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Abstract—The Binary Offset Carrier (BOC) and Alternate
BOC (AItBOC) waveforms, introduced for Galileo signaling, are
designed to enable high time delay estimation accuracy. However,
their autocorrelation functions have multiple narrow peaks, thus
leading to potential acquisition bias, in particular in presence of
multipaths. In order to detect the first path, a high sampling rate
is considered. Unfortunately, this introduces noise correlation. In
this paper, we compare a technique developed for multipath chan-
nel estimation based on Monte Carlo Markov Chain (MCMC)
simulation with the standard acquisition approach, in multipath
environments, considering both accuracy and computational load
issues.

I. INTRODUCTION

Multipath error is the main source of error in high accuracy
navigation, often leading to an estimation bias of tens of meters
[13].

There are two stages for the generation of a synchronized
PN-code at the receiver side: acquisition (or coarse estimation)
followed by tracking (or fine estimation). In order to deal with
multipath errors, we need to narrow the spacing A between
early and late correlators at the tracking stage. However, the
Early-Late tracking loop hold range is about [—A, A]. Thus,
the acquisition stage should give an estimation of the delay
within this range. The more severe the multipaths are, the
narrower the hold range should be, and the more precise
the acquisition should be. In this paper, we deal with the
acquisition precision problem, and propose an algorithm which
is more accurate than the classical one. In fact, the acquisition
traditional approach commonly used in GPS receivers is not
accurate enough when BOC and AItBOC modulations are
used. Actually, the autocorrelation function of such modula-
tions presents a sharp main peak that enables highly accurate
code tracking [1] and good multipath resolution, but it also
presents many side lobes that lead to acquisition ambiguities
[18].

According to the traditional approach, the receiver sequentially
scans all possible combinations of frequency/code in the
search space, until the correlation value exceeds a certain
predefined threshold. However, the autocorrelation function
is distorted by close paths. Then, we cannot distinguish the
first path among their contributions, thus leading to a biased
acquisition.
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In fact, during its propagation to a receiver, the transmitted sig-
nal is diffracted and reflected off surrounding objects, includ-
ing the earth’s surface [17]. Reflections lead to the presence of
multipaths at the receiver side, thet is several correlation peaks
are measured while diffractions lead to corrupted correlation
waveform of the received signal (theoretically symmetric).
Both types of degradation lead to incorrect measurements of
the pseudo-distance when using the classical acquisition. Thus,
the classical acquisition method will not achieve expected
accuracy.

The goal of this paper is to promote multipath identification
for use in BOC and AItBOC modulated signal receivers to
eliminate multipath errors. In the literature, several methods
have been proposed to estimate multiple possibly overlapping
components of the same signal buried in additive noise such as
Matching Pursuit [4] or EM [5]. These approaches consider
a parametric model of the multipath channel. In a bayesian
framework, it has also been proposed to model the multipath
channel via a prior Bernoulli-Gaussian distribution and solve
the path detection and estimation problem by means of MCMC
methods [12]. This kind of techniques has recently been
applied to numerous different applications, i.e. geophysics
[19], astrophysics [2] and underwater acoustics [16]. Its main
advantage is its capability to recover each contribution of
interfering paths. In [16], algorithms have been adapted to cope
with noise correlation at the output of the matched filtering.
However, it is well known that the MCMC method is costly
when applied to large data sets and applying it to a minimum
Galileo spreading sequence of 4092 chips would be very time
consuming.

Our method involves using first the traditional approach to de-
termine a reduced zone where the matched filter output energy
is maximum, and then applying the MCMC algorithm over this
reduced zone. Then, the main autocorrelation function peak
can be recovered, and the calculation burden remains quite
acceptable.

This paper is organized as follows. First, we introduce the
autocorrelation features of BOC and AltBOC modulated sig-
nals used in Galileo. Next, we present the classical scheme
of acquisition and introduce our method. Finally, the main
performance characteristics of these algorithms are discussed



and compared.

