemia; DLBCL, diffuse large
BCL; FL, follicular lymphoma; MM, multiple myeloma; EPIC, European
Prospective Investigation into Cancer and Nutrition; and NSHDS, the
Northern Sweden Health and Disease Study.
1P values are based on t-tests for continuous variables and v2 tests for
categorical variables. 2Mean (standard deviation). 3Number of cases for
each subtype in EPIC-Italy: DLBCL 5 11, CLL 5 11, FL 5 20, MM 5 21,
others 5 21, and in NSHDS: DLBCL 5 33, CLL 5 31, FL 5 19, MM 5 55,
others 5 46.
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model with the disease status (Xi) variable to the one without
it. The model was fitted on all markers separately, and we
accounted for multiple testing using a Bonferroni correction,
controlling the family wise error rate (FWER) below 5%.

To investigate potential confounding by blood cell count
differentials, the models (for full BCL and all histological sub-
types) were further adjusted on the estimated cell proportions
for 5 (of the 6) cell types (CD8, CD4, natural killer T cells, B
cells and monocytes) for the 224 pairs in which that informa-
tion was available.

Proteins that were found to be differentially expressed
between cases and controls were further investigated through
unconditional logistic regression (ULR), where, for a given
subtype, cases were compared to all controls, adjusting for
country, gender, age at recruitment, phase and microtiter
plate number. Quartiles (Q) of plasma cytokine concentra-
tions were calculated based on the distribution in controls.

PLS analyses

To evaluate the potential for a joint inflammatory signal that
would be related to BCL or any of its histological subtypes,
we performed series of PLS-DA analyses in relation to case/
control status. To facilitate interpretability, we performed var-
iable selection by penalizing the loadings coefficients as pro-
posed in the sparse PLS-DA models (sPLS-DA).23 As recently
proposed,24 we also accounted for a functional grouping of
the proteins in cytokines, chemokines and growth factors
classes to inform the model. We ran series of sparse group
PLS-DA (sgPLS-DA) analyses to select the most relevant pro-
tein groups in relation to disease status and imposed sparsity
within the selected groups. In all PLS-DA analyses, the num-
ber of components was set to 1, and calibration of both the
penalty, and, when applicable (sGPLS-DA), of the number of
selected groups was done via fivefold cross-validation
repeated 100 times. Calibration parameters were chosen to
minimize the average misclassification rates, using univariate
and bi-dimensional grids for sPLS-DA and sgPLS-DA,
respectively, exploring all possible values of the number of
selected variables and, if applicable, groups.

We also adopted an sPLS approach to investigate the rela-
tionship between prediagnostic levels of inflammatory
markers in BCL cases and the time elapsed between the mea-
surement and the clinical onset. We ran these analyses for
BCL cases only and calibrated the penalty using the same
cross-validation procedure to minimize, in that case, the
mean square error of prediction.

For all PLS-DA and PLS analyses, we conducted a series
of stability analyses randomly sub-sampling (N5 10,000
times) 80% of the study population, and running the PLS
models for each subsample. As a measure of stability, we
report, for all investigated values of the calibration parame-
ters, the number of times each variable was selected across
the 10,000 subsamples.

To adjust results from all PLS analyses for technically
induced variation, and as already proposed,25,26 we inferred

de-noised data from the linear mixed model presented above
by subtracting from the observations the estimated random
effects.

Linear mixed models were fitted using lme4 R-statistical
package, and all PLS and PLS-DA analyses were performed
using the R-statistical package sgPLS using the R 3.4.0 lan-
guage and environment (The R Foundation for Statistical
Computing, Vienna, Austria). Conditional and ULRs were
performed using SAS (ver. 9.2, SAS institute).

Results
Of all BCL cases, 16.4% were diagnosed with diffuse large
BCL (DLBCL) (n5 44), 14.6% with follicular lymphoma (FL)
(n5 39), 15.6% with CLL (n5 42) and 28.4% with MM
(n5 76). Distribution of BCL subtypes and gender across
phases and countries are shown in Supporting Information
Table S2. Each phase includes subjects from both cohorts
and gender. Characteristics of the study population are sum-
marized in Table 1. Supporting Information Tables S3 and
S4 show the median, minimum and maximum levels of all
cytokines stratified by case–control status, country, phase of
study and BCL subtypes. Median concentration of most
immune markers was higher among control subjects, phase 1
and NSHDS subjects compared with cases, phase 2 and
EPIC-Italy subjects, respectively.

