
HAL Id: hal-02134558
https://hal.science/hal-02134558

Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind frame synchronization and phase offset estimation
for coded systems

Rodrigue Imad, Sébastien Houcke

To cite this version:
Rodrigue Imad, Sébastien Houcke. Blind frame synchronization and phase offset estimation for coded
systems. 9th SPAWC conference : IEEE international workshop on signal processing advances in
wireless communications, Jul 2009, Recife, Brazil. �hal-02134558�

https://hal.science/hal-02134558
https://hal.archives-ouvertes.fr


BLIND FRAME SYNCHRONIZATION AND PHASE OFFSET ESTIMATION FOR CODED
SYSTEMS

Rodrigue Imad and Sebastien Houcke

TELECOM Bretagne
Technopole Brest Iroise - CS 83818 - 29238 Brest Cedex 3, France

phone: + (33)229001381, fax: + (33)229001012, email: {firstname}.{lastname}@telecom-bretagne.eu

ABSTRACT
In this paper, we present a new algorithm of blind frame syn-
chronization and phase offset estimation that can be applied to
any digital transmission scheme using a channel coding with
a Binary Phase Shift Keying (BPSK) modulation. The esti-
mator is based on the calculation of the syndrome elements
of a received codeword obtained using the parity check ma-
trix of the code. After presenting the proposed method, we
evaluate its performance by applying it to some Low Density
Parity Check (LDPC) codes and convolutional codes. This
performance is measured by plotting the probability of false
frame synchronization and the Mean Squared Estimation Er-
ror (MSEE) versus the Signal to Noise Ratio (Eb/N0).

1. INTRODUCTION

Nowadays, the transmission and storage of information are
based on digital techniques. An important step in these tech-
niques is Channel Coding. Several studies [1, 2] have demon-
strated that actual codes such as LDPC codes and turbocodes,
are very powerful and are able to decode heavily corrupted
sequences. However, these works were based on the assump-
tion of a coherent detection, which may be less than realis-
tic for many digital communication systems. Therefore, we
are interested in deriving new algorithms that are able to esti-
mate the frame synchronization position and the phase offset
introduced by the propagation channel, before applying the
decoder.
In the literature, many algorithms have been proposed for the
estimation of the phase offset introduced by the channel. For
a phase offset constant on a whole received codeword and by
assuming that we do not have any a priori information about
the transmitted data, two synchronization approaches are of-
ten used: the “Non Data Aided” (NDA) and the “Hard De-
cision Directed” (HDD) [3]. These approaches assume that
only the modulation type used before transmission is known
by the receiver, which is generally the case. In addition, some
algorithms of phase offset estimation for coded signals con-
sidered the “Code aided” hypothesis, such as recently in [4],
while others considered the phase recovery jointly with the

decoder [5].
We present in this paper a new method of blind phase recov-
ery based on the calculation of the syndrome elements of a
received sequence of coded symbols. This method has been
inspired from a blind frame synchronization method that has
been introduced and developed in [6, 7, 8].
This paper is organized as follows. In Section 2 we define
and introduce the context of our study. A review on the frame
synchronization method recently proposed in the case of per-
fect phase recovery, is presented in Section 3. In Section 4
we modify the previous method to take into consideration the
phase offset due to the channel. Section 5 introduces the pro-
posed method for estimating the phase offset. Simulation re-
sults are presented in Section 6 where different LDPC and
convolutional codes are synchronized. Finally, Section 7 con-
cludes the work.

2. CONTEXT OF OUR STUDY

In this paper, we consider that the transmitter is sending a
binary sequence of codewords and is using a Binary Phase
Shift Keying (BPSK) modulation. The propagation channel
is corrupted by an additive white Gaussian noise.
For a given code of rate

ρ =
nc − nr

nc

,

it is often possible to find the corresponding parity check ma-
trix H of size nr × nc, where nc represents the length of a
codeword and nr the number of parity relations. Let b(k) =
±1 be the kth coded and modulated bit to be transmitted. At
the reception, the kth received sample is given by:

r(k) = b(k − t0)e
iθ + w(k), (1)

where t0 is an integer representing the shift of the transmitted
symbols and θ is a real representing the phase offset intro-
duced by the propagation channel. w(k) = w1(k) + iw2(k)
is a white complex Gaussian noise. The received sequence of
N samples can be written as:

r = [r(1), . . . , r(N)].