II. SIGNALING FEATURES

A direct sequence spread spectrum signal an be represented

as follows:
o0

Z anq(t —nT.), (D

n—=—oo

s(t) =

where the {aj} represent binary values (+1 or —1) of the
spreading sequence, while ¢(t) is the spreading waveform, and
T. is the spreading code period.

A. BOC(m,n) structure

For the BOC modulations considered in this paper, the
spreading symbol is divided into K segments. Then, the
spreading symbol is given by:

K—1
q(t) =Y erpryx(t — KT./K), 2)
k=0
where A
1, O0<t<
pa(t) = { 0, elsewhere 3)
and {cp,c1,...,cxk—1}+ € =£1 , T, is the chip duration,

and T./K is the segment duration also called the subcarrier
duration.

A sine-phased BOC modulation with subcarrier frequency
fs x 1,023 MHz and spreading code rate f. x 1,023 MHz,
also denoted BOCsin(fs,f.), uses the sequence [1,—1,1,...]
where the number of transitions from 1 to —1 or —1 to 1 is
equal to K = 2f,/f. — 1, an integer that may be either even
or odd.

A cosine-phased BOC modulation with subcarrier fre-
quency fs x 1,023 MHz and spreading code rate f. X
1,023 MHz, also denoted BOCcos(fs,f.), uses the sequence
[1,-1,-1,1,1,-1,—1,...] where the number of transitions
from 1 to —1 or —1 to 1 is equal to K = 2f,/f. — 1, an
integer that may be either even or odd.

Clearly sine and cosine BOC sequences can be seen as
quantized sine or cosine waves at frequency f.

There, we are more specifically interested in open service
signals. Thus, we focus on the BOCsin(1,1) modulation used
in E1 signal. In fact, BOCsin(1,1) is the modulation used in the
Galileo El signal with a carrier frequency of 1575.42 MHz, a
code length of 4092 chips and code duration of 4ms.

1.023 MHz
SQR CLK

1 T, 1 1 1 1 1 1 1
1.023 MHz

spreading code | L ‘ ‘ ‘ ‘ ; ;
BOC; (1,1) signal : : :

Fig. 1. Example 1 : BOCsin(1,1) (number of transitions: K = 2 *
1

+—-1=1)

1

B. AltBOC structure

The AItBOC signal is defined as the product of a PRN code
sequence with a complex sub-carrier. In the ES open service
signal used in Galileo, the AItBOC can be expressed as

. . (N

xAltBOC(t) = (CL +J . C/L) . Scas(t) -] scas(t - Z)
T . 7]

+  (cv+J-cy)-|scas(t)+ ] -scas(t—z)
T . 7]

+  (Co+j-c) - |scap(t) — 7 - scap(t — Z)

R . T

+ (co+j-cy) - |scap(t)+ -scap(t—z) ,
“)

_ where ¢ = cycpcl, E = cycycr, o = cpcycy and
¢, = cycrcy, and ¢y being the upper data code commonly
known as E5bl, ¢}, the pilot upper code known as E5bQ, ¢y,
the data lower code known as E5al and ¢/ the pilot lower
code known as E5aQ.

2
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Fig. 2. Shapes of sub-carriers scqs and scqp.



Particularly in the Galileo context, the AltBOC(15,10) is
used in the E5 band with a carrier frequency of 1191.795
MHz and a chip rate of 10.23 Mcps.

C. Autocorrelation functions

BOC waveforms have autocorrelation functions containing
multiple peaks. There are m/n sidelobes on each side of the
main peak.

It comes from Eq. (1) that this signal has the following
autocorrelation function:

Els(t)s* (t — )] = Ti S Ru(m) x Ry(r—mT.) ()

where R, and R, are autocorrelations of sequence {a,}
and signal ¢(¢) respectively. The theoretical autocorrelation
of a BOCsin(n,n) signal possesses three peaks in the interval
[_Tc; +Tc]~

More precisely, in this case,

Ry(r) = tri(r) — 3 (t” (T_%) i <+>) ®)

3 2
for x <1 chip

where © — tri(z/y) is the triangle function of width 2y,
centered at x = 0 with ¢ri(0) = 1.