Linear mixed model analyses

In a first set of analyses, all BCL cases were pooled together
and multivariate analyses revealed a general lower level of
inflammatory markers among cases compared with controls
(Fig. 1a, Supporting Information Tables S3 and S5). Among
the 28 analytes, 20 showed an inverse association with disease
status. Of these, only two reached Bonferroni significance
level (Supporting Information Table S5) and involved blood
levels of FGF-2 (b 5 –0.50, p values5 7.2 3 1024) and
TGF-a (b 5 –0.68, p values5 6.5 3 1025). Models adjusted
for white blood cell (WBC) differentials provided consistent
results (Supporting Information Table S6) and one borderline
significant association involving fractalkine (b 5 –0.47,
p values5 1.84 3 1023) emerged.

Stratification upon histological subtype did not show any
significant associations (FWER< 5%) with CLL, DLBCL and
FL (Figs. 1b–1d, respectively, and Supporting Information
Table S5). In contrast, we identified six inverse associations
for MM subtype (Fig. 1e). We found that lower plasma levels
of FGF-2 (b 5 –1.10, p values5 7.8 3 1027), fractalkine
(b 5 –0.72, p values5 1.12 3 1023), MCP-3 (b 5 –0.91,
p values5 1.36 3 1024), MIP-1a (b 5 –0.72, p values5

4.6 3 1024), TGF-a (b 5 –1.08, p values5 4.08 3 10205),
VEGF (b 5 –1.00, p values5 4.23 3 1025) were associated
with increased risk of MM (Supporting Information Table
S5). Upon adjustment for WBC proportion, two additional
associations involving INF-g (b 5 –0.96, p values5

1.03 3 1023) and IL1b (b 5 –0.71, p values5 1.71 3 1023)
emerged (Supporting Information Table S6). Stratified
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Figure 1. Results of the mixed model analyses between log-transformed values of immune markers and all BCL case–control status (a,

N 5 268 pairs). Results are also presented for main histological subtypes: CLL (b, N 5 42 cases and 268 controls), DLBCL (c, N 5 44 cases

and 268 controls), FL (d, N 5 39 cases and 268 controls) and MM (e, N 5 76 cases and 268 controls). Strength of association (Y-axis) is

measured by p values and the black horizontal line represents the Bonferroni cut-off value ensuring a control of the FWER below 0.05.

Inverse associations are represented in blue and positive associations in orange, and the names of the proteins are colored accordingly.

Results are presented for the full study population, and for the (N 5 224) pairs in which WBC composition estimates were available

(N 5 224 case/control pairs), models are either adjusted (squares) or unadjusted (diamonds) of WBC proportions. Abbreviations: IL, inter-

leukin; INF-a, interferon alpha; INF-g, interferon gamma; GMCSF, granulocyte–macrophage colony stimulating factor; TNF-a, tumor necrosis

factor alpha; EGF, epidermal growth factor; FGF-2, fibroblast growth factor 2; GCSF, granulocyte colony-stimulating factor; GRO, melanoma

growth stimulatory activity/growth-related oncogene; IP10, INF-g-induced protein 10; MCP-1, monocyte chemotactic protein-1; MCP-3,

monocyte chemotactic protein-3; MDC, macrophage derived chemokine; MIP-1a, macrophage inflammatory protein 1 alpha; MIP-1ß, macro-

phage inflammatory protein 1 beta; sCD40L, soluble CD40 ligand; VEGF, vascular endothelial growth factor; TGF-a, transforming growth

factor alpha. [Color figure can be viewed at wileyonlinelibrary.com]
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analyses by phase showed that the results for MM were con-
sistent between the analyses done in Phases 1 and 2, providing
technical replication of our results (Supporting Information
Tables S7a and S7b). Given that the two associations found in
the pooled BCL analyses correspond to the two strongest
MM-specific associations, one can hypothesize that these find-
ings are driven by the MM subtype. This was confirmed by
additional analyses of pooled BCL excluding MM cases, where
no significant associations were observed (Supporting Informa-
tion Fig. 1).