3. FRAME SYNCHRONIZATION METHOD IN THE
CASE OF PERFECT PHASE RECOVERY

When there is no phase offset introduced by the propagation
channel, the phase θ introduced in (1) is equal to zero.
We showed in [8] that our blind frame synchronization method
is based on a MAP approach in the sense of maximizing the
probability that a position t corresponds to the correct syn-
chronization moment, given the received samples. In other
words, it maximizes the following a posteriori probability:

Pr[t/r], t ∈ [0, nc − 1].

Therefore, at each position t on the received sequence we ap-
ply a sliding window of length Knc, where K is an integer
greater or equal to one. K represents the number of blocks of
length nc contained in the synchronization window.
At each position of this sliding window, we calculate the vec-
tor of Log-Likelihood Ratios (LLR) of the syndrome elements.
This vector can be written as:

L(St) = [L(St(1)), . . . , L(St(Knr))],

where L(St(k)) is the LLR of the kth syndrome element. Ac-
cording to [9], L(St(k)) is proportional to:

L̂(St(k)) = (−1)uk+1
uk
∏

j=1

sign(r(t+kj)) min
j=1,...,uk

|r(t+kj)|,

where uk and kj represent the number of ones in the kth line
of the parity check matrix of the code and the position of the
jth non zero element in this kth line, respectively. Having
this, we compute

φ̂(t) =

Knr
∑

k=1

L̂(St(k))

and the frame synchronization position is estimated by:

t̂0 = argmin
t=0,...,nc−1

{φ̂(t)}. (2)

4. FRAME SYNCHRONIZATION IN THE CASE OF A
PHASE OFFSET INTRODUCED BY THE CHANNEL

Let us study the robustness of our frame synchronization method
when a phase offset θ is introduced by the propagation chan-
nel and assumed to be constant on K received codewords.
In order to calculate the reliability of the sum of the syndrome
elements, we apply our frame synchronization criterion twice;
once on the real part of a received symbol r(k) and the other

time on the imaginary part. This gives two functions:

Pθ(t) =

Knr
∑

k=1

(−1)uk+1
uk
∏

j=1

sign
(

<(r(t + kj))
)

. min
j=1,...,uk

∣

∣<(r(t + kj))
∣

∣

=

Knr
∑

k=1

(−1)uk+1
uk
∏

j=1

sign
(

b(t + kj − t0)cosθ + w1(t + kj)
)

. min
j=1,...,uk

∣

∣b(t + kj − t0)cosθ + w1(t + kj)
∣

∣ (3)

and

Qθ(t) =

Knr
∑

k=1

(−1)uk+1
uk
∏

j=1

sign
(

=(r(t + kj))
)

. min
j=1,...,uk

∣

∣=(r(t + kj))
∣

∣

=

Knr
∑

k=1

(−1)uk+1
uk
∏

j=1

sign
(

b(t + kj − t0)sinθ + w2(t + kj)
)

. min
j=1,...,uk

∣

∣b(t + kj − t0)sinθ + w2(t + kj)
∣

∣. (4)

Let E[x] denote the expected value of x. We have for exam-
ple:

E
[

lim
θ→0

Pθ(t)
]

= E
[

φ̂(t)
]

and E
[

lim
θ→0

Qθ(t)
]

= 0

and on the other hand

E
[

lim
θ→π

2

Pθ(t)
]

= 0 and E
[

lim
θ→π

2

Qθ(t)
]

= E
[

φ̂(t)
]

θ being unknown, Pθ(t) and Qθ(t) should then be treated to-
gether in order to get an idea on the reliability of the syndrome
elements. Therefore, an estimation of the frame synchroniza-
tion position is obtained similarly to (2) but by replacing φ̂(t)
by F

(

Pθ(t), Qθ(t)
)

, which is a function of Pθ(t) and Qθ(t).
The choice of F depends on the fact that uk is even or odd.

Case I: uk is even

In a noise free channel, (3) and (4) can be written as:

Pθ(t) = φ̂(t)|cosθ| (5)
Qθ(t) = φ̂(t)|sinθ| (6)

In the case of a coherent detection, we usually have φ̂(t0) <

0 < φ̂(t)t6=t0 . Therefore, in order to apply the criterion given
in (2) to our case, F (P, Q) should be an increasing function
of P and Q. A simple example of F giving good results could
be:

F
(

Pθ(t), Qθ(t)
)

= Pθ(t) + Qθ(t). (7)



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Pr
ob

ab
ilit

y 
of

 fa
lse

 s
yn

ch
ro

ni
za

tio
n

 

 

Code I without phase offset
Code I with phase offset
Code II without phase offset
Code II with phase offset

Fig. 1. Frame synchronization of LDPC codes when a ran-
dom phase offset is introduced.
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Fig. 2. Frame synchronization of convolutional codes
when a random phase offset is introduced.