I I I I I I
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Fig. 3. BOCsin(1,1) autocorrelation function

As we are interested in Open Service signals, the BOC-
sin(1,1) modulation that is used in the E1 Galileo signal will
be considered hereafter.

The AltBOC' autocorrelation function is given by [18]:

R, (T) X Ro(T) + Ry X Rp(T)

RxAztBoc (T) =

+ + +

)

assuming that the crosscorrelation between the different codes
is equal to zero.

The autocorrelation function also presents side peaks and
the main peak width is clearly very small.

0.8
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Fig. 4. AltBOC(15,10) autocorrelation function

In Figure 4, the AItBOC(15,10) autocorrelation function is
shown. This signal is used in the ES band for Open Service
use.

III. MULTIPATH PROPAGATION

Multipaths are mainly caused by reflection, diffraction and
scattering which are the three basic mechanisms of radio
propagation [17]. All three phenomena cause radio signal
distortions and give rise to signal fades, as well as additional
signal propagation losses. This is because they create addi-
tional radio propagation paths beyond the direct optical LOS
(line of sight) path between the transmitter and the receiver,
resulting in multipath fading.

The multipaths induced signal attenuation is mainly driven
by the number, strength and delay of the multipath signals.
The signal components arriving from indirect paths (which are
delayed and attenuated versions of the original signal) and the
direct LOS path (if it exists), combine and produce a distorted
version of the transmitted signal. The combination may cause
constructive and/or destructive interference effects [11].
Many studies aim at characterizing the different kinds of
GPS channels, especially the indoor [7], [14] and the urban
[15], [20] channels. The studies were conducted using either
simulated models [21] and [6] or field tests [15], [20].

In this paper, we tested an MCMC approach, namely MPM
(maximum posterior mode) method on the two types of
channels described below.

A. Simulated channel

In order to show the high accuracy of our method, we
chose a channel such that the path separations are less than 1
chip. We considered a number of paths that follows a Poisson
distribution. As shown in Figure 5, the first path is considered
at the beginning of the chip and its amplitude is taken with
a Rice distribution, whereas the other paths are uniformly
distributed on 1 chip and their amplitudes are distributed
according to a Rayleigh distribution.
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Fig. 5. An example of a simulated channel

B. Real channel

Following Steingass [20] [21], a statistical analysis of the
navigation multipath channel is achieved through several mea-
surements. In fact, the channel was measured from a simulated
satellite (a zeppelin) to a receiver in critical urban, suburban
and rural scenarios. From the received data, a channel model
was derived to approximately synthesize the measured impulse
response. This model allows the realistic simulation of the
multipath channel by approximating every single reflection.
We carried out simulations using this model to show the high
performance of the MCMC method.

IV. NOTATIONS

Considering Doppler effects, we assume the time-varying
channel impulse response

P
hy(T) = Z apej2ﬂfdp(t_7p)5(7 - Tp)

p=1

(10)

where P is the number of paths, «), is the path amplitude,
fa, is the Doppler shift and 7, is the path delay. The received

signal is:
a(t) = (hexs) () +n()
P

= Yoyt~ 7)) 4 n(r)
p=1

(11

where n(t) is the correlated additive Gaussian noise. After
demodulation and matched filtering at a particular frequency
fx, the signal can be written as:

z(fr, t) = z(t)e 2t 5% (—t) (12)

where * represents the convolution and A(¢) is the

autocorrelation function of the transmitted sequence s(t).