Linear mixed models were further stratified by median
time-to-diagnosis: before 6 years (Supporting Information
Table S8) and after 6 years (Supporting Information Table
S9) for all BCL, BCLL, MM and DLBCL subtypes. Results
showed largely similar associations for cases diagnosed within
or >6 years after blood collection.

Results from the multivariable ULR models (including all
lymphoma controls) for MM were consistent with the linear
regression analyses. These identified an inverse association
between risk of MM (Table 2) and blood levels of FGF-2

Table 2. Risk of MM, stratified by cohort, by quartiles of circulating immune markers

Immune markers

All cases EPIC-Italy NSHDS

Ca/Co, n OR (95% CI) n OR (95% CI) n OR (95% CI)

FGF-2 Q1 (<1.67) 34/67 Ref. 9/18 Ref. 25/49 Ref.

Q2 (1.67–3.23) 24/67 0.72 (0.42–1.22) 6/19 0.48 (0.15–1.56) 18/48 0.69 (0.37–1.29)

Q3 (3.24–4.32) 12/67 0.41 (0.21–0.82) 4/24 0.43 (0.12–1.59) 8/43 0.38 (0.17–0.86)

Q4 (>4.32) 6/67 0.22 (0.09–0.53) 2/23 0.17 (0.03–0.85) 4/44 0.20 (0.07–0.61)

P-trend <0.0001 0.02 0.001

Fractalkine Q1 (<2.51) 31/67 Ref. 5/7 Ref. 26/60 Ref.

Q2 (2.51–3.91) 19/67 0.72 (0.40–1.30) 5/28 0.53 (0.13–2.14) 14/39 0.81 (0.42–1.58)

Q3 (3.92–5.07) 20/67 0.68 (0.37–1.23) 10/22 1.16 (0.32–4.26) 10/45 0.51 (0.24–1.10)

Q4 (>5.07) 6/67 0.25 (0.10–0.62) 1/27 0.12 (0.01–1.13) 5/40 0.32 (0.12–0.87)

P-trend 0.003 0.19 0.01

MCP-3 Q1 (<0.62) 33/67 Ref. 7/14 Ref. 26/53 Ref.

Q2 (0.62–2.39) 18/67 0.66 (0.37–1.20) 7/28 0.61 (0.18–2.04) 11/39 0.62 (0.30–1.26)

Q3 (2.40–3.50) 16/67 0.57 (0.31–1.05) 6/21 0.66 (0.19–2.26) 10/46 0.52 (0.25–1.09)

Q4 (>3.50) 9/67 0.34 (0.16–0.72) 1/21 0.11 (0.01–0.95) 8/46 0.39 (0.17–0.90)

P-trend 0.003 0.05 0.02

MIP-1a Q1 (<0.59) 22/67 Ref. 7/14 Ref. 15/53 Ref.

Q2 (0.59–2.43) 29/67 1.22 (0.69–2.15) 7/17 1.34 (0.36–5.03) 22/50 1.33 (0.69–2.59)

Q3 (2.44–3.49) 17/67 0.74 (0.39–1.42) 5/17 0.94 (0.26–3.35) 12/50 0.79 (0.36–1.73)

Q4 (>3.49) 8/67 0.38 (0.16–0.91) 2/36 0.21 (0.04–1.10) 6/31 0.50 (0.17–1.45)

P-trend 0.02 0.04 0.17

TGF-a Q1 (<–0.55) 33/67 Ref. 8/16 Ref. 25/51 Ref.

Q2 (–0.55–0.77) 26/67 0.82 (0.48–1.39) 9/21 1.02 (0.34–3.01) 17/46 0.71 (0.38–1.35)

Q3 (0.78–2.38) 8/67 0.31 (0.14–0.68) 2/19 0.31 (0.06–1.49) 6/48 0.29 (0.12–0.73)

Q4 (>2.38) 9/67 0.33 (0.15–0.70) 2/28 0.19 (0.04–0.97) 7/39 0.35 (0.14–0.87)

P-trend 0.0003 0.01 0.003

VEGF Q1 (<3.31) 30/67 Ref. 11/17 Ref. 19/50 Ref.