Case II: uk is odd

When uk is odd and in a noise free channel, we have:

Pθ(t) =

{

φ̂(t)|cosθ| if θ ∈ [0, π
2 ] ∪ [ 3π

2 , π]

−φ̂(t)|cosθ| if θ ∈ [π
2 , 3π

2 ]
(8)

Qθ(t) =

{

φ̂(t)|sinθ| if θ ∈ [0, π]

−φ̂(t)|sinθ| if θ ∈ [π, 2π]
(9)

The sign of Pθ(t) and Qθ(t) being dependent from θ, it does
not help us this time for finding the frame synchronization
position. However we still have:

E
[

|Pθ(t0)|
]

> E
[

|Pθ(t)t6=t0 |
]

and E
[

|Qθ(t0)|
]

> E
[

|Qθ(t)t6=t0 |
]

(10)

According to the previous observations, the function given in
(7) becomes:

F
(

Pθ(t), Qθ(t)
)

= −|Pθ(t)| − |Qθ(t)|. (11)

5. PROPOSED METHOD OF CARRIER PHASE
RECOVERY

Let us assume that we have correctly estimated the frame syn-
chronization position. In a noise free channel and by combin-
ing (5), (6), (8) and (9) we get:

θ = Arctan

(

±
Qθ(t0)

Pθ(t0)

)

∀uk. (12)

Using the above equation in our context, we get an estimation
of θ with an ambiguity of π

2 . However, we can evolve this cri-
terion in order to obtain an estimation of θ modulo π instead
of π

2 . The procedure to be done depends on the parity of uk:
If uk is even, we study the evolution of the functions δx 7→

Pθ+δx and δx 7→ Qθ+δx. Indeed, for δx positive and close to
zero, and as Pθ(t0) and Qθ(t0) are negative and depend on θ,
we have:

• If θ ∈ [0, π
2 − δx] ∪ [π, 3π

2 − δx], δx 7→ Pθ+δx is an
increasing function and δx 7→ Qθ+δx is a decreasing
one.

• If θ ∈ [π
2 , π − δx] ∪ [ 3π

2 , 2π − δx], δx 7→ Pθ+δx is a
decreasing function and δx 7→ Qθ+δx is an increasing
one.

However, when uk is odd, we can use the same procedure as
the one described above but by studying this time the varia-
tions of δx 7→

∣

∣Pθ+δx

∣

∣ and δx 7→
∣

∣Qθ+δx

∣

∣. We have:

• If θ ∈ [0, π
2 − δx] ∪ [π, 3π

2 − δx], δx 7→
∣

∣Pθ+δx

∣

∣ is a
decreasing function and δx 7→

∣

∣Qθ+δx

∣

∣ an increasing
one.

• If θ ∈ [π
2 , π − δx] ∪ [ 3π

2 , 2π − δx], δx 7→
∣

∣Pθ+δx

∣

∣ is
an increasing function and δx 7→

∣

∣Qθ+δx

∣

∣ a decreasing
one.

By applying this method, we are able to estimate θ with an
ambiguity of π.

6. SIMULATION RESULTS

We present in this section simulation results concerning frame
synchronization and phase offset estimation. The results be-
low were obtained for K = 1, which means that only one
block is contained in the synchronization window. For all the
plotted curves, functions given in (7) and (11) were used. In
order to evaluate the performance of the proposed method,
we synchronized different types of codes. For each simula-
tion, more than 10000 Monte Carlo realizations were made.
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Fig. 3. Frame synchronization of LDPC code I versus θ,
for different values of Eb/N0.
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Fig. 4. Frame synchronization of LDPC code II by adding
a correction term to the received samples.