A. Ambiguity function

When unknown Doppler shifts occur on the channel paths,
one may want to apply matched filtering for different frequen-
cies. A widely used transformation that is of interest in this
case is the ambiguity function, defined as

“+oo
As(r, f) = / s(t)s*(t — T)e 12 tat (13)
Indeed, for a fixed f, the function 7 +— A4(7, f) represents
the output of a matched filter when the input signal has

been Doppler-shifted by f. A simple way to build a rough
version of the ambiguity function is to use a filter bank
composed of matched filters spanning a certain frequency
interval [— faz, fraz], Where fiq. is the maximum Doppler
shift. As shown in Figure 6, the ambiguity function of the
GPS C/A signal is characterized by a peak at the searched
time delay and frequency shift. This characteristic enables the
search of multipath in the time-frequency space by analysing
the content of the observation at the output of the filter bank.
That is to say, to decouple the estimation of time delay from
the Doppler shift. That’s why it is possible to apply the MCMC
algorithm to each filter bank output in order to estimate the
time delays.

Actually, the received signal after demodulation and matched
filtering at a particular frequency fj is simply the convolution
between h(t) and the autocorrelation function A(¢) of the
transmitted sequence s(t) plus a correlated additive noise.
From Eq.11 and Eq.12, we get

P
2(f,7) = AT =T f = fp) +w(f,T) (14
p=1

For each analysed frequency fr (fx € [—fmazs+fmaz])s
x(f,7) is sampled, leading to a vector representation of the
form

x=S,h+n (15)

where S is the convolution matrix associated with A and
x and n are sampled versions of x(¢) and n(t). Note that
for signals under consideration in geopositionning at each
frequency fj function 7 — A(f,7) is about the same, up
to some attenuation coefficient coming from the value of the
ambiguity function at the frequency f. Thus, h; is a vector
with P non zero entries with amplitudes o,

Filter bank output

1000

500

Doppler frequency (Hz) 0 Time delay (us)

Fig. 6. Ambiguity function modulus of a GPS C/A signal in presence
of one path

B. The search zone

We suggest performing a classical detection to search
for the maximum energy zones. To perform detection, we



compare the output of the correlator evaluated on each
Doppler offset and each code delay, with a threshold.

The signal component with the earliest value of ¢ would
represent the direct line of sight signal, (assuming that
the direct line of sight to the satellite is not obstructed).
Therefore, we keep only the first zone in terms of code
delay. For example in Figure 7, the first zone exceeding the
threshold is found between ¢y and ¢1; it will therefore be
our search zone, and any other ones exceeding the threshold
afterwards will be discarded. This zone will be our research
field where we can apply other methods of detection.

f
Discarded zones
fy - exceeding the threshold
o % g z 5 4
I %
Search zones for code delay
and Doppler offset
f ,,,,,
£ 4 t
Fig. 7. Search zone for code delay and Doppler offset

V. CLASSICAL ACQUISITION

As defined in [8], the classical signal acquisition is a
two-dimensional search process in which replica codes and
carriers are correlated with the received signal. When both
the code and carrier Doppler of the replica signal match
the incident signal, the signal is despread and the carrier
frequency is recovered. The correct alignment is identified by
the maximum output power of the correlators.

The classical acquisition scheme is presented in Figure 8.

A. The search space

The search space must cover the full range of uncertainty
in the code and Doppler offset range.
The Doppler range is governed by the vehicle and satellite
dynamics and the stability of the receiver oscillator. The
frequency resolution is determined by the coherent integration
time 7' (or dwell time). Indeed, the frequency bin width D
must verify D < 1/T where T is the integration time, since
the main lobe of the signal ambiguity function is of width
1/T.
The code range is governed by the code length. The code
resolution is a trade-off between the desired accuracy and the

C Average 02 12
& Dump

|

H
o 1
: 90° phase
Input Signal —
p“g[@*ﬁ shifter ‘bﬁ Env>Ve |
i
% Average 02 Threshold
& Dump
QZ
Code generator Carrier NCO
4\— Sync. Control
Scheme

Fig. 8. Acquisition scheme

search space range. In fact, for a good resolution, the search
space is too large.