Q2 (3.31–5.28) 27/67 0.91 (0.54–1.55) 6/20 0.66 (0.23–1.89) 21/47 1.05 (0.55–2.00)

Q3 (5.29–6.52) 10/67 0.38 (0.18–0.78) 2/21 0.24 (0.05–1.17) 8/46 0.45 (0.19–1.07)

Q4 (>6.52) 9/67 0.35 (0.16–0.75) 2/26 0.18 (0.04–0.87) 7/41 0.40 (0.16–1.03)

P-trend 0.001 0.01 0.02

Quartiles of (log-transformed) plasma levels of immune markers were calculated based on the distribution in control subjects. Models adjusted for
age, sex, country, body mass index, smoking status, education, physical activity, alcohol intake and phase. Tests for trend were calculated using
the quartile number as continuous variable. Noise variance due to plate was removed before analyses.
Abbreviations: FGF-2, fibroblast growth factor-2; TGF-a, transforming growth factor alpha; MCP-3, monocyte chemotactic protein-3; MIP-1a, macro-
phage inflammatory protein-1 alpha; VEGF, vascular endothelial growth factor; EPIC, European Prospective Investigation into Cancer and Nutrition;
NSHDS, the Northern Sweden Health and Disease Study.
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(OR5 0.22, for 4thQ vs. 1stQ, P- trend< 0.0001), fractalkine
(OR5 0.25, for 4thQ vs. 1stQ, P-trend5 0.003), MCP-3
(OR5 0.34, for 4thQ vs. 1stQ, P-trend5 0.003), MIP-1a (OR5

0.38, for 4thQ vs. 1stQ, P-trend5 0.02), TGF-a (OR5 0.33, for
4thQ vs. 1stQ, P-trend5 0.0003) and VEGF (OR5 0.35, for
4thQ vs. 1stQ, P-trend5 0.001). Results were consistent in both
cohorts although strength of the associations was reduced, espe-
cially for EPIC-Italy, possibly owing to the lower number of
cases. Analyses comparing MM cases to individually age- and
sex-matched controls essentially rendered similar results (Sup-
porting Information Table S10). Moreover, analyses including
minimal adjustment (excluding some factors which are weak
confounders such as smoking status and physical activity) did
not affect the presented results.

Multivariate analyses: PLS-DA models

Calibration of the sPLS-DA analysis of all BCL cases selected
14 variables as yielding optimal balance between discrimina-
tory performances and sparsity. Of these, 12 showed negative
loadings coefficients, suggesting consistent lower levels of

inflammatory markers in BCL cases (Fig. 2a). Stability analy-
ses for models of size 14 showed that 8 of the 14 proteins
were selected in >80% of the (N5 10,000) subpopulations.
In particular, extended stability analyses to all possible num-
ber of variable selected in the sPLS-DA component (Fig. 2b)
showed that both FGF-2 and TFGa were the first variables
to be consistently selected, even in sparse models: both pro-
teins showed selection proportions above 70% in (sub-opti-
mal) models selecting five variables.

Calibration of the sparse group PLS (sgPLS-DA, Fig. 2a)
selected two groups (growth factors and chemokines) and
selected five proteins with negative loadings coefficients in
the growth factors group (including EGF, FGF-2, GCSF,
VEGF and TGF-a), and seven proteins in the chemokines
group: fractalkine, MCP-3, MDC, MIP-1a, MIP-1b, IL8 with
negative loadings and eotaxin, with positive (although lower
in absolute value) loadings coefficients. We further explored
different functional groupings based on predominant origin
or affinity of the measured cytokines (myeloid, lymphoid,
other; B-cell, T-cell, B&T-cell, other; macrophages,

Figure 2. Results of the sparse and sparse group PLS-DA (sPLS-DA and sgPLS-DA, respectively) analyses for all BCL cases. Loadings coeffi-

cients are presented for sPLS-DA and sgPLS-DA (a). Results from the stability analyses of sPLS-DA analyses subsampling (N 5 10,000 times)