Fig.1 shows the curves of the probability of false frame syn-
chronization versus Eb/N0 for two LDPC codes. These codes
have a length equals to 512 bits and a rate of 0.5. They differ
only by the composition of their parity check matrix. Code I
has four non zero elements in each line of its parity check ma-
trix and code II has six. When a phase offset randomly cho-
sen by a uniform law between 0 and 2π is introduced, there
is a gap of around 1.5 dB compared to the case where no
phase offset exists. Let us now compare the curves plotted for
codes I and II: as we can see and as mentioned in [6, 7], there
is a degradation in the performance of our synchronization
method when the number of non zero elements in the parity
check matrix of the code increases.
In Fig. 2, we applied the same synchronization method but
this time to convolutional codes. We considered in our simu-
lations that the final state of the encoder is not imposed. This
means that neither we terminated the trellis nor we applied
the “tail-biting” technique [10]. In these conditions, non zero
elements in the parity check matrix of the code are placed in
a “staircase” form. This leads to a degradation in the perfor-
mance of our synchronization method. One simple solution to
this problem is given in [7] where the authors propose to in-
terleave the bits in each transmitted codeword using a pseudo-
random interleaver of size nc bits.
Two convolutional codes of generator polynomials (5, 7) and
(23, 35) were tested. They have same length (512 bits), same
rate (0.5) and constraint lengths equal to 3 and 5, respectively.
As shown in Fig. 2, we observe the same behavior as the one
obtained with LDPC codes.
Note that the number of non zero elements in each line of the
parity check matrix of codes (5, 7) and (23, 35) is equal to
5 and 7, respectively. Thus, even if uk is odd, the proposed
frame synchronization method presents good performance.
Let us now apply the frame synchronization procedure for a
given θ. Figure 3 shows the performance of the frame syn-

chronization method applied to LDPC code I, previously in-
troduced in this section. As we can see in this figure, each
plotted curve represents the probability of false synchroniza-
tion versus θ, for a different Eb/N0. We can clearly observe
that the frame synchronization performance varies in terms of
the phase offset of the channel. For θ = π

4 , the performance
of our method is the worse.
Having this, a correction term θc can be added to the re-
ceived samples in order to improve the frame synchroniza-
tion performance. Therefore, let θc(i)i=1,...,4 = π

16 , π
8 , 3π

16
and π

4 , respectively. Each time we correct a received block by
θc(i)i=1,...,4, then we apply our frame synchronization pro-
cedure, we get F

(

Pθ+θc(i)(t), Qθ+θc(i)(t)
)

. The frame syn-
chronization position is finally estimated by:

t̂0 = argmin
t=0,...,nc−1

θc(i)=θc(1),...,θc(4)

(

F
(

Pθ+θc(i)(t), Qθ+θc(i)(t)
)

)

.

(13)
Fig. 4 shows the performance of the above procedure once
applied to LDPC code II. At a probability of false synchro-
nization equals to 10−3, an improvement of around 1.2 dB is
observed.
Let us now evaluate the robustness of the method proposed in
Section 5 concerning the phase offset estimation, by compar-
ing its performance to the HDD algorithm. Being used as a
reference for many phase recovery algorithms, the HDD algo-
rithm is based on the estimation of the transmitted symbols by
taking hard decisions on the received signal. The estimated
symbols are then introduced in the expression of the phase
likelihood and an estimation of the phase offset is given by:

φ̂HDD = arg
(

N
∑

k=1

r(k)d̂(k)∗
)

, (14)

where {d̂(k)}k=1,...,N are the hard decision estimations for
N transmitted symbols obtained from the received samples
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Fig. 5. Comparison between the proposed method and the
HDD method concerning the phase offset estimation for
LDPC codes.
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Fig. 6. Comparison between the proposed method and the
HDD method concerning the phase offset estimation for
convolutional codes.

{r(k)}k=1,...,N . (∗) designates the conjugate of a complex
number.
We assume that the frame synchronization position has been
correctly estimated. Fig. 5 shows the mean squared estima-
tion error (in rd2) versus Eb/N0, once our proposed phase
recovery method is applied to LDPC codes I and II previ-
ously introduced in this section. Compared to the HDD ap-
proach, our method presents better performance. A large gap
between the two methods can be clearly seen especially for
low Eb/N0. In Fig. 6, same curves have been plotted for
convolutional codes (5,7) and (23,35). Our proposed phase
recovery method is always better than the HDD algorithm.

7. CONCLUSION

We have proposed in this paper a new method of blind syn-
chronization that exploits the redundancy introduced by error
correcting codes. The criterion on which our method is based
on, is used for the frame synchronization and the phase off-
set estimation at the same time. As shown by simulations, the
frame synchronization method keeps good performance when
an arbitrary phase offset is added to the transmitted symbols.
Furthermore, we have shown that compared to the HDD al-
gorithm, our method of estimating the phase offset presents
better performance.
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