Each pair of the code delay-Doppler offset values defines a
“cell”. Commonly, for GPS receivers, the search granularities
in the code and frequency dimensions used are 0.5 code chips
and 500 Hz respectively, as shown in Figure 9.

0.5 chip

1 cell -

500 Hz
-

number of bins in the range of [-6kHz,+6kHz]

twice the number of chips constituting the code

Fig. 9. Typical two dimensional acquisition search

B. Detection criteria

For each given code delay and each given Doppler offset,
the correlators provide a measure of the total I (In-phase
correlator output) and Q (Quadra-phase correlator output)
signal voltages over the coherent integration time. The total
amplitude is then given by the envelope /12 + Q2. This
envelope is compared with a threshold V;.

If VI2+Q*>V,
If /I24+Q2% <V,
Following the Neyman-Pearson criterion (see Figure (10)),
the threshold value can be obtained from a given false alarm

the signal is present

16
the signal is absent (16)



probability. A signal is assumed to be present whenever the
amplitude in a given cell is above a corresponding threshold
Vi.

Rayleigh distribution
signal absent)

Rice distribution

(signal present)

SNR= -25dB

SNR=-15dB

o

Amplitude

<

Fig. 10. Probability density functions under noise alone and noise +
signal hypotheses: the gray zone defines the false alarm probability

VI. MCMC METHOD

In order to refine detection, in each search zone we perform
frequency by frequency path estimations. Each path appears
at several frequencies du to signaling ambiguity function
preading in the frequency domain. For the sale of simplicity,
we retain the first path estimate obtained at frequency offset
for which maximum amplitude path contribution is achieved.

A. Bernoulli-Gaussian Model for the channel

In order to represent the channel sparseness, we indicate two
states; qr = 0 meaning the absence of a path at time k and
gr = 1 meaning the presence of a path. Let yu = P(qx = 1)
be the probability that a path is present at sample k. Then, as
in [16], we define a BG sequence z = (q,h) where h is a
vector of the corresponding path amplitudes to q. We model
the entries hy, of h by a mixture of two Gaussian distributions,
such that the probability density function of hj conditional to
qi is

p(hy | gx = 1) ~ N(0,07) + jN(0,07) (17)

where o is chosen close to zero and much smaller than 0.
The estimation of z is achieved through the maximization of
the posterior likelihood, denoted by p(z | x). From Bayes
formula,

1=0,1

p(z [ x) x p(x | z)p(z) = p(x | z)p(h [ @)p(q)  (18)

Expressions of p(x | z), p(h | ¢) and p(q) are given in the

appendix. Then, the posterior log-likelihood of z can then be
written as [16]

L(z | x) = —(x — Syh)T A, (x — Syh) — 2-Dah
1
__h7(1-Dg)h + quln( w oé) L C

20'(2) 1—p o7

19)

where Dq represents the diagonal matrix with the k-th entry
equal to g and C' is a constant term and A, is the inverse of
noise covariance matrix.

B. MCMC algorithm

Usually, in the bayesian framework, one wants to find the
value of the parameter vector that maximizes the posterior
likelihood. This approach is known as the Maximum A Poste-
riori (MAP) approach. Here, the MAP estimator of z = (q, h)
is given by

(§,h) = argmax L(z | x)

20
(a,h) 20

Therefore, following the MAP approach would lead to find
the global maximum of L(z|x) over all possible sequences
(q,h). This is a very complex combinatorial problem, since
there are 2 possible sequences q. Several methods have been
proposed to overcome this problem by iteratively improving
the maximisation. This is the case for instance of the SMLR
algorithm [9] and its variations [3]. However, due to their
deterministic nature, these algorithms are dependent to initial
conditions and may converge towards a local optimum. An-
other possibility is to use the well-known Simulated Annealing
(SA) method [10] to find the global optimum of the problem.
However this method converges very slowly to the solution,
especially when the parameter space is large, which is the
case here. If the MAP estimator is therefore difficult to reach,
it is however possible to resort to another method, based on
MCMC trials, that have proved to yield very good results
with a reasonable computational cost. The idea is to generate
realizations of a given process and then use these realizations
to compute an empirical estimator of the parameters. Thus,
the algorithm aims to simulate the marginal posterior pdf
p(z | x) associated with Eq. (19). This is carried out by
a Gibbs sampler that simulates realizations of samples zj
according to the a posteriori marginals p(zy | x, z_x), where
Rk = (ZO, Ty Rk—15 Rkl ey ZL)'