80% of the study population are summarized in (b) and represents for each protein (X-axis) and each possible number of selected varia-

bles (Y-axis), the selection proportion (across the 10,000 repeats). Misclassification rates for each variant of the PLS algorithm used are

presented in (c), for controls and each BCL subtype separately. Abbreviations: IL, interleukin; INF-a, interferon alpha; INF-g, interferon

gamma; GMCSF, granulocyte–macrophage colony stimulating factor; TNF-a, tumor necrosis factor alpha; EGF, epidermal growth factor; FGF-

2, fibroblast growth factor 2; GCSF, granulocyte colony-stimulating factor; GRO, melanoma growth stimulatory activity/growth-related onco-

gene; IP10, INF-g-induced protein 10; MCP-1, monocyte chemotactic protein-1; MCP-3, monocyte chemotactic protein-3; MDC, macrophage

derived chemokine; MIP-1a, macrophage inflammatory protein 1 alpha; MIP-1ß, macrophage inflammatory protein 1 beta; sCD40L, soluble

CD40 ligand; VEGF, vascular endothelial growth factor; TGF-a, transforming growth factor alpha. [Color figure can be viewed at wileyonlineli-

brary.com]
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granulocytes, eosinophils etc.). These analyses did not change
the results presented here (not shown).

Misclassification rates yielded by the calibrated sPLS-DA
and sgPLS-DA analyses for all BCL cases (Fig. 3c) showed
rather high error rates, hence indicating a moderate predic-
tive value of these combinations of markers (AUC from ROC
analyses were below 62% for both models). However, our
results clearly suggest that, irrespective of the variant of the
PLS-DA model, the model fitted on all BCL cases showed
lower misclassification rates for the MM cases (Fig. 2c).

Calibration of the subtype-specific sPLS-DA and sgPLS-
DA models were restricted to cases control pairs within each
subtype (N5 42, 44, 39 and 76 pairs for CLL, DLBCL, FL
and MM respectively), and models for FL yielded poor

discriminatory performances with misclassification rates
higher than 58%. Due to this, we do not report FL-related
results.

As depicted in Figure 3a, sets of selected variables showed
limited overlap across histological subtypes. For DLBCL, two
variables were selected by the sPLS-DA (Fig. 4a): MDC (neg-
ative loadings) and eotaxin (positive loadings). Including a
group structure in the model (Fig. 3b), resulted in only the
chemokines being selected to discriminate DLBCL cases and
controls, and within chemokines, MDC and eotaxin were
selected with highest loadings (in absolute value) along with
MCP-1 and IP10. Stability analyses (Supporting Information
Fig. 2a) suggested that these two proteins were the only ones
stably selected in sparse models.

Figure 3. Results of the sparse PLS-DA (sPLS-DA) and sparse group PLS-DA (sgPLS-DA). Models were fitted on subtype-specific sets of cases

and controls. Loadings coefficients are presented for DLBCL, CLL and MM separately for the sPLS-DA model (a), and the sgPLS-DA (b) mod-

els. Models for FL are not reported as they yielded poor predictive performances. Abbreviations: IL, interleukin; INF-a, interferon alpha; INF-

g, interferon gamma; GMCSF, granulocyte–macrophage colony stimulating factor; TNF-a, tumor necrosis factor alpha; EGF, epidermal growth

factor; FGF-2, fibroblast growth factor 2; GCSF, granulocyte colony-stimulating factor; GRO, melanoma growth stimulatory activity/growth-

related oncogene; IP10, INF-g-induced protein 10; MCP-1, monocyte chemotactic protein-1; MCP-3, monocyte chemotactic protein-3; MDC,

macrophage derived chemokine; MIP-1a, macrophage inflammatory protein 1 alpha; MIP-1ß, macrophage Inflammatory Protein 1 beta;

sCD40L, soluble CD40 ligand; VEGF, vascular endothelial growth factor; TGF-a, transforming growth factor alpha. [Color figure can be viewed

at wileyonlinelibrary.com]
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For CLL, five variables were selected by sPLS-DA (Fig.
3a): IL4 and TGF-a (positive loadings coefficient, and
sCD40L, eotaxin and MCP-1 (with negative loadings coeffi-
cients). Stability analyses (Supporting Information Fig. 2b)
showed that IL4, eotaxin and sCD40L showed high selection
probability (>70%) for models including five or more varia-
bles. Sparse group PLS-DA models for CLL selected a single
group (cytokines) and within the group, sCD40L and IL4
(Fig. 3b).