Implementation of the Gibbs sampler is supplied in the ap-
pendix.

Let (zZ(Z:)1 ;) denote the simulated vectors supplied by op-
erating the Gibbs sampler I times on the L entries of z.
After a certain learning period corresponding to Iy iterations,
the Gibbs sampler reaches ’thermal equilibrium’, that is, the
generated samples are distributed according to the a posteriori
probability p(z | x).

For our tests, we chose Iy = 100 and I = 500. The samples
are then used to compute the following estimators § and h of
q and h:

: 1 I (2)
dr = Vit i > S Q1)
0 otherwise,
Zf:IOJrl ql(:)h;:i) . _
hy = 1‘1:10+1 qlii) if =1 (22)
0 otherwise.
where the threshold s was set to 0.5.
This choice is appropriate when no preference is made



between the two kinds of error that may arise, that is deciding
Gr = 1 when g, = 0 and deciding g, = 0 when ¢ = 1. It
can indeed be proved that the value s = 0.5 minimizes the
Bayes risk when uniform equal costs are chosen.

VII. SIMULATIONS AND RESULTS

We carried out tests on BOCsin(1,1) modulated signals.

A. Fixed parameters

The window size on which we achieved the search for
the delay is four chips, that is, twice the auto correlation
peak size. To keep coherence among simulation experiments,
for all the methods we set to the same value the sampling
frequency f; = 120 MHz, the low-pass front-end filter
band B = 2.5 MHz, the SNR —20dB and the number of
simulations N = 1000.

B. Results

We consider the propagation through a simulated channel

according to the model described in Figure 5. We carried out
1000 simulations with distinct randomly chosen channels. We
assume that good detection is achieved when the first path
position is close to the true line of sight path within a range
of i%TC for a BOCsin(1,1) signal and 7. for a GPS C/A
signal.
The Figure 11 represents the RMSE (Root Mean Square
Error) of the first detected path delay compared to the time
pseudo distance for the model described in Fig 5. We have
chosen p = 2 for the Poisson distribution of the number
of paths, leading to an average number of paths equal to 3
for each simulations. The Figure 11 clearly shows that the
MCMC method estimates better the time delay for both a
BOCGsin(1,1) modulated signal and a GPS C/A modulated
signal than the classical approach. These results were obtained
for a channel where the path separations are lower than 1
chip duration which is why, as we can notice here, the
BOCsin(1,1) is not well estimated by the classical approach
because of the ambiguity between the main peak and the side
peaks of the autocorrelation function. However, the MCMC
method distinguishes well between the peaks and gives a
much lower square error.

Now, we consider another channel derived by Steingass.
In Figure 12, because the path separations are wider, the
BOCsin(1,1) is better estimated by the classical approach than
the GPS C/A signal. In this channel configuration, the MCMC
method still provides better results.

Similarly, we have checked that the algorithm brings
improvement compared to the standard approach when
applied to AItBOC(15,10) signaling.

Now, let us consider the consequences of these results in
a scenario positioning. Here, the performance of simulated
positioning is given in the following table. The user is in

120

T
Standard — BOCsin(1,1)
— — — Standard - GPS C/A

— + —MCMC - GPS C/A
1001 —— MCMC - BOCsin(1.,1) ]

RMSE(m)

40| STt .