MM analyses selected eight variables (all negative loadings
coefficients, Fig. 3a). Of these, five showed higher absolute val-
ues of the loadings coefficients and high selection proportion
(>75% selection proportion for models of size 8; Supporting
Information Fig. 2c): FGF-2, TGF-a, MCP-3, factalkine and
VEGF. Calibration of the sgPLS-DA analyses of MM subtype

selected a single group: growth factors (Fig. 3b) and within this
group EGF, FGF-2, VEGF and TGF-a were selected.

To explicitly model the relationship between our 28
inflammatory markers and the time to diagnosis, we ran
series of sPLS analyses in cases only (all BCL cases and sub-
sequently DLBCL, CLL and MM separately), relating pro-
spective blood levels of all inflammatory markers and the
observed time to diagnosis. The resulting sPLS models (Fig.
4a) selected a single variable for all BCL (GMCSF, negative
loadings coefficient), for DLBCL (sCD40L, negative loadings
coefficient), for MM (IL8, positive loadings coefficient) and
CLL (MDC, positive loadings coefficient). Stability analyses
(Fig. 4b) showed that while each of these subtype-specific
variables were the most frequently selected, especially for all
BLC analyses (selection proportion of GMCSF >40%), other

Figure 4. Results of the sparse PLS analyses of time to diagnosis in cases only. Results are presented for all BCL cases and for cases of

DLBCL, CLL and MM separately. Loadings coefficients obtained for the calibrated models are presented for each set of cases considered

(a). Results from stability analyses using 10,000 subsamples of the full set of cases are represented in B by the per-variable proportion of

selection across all independent subsamples. Abbreviations: IL, interleukin; INF-a, interferon alpha; INF-g, interferon gamma; GMCSF, granu-

locyte–macrophage colony stimulating factor; TNF-a, tumor necrosis factor alpha; EGF, epidermal growth factor; FGF-2, fibroblast growth fac-

tor 2; GCSF, granulocyte colony-stimulating factor; GRO, melanoma growth stimulatory activity/growth-related oncogene; IP10, INF-g-

induced protein 10; MCP-1, monocyte chemotactic protein-1; MCP-3, monocyte chemotactic protein-3; MDC, macrophage derived chemo-

kine; MIP-1a, macrophage inflammatory protein 1 alpha; MIP-1ß, macrophage inflammatory protein 1 beta; sCD40L, soluble CD40 ligand;

VEGF, vascular endothelial growth factor; TGF-a, transforming growth factor alpha. [Color figure can be viewed at wileyonlinelibrary.com]
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variables were competing to predict time to diagnosis. For
MM both IL8 and GMCSF were selected in 20% of the sub-
samples. For CLL, both MDC and MCP-1 were selected with
proportions around 20%, and for DLBCL, sCD40L showed a
selection proportion around 25%, while it was around 15%
for MCP-1.

Discussion
In our study of plasma levels of circulating immune markers
and subsequent risk of BCL and main histological subtypes,
growth factors and in particular, FGF-2, TGF-a and VEGF
were found consistently associated (inversely) with incidence
of MM. These associations seemed to persist among cases
sampled more than six years before diagnosis, and none of
these disease-associated inflammatory markers showed an
association with time to diagnosis in cases only.

For CLL, DLBCL and FL, no significant association
between circulating immune markers was observed in univar-
iate analyses. However, adopting a group PLS approach, bet-
ter accounting for the possible pleiotropic and complex
effects of immune markers on BCL incidence, chemokines as
a group were found to be related to DLBCL and cytokines to
CLL. Additional variable selection within each selected
groups identified individual markers driving the link between
the group and the outcome: sCD40L and IL4 for CLL; and
MDC, eotaxin, MCP-1, and IP10 for DLBCL. These links
were not detected using the univariate approach. These
results indicate that the use of group and sparse-group PLS
may enhance the analyses of interrelated biological markers.

No direct evidence from our analyses provided support
for the previously reported associations between TNF,9 IL138

and IL109,10,14 and BCL; TNF-a,11 IL614 and IL109,14 and FL;
TNF-a,11 IL5 and IL109 and DLBCL and TGF-a11 and TNF9

and CLL. However, the direction of most of the previously
reported associations is consistent with our findings. In par-
ticular, as Gu et al.8 reported (among 92 B-NHL cases and
184 matched controls), we find a decreased risk of B-NHL
with increasing levels of IL13 and IL5 and an increased risk
of B-NHL for TNF-a. As previously reported in a study
involving 491 B-NHL cases and 491 controls,9 we also find a
positive correlation between levels of TNF-a, IL10 and the
incidence of all BCL, FL and DLBCL. The associations
reported by Purdue et al.10,11 and Conroy et al.14 (272 NHL
cases and 541 matched controls) linking TNF-a and FL,
TGF-a and CLL and IL10 and BCL and FL were also in the
same direction of ours. As such, our study does provide
some potential meta-analytical support for reported associa-
tions involving blood levels of immune markers and specific
BCL-subtypes.

Most previous prospective studies on immune markers
and lymphoma did not include MM. In the pooled analyses
of the MM Cohort Consortium included 493 MM cases and
978 controls from 8 cohorts, IGF-1 was found associated
with an increased MM risk within 3 years of blood collection
while soluble IL-6 receptor was associated with MM in the 6

first years after blood collection.13 Therefore, these markers
are likely to reflect the tumor and/or its microenvironment.
In contrast, our study revealed several markers, mostly
growth factors, inversely related to long-term risk of MM.
This may be of importance as the average 5-year survival
rate for MM patients remains low (�45%).27 If results of our
study are replicated in other studies and extended to clinical
studies in patients with monoclonal gammopathy of undeter-
mined significance (MGUS), or smoldering MM (SMM), this
could lead to the identification of patients at higher risk of
progressing to MM, and, in the long-term could improve
individualized surveillance strategies.

We also performed sparse PLS analyses to identify (com-
bination of) biomarkers that would be indicative of the time
elapsed between protein measurement and clinical onset in a
case-only setting. These analyses revealed that GMCSF
plasma levels were increasing closer to diagnosis for all BCL
cases, and in particular MM cases. A clinically relevant aspect
of the interactions of MM plasma cells in the bone marrow
microenvironment is neovascularization, which is central in
disease progression.28 Myeloma plasma cells induce angiogen-
esis via recruitment and activation of stromal inflammatory
cells such as macrophages and mast cells. When these cells
are activated, they secrete angiogenic factors including GM-
CSF, which contribute to enhance the tumor neovasculariza-
tion.29 Recently GMCSF has also been found to be involved
in homing circulating endothelial precursor cells, which con-
tribute to the “angiogenic switch” and tumor progression.29

Our study has a number of strengths, including its pro-
spective nature, which limits reverse causation bias that may
occur when variation in blood level of cytokines is induced
by the disease itself, cancer treatments or lifestyle changes
after cancer diagnosis. Moreover, compared to most previous
prospective studies, especially on MM, we measured a larger
panel of immune markers. The availability of two cohorts
allowed for independent confirmation of the observed signals.
Conversely, different media for blood samples (citrate in
EPIC-Italy and EDTA in NSHDS) might have introduced dif-
ferences in cytokine levels between the two cohorts which
may cause bias in unconditional analyses by incomplete cor-
rection for cohort status in the model. Although the use of
different anticoagulants results in absolute differences in lev-
els of immune markers, correlations between measurements
in split samples simultaneously treated with heparin, citrate
and EDTA have shown to be highly correlated.15,30 Similarly,
bias may arise from cytokine measurements of study subjects
in two phases despite adjustment in multivariate analyses.
However, stratified analyses by cohort and phase showed
overall similar trends for the identified markers despite
reduced power in these analyses. Furthermore, FGF-2, for
which a significant association with future MM risk was
found, presented a relatively low ICC (0.43). The conse-
quence of a low ICC would be an underestimation of the
effect and would not introduce a false-positive association. As
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such, we may have underestimated the predictive power of
FGF-2 which warrants follow-up in future studies.