0 ———— ]
0 .
-25 -20 -15 -10

Fig. 11. RMSE due to simulated multipath channel for model of
Figure 5
120 T
Standard - BOCsin(1,1)
— — — Standard - GPS C/A
— + —MCMC - GPS C/A
100 - —+— MCMC - BOCsin(1,1) |[]
80
E
Y 60t
g
40
) 4;“\“*?7 —
. ‘ ‘ S
-25 -20 -15 -10
SNR(dB)
Fig. 12 RMSE due to Steingass multipath channel for Steingass
model

Monterey on 05/04/2008 at 3:30 PM, the Galileo satellites
in view are shown in Figure 13, and we consider all the
satellites that have an elevation > 20. A least square method
is used for triangulation based on estimated delays with
performance similar to that obtained in table II. To have these
results, we have added noise estimation on pseudo-distances
according to model in Fig. 11. Noise variances are chosen
depending on satellite elevations according to table I.

TABLE I
SATELLITE ELEVATIONS AND CORRESPONDING SNR TAKEN FOR
SIMULATIONS OF FIG. 13 AND 14

Satellite elevation | SNR (dB)
20,40 —25
40, 60 —20
60, 80 —15
80, 90 —10




TABLE II
POSITIONING ERRORS FOR BOCSIN(1,1) SIGNAL

RMSE X y z std
MCMC (m) 27.1 37.2 419 354
Standard (m) | 103.8 | 140.3 | 168.2 | 137.4

SATELLITE SKYPLOT
NORTH

Fig. 13. Satellites in view

We do the same scenario with the GPS constellation, and
we gain 30 meters accuracy on average.

TABLE III
POSITIONING ERRORS FOR GPS C/A SIGNAL
RMSE X y z std
MCMC (m) 59.6 71.8 79.6 70.3
Standard (m) | 83.8 | 103.8 | 115.5 | 101.0

SATELLITE SKYPLOT

Fig. 14. Satellites in view

VIII. CONCLUSION

In this paper, we have shown that using the classical
acquisition method to determine an interesting reduced search
zone, and then looking for the code delay by means of the
MCMC algorithm in this zone, the multipath effect is clearly
reduced. In fact, we have developed a high performance
acquisition system thanks to the MCMC algorithm, namely
in terms of accuracy. In addition, the reduced search zone
enables the MCMC method to converge in a short time.
Obviously, the MCMC method represents a good trade-off
between estimation accuracy and computational complexity.

APPENDIX

A. Posterior distribution

From Bayes formula,

p(z | x) < p(x | 2)p(z) = p(x | z)p(h | @)p(q)  (23)

assuming that
1) the noise is complex circular Gaussian with autocorre-
lation matrix '), = A;*
2) samples g are independent
3) samples hyj are independent conditionally to gy,

there results

A,
p(x|z)= |7TL | exp (—(x — Sah)7A, (x — Sah))  (24)
L
pthla) =[] | @) (25)
k=1
2 k 2 1—qk
oo e ()] e (C20)]
plhe [ ar) = 210 2mod
(26)
L L
pla) = [[plan) = [T (1 =)'~ 27)
k=1 k=1

B. Gibbs sampling

The Gibbs sampler is implemented in the following way:

1) Initialization: q = q° and h = h°

2) For i > I and for k randomly covering {1,---,L},
a) Detection step:

i) calculate dj, = p(qr = 1| xz@c)

ii) draw q](:') = L4, >0, With v ~ Ujg 1
b) Estimation step:
D
hy,” ~ N(mq](:,) , Vq,(f)) + ]N(qu(f)’ V:]](j))

where U4 is the uniform distribution on A,

1 if teA

La(t) = { 0 otherwise, 28)
M M
m; = 2V Z Z S;an+k,p+kUk,n7 (29)
n=0 p=0
1 M -1
Vi = ((7_2 +2 Z S;an+k,p+ksp> ’ (30)
i p=0
1
1—pVpof [mol*  [mol?
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