We measured the immune markers at a single time point
to determine future risk of BCL, which may not accurately
reflect the long-term immune status of an individual. How-
ever, several studies have provided evidence of a reasonable
between-to-within person variability ratio (ICC) suggesting
temporal stability for panels of cytokines.30–35 Finally, blood
cytokines are produced not only by those cell types consid-
ered to play pivotal roles in the immune system and in
inflammatory responses, including lymphocytes, monocytes
and mast cells but also by macrophages and, for some cyto-
kines, also fibroblasts, neutrophils and endothelial cells. So, it
should be noted that plasma level of cytokines may not nec-
essarily reflect activity in the target tissue.

Our study provided evidence for a strong link between
FGF-2 and TGF-a levels and incidence of MM. Several clini-
cal studies have reported that the plasma concentrations of
FGF-2 were elevated in patients with active MM compared to
patients with inactive disease, and this correlates with
increased bone marrow angiogenesis and lymphangiogene-
sis.36–39 MM patients who respond to chemotherapy (an
immunosuppressed condition) show a significant decrease in
serum FGF-2 levels, whereas non-responders do not.39 TGF-
a is an important mitogen that binds to the EGF receptor
and has been studied in many other malignancies, but data
on MM are limited and no prospective data are available.40–42

In the sgPLS analyses, we also observed some moderate sup-
port for an effect of VEGF on MM incidence. Similar to
FGF-2, clinical studies have shown that increased serum lev-
els of VEGF are associated with more advanced disease stages
and with poor prognosis in BCL and MM cases.36,37,39 VEGF
and its ligands and receptors have a central role in physiolog-
ical regulation of angiogenesis.43 Moreover, there is a growing
list of nonvascular roles of VEGF including recruitment of
inflammatory cells and autocrine and intracrine production
of hematopoietic stem cells.43 A recent nested case–control
study within the Prostate, Lung, Colorectal and Ovarian Can-
cer Screening Trial showed a significant association between
elevated blood levels of soluble VEGFR-2 (sVEGFR-2) and
risk of BCL.11 Although the biologic function of sVEGFR2 is
unclear, it has been shown that sVEGFR-2 binds the lym-
phangiogenic growth factor VEGF-C and thus inhibits
VEGF-C-induced activation of VEGFR-3, consequently inhib-
iting lymphatic endothelial cell proliferation.44 On the other

hand, sVEGFR-2 can bind VEGF and may act as a VEGF
inhibitor. These studies support a possible role of the growth
factors (VEGF and FGF-2) in the pathogenesis of MM. Given
their interrelationship and cyclic response, more in-depth
monitoring of the VEGF, FGF-2 growth factors and its solu-
ble receptors is needed to clarify their possible pre-diagnostic
role in MM.

Although the markers identified in our study have been
identified previously in clinical studies of MM or its precur-
sor states (i.e., MGUS and SMM),45–50 the direction of our
findings is in general opposite to observations among subjects
diagnosed with MM, where higher concentrations of these
markers seems to be related to generally poorer disease out-
come. The reason for this difference in direction of the effect
is not known but may hint toward a preclinical deregulation
of these important biological systems in subjects developing
MM later in life which at the time of clinical manifestation
reverse in overexpression. However, we cannot exclude the
bias related to limited statistical power and design-related
sources of variability in our findings.

In conclusion, our study showed that several immune
markers, in particular growth factors, are associated with
MM incidence in preclinical blood samples taken many years
before clinical diagnosis. In addition, we provide marginal
support for some of the previous reported associations
between several immune-markers and subtypes of BCL, in
particular chemokines being related to DLBCL and cytokines
with CLL. In addition, we showed a consistent link between
blood levels of GMCSF to time-to-diagnosis in all BCL and
MM cases. These results need to be extended and replicated
in independent prospective cohorts to clarify the relationship
with BCL risk for these markers.
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