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Résumé

Cet article propose une nouvelle approche de l'homogénéisation des équations de transport linéaires induites par une suite uniformément bornée de champs de vecteurs bε(x) et dont les solutions uε(t, x) coïncident en t = 0 avec une suite bornée de L p loc (R N ) pour un certain p ∈ (1, ∞). En supposant que la suite bε • ∇w 1 ε est compacte dans L q loc (R N ) (q exposant conjugué de p) pour un champ de gradients ∇w 1 ε borné dans L N loc (R N ) N et qu'il existe une suite uniformément bornée σε > 0 telle que σε bε est à divergence nulle si N = 2 ou est un produit vectoriel de (N-1) gradients bornés dans L N loc (R N ) N si N ≥ 3, on montre que la suite σε uε converge faiblement vers une solution d'une équation de transport. Il s'avère que la compacité de bε • ∇w 1 ε remplace la condition d'ergodicité du cas périodique bidimensionnel classique et permet de traiter des champs de vecteurs non périodiques en toute dimension. Le résultat d'homogénéisation est illustré par différents exemples généraux.

Introduction

In this paper we study the homogenization of the sequence of linear transport equations indexed by ε > 0,

   ∂u ε ∂t -b ε (x) • ∇ x u ε = 0 in (0, T ) × R N , u ε (0, •) = u 0 ε in R N .
(1.1)

where N ≥ 2, T > 0 and p ∈ [1, ∞] with conjugate exponent q. Equation (1.1) is associated with the flow Y ε (t, x) defined by

   ∂Y ε (t, x) ∂t = b ε (Y ε (t, x)), t ∈ R Y ε (0, x) = x ∈ R N .
(1.2)

Using the DiPerna-Lions transport theory [8, Corollary II.1], if for instance b ε is a vector field in L ∞ (R N ) N ∩ W 1,q loc (R N ) N with bounded divergence and the initial condition u 0 ε is in L p (R N ), then there exists a unique solution u ε (t, x) to equation (1.1) in L ∞ (0, T ; L p (R N )).

Tartar [START_REF] Tartar | Nonlocal effects induced by homogenization[END_REF] showed that the homogenization of first-order hyperbolic equations may lead to nonlocal effective equations with memory effects. In this framework Amirat, Hamdache and Ziani obtained memory effects for the homogenization of the transport equation (1.1), first in dimension two when b ε • ∇ x u ε = b ε (t, x 2 ) ∂ x1 u ε [START_REF] Amirat | Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux" (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium[END_REF], and in a more general setting [START_REF] Amirat | Homogénéisation par décomposition en fréquences d'une équation de transport dans R n " (French) [Homogenization by decomposition into frequencies of a transport equation in R n ][END_REF][START_REF] Amirat | Homogenisation of parametrised families of hyperbolic problems[END_REF] they derived an integral representation of the memory term of the homogenized equation using Young's measures and a Radon transform.

In the present paper, rather than determining the "closure" set of the homogenized equations of (1.1) as in [START_REF] Amirat | Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux" (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium[END_REF][START_REF] Amirat | Homogénéisation par décomposition en fréquences d'une équation de transport dans R n " (French) [Homogenization by decomposition into frequencies of a transport equation in R n ][END_REF][START_REF] Amirat | Homogenisation of parametrised families of hyperbolic problems[END_REF], we provide some sufficient conditions under which the homogenized equation of (1.1) remains a transport equation, namely the nature of equation (1.1) is preserved through homogenization. Assuming that b ε (x) = b(x/ε) is a divergence free periodically oscillating vector field, Brenier [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF] showed thanks to the ergodic theorem that the solution u ε of (1.1) converges. This result was improved in dimension two by Hou and Xin [START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF] who proved thanks to a two-scale convergence approach that the homogenization of (1.1) leads to the averaged transport equation with ´T2 b(y) dy (T N denotes the N -dimensional torus). Golse [START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF]Theorem 8] extended these results to the locally periodic case b ε (x) = b(x, x/ε) with div y b(x, •) = 0, assuming some ergodic property involving the flow associated with -b(x, •). In [START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF][START_REF] Golse | On perturbations of dynamical systems and the velocity averaging method for PDEs[END_REF] and in the generalizations [START_REF] Dumas | Multiphase averaging for generalized flows on manifolds[END_REF][START_REF] Dumas | The averaging method for perturbations of mixing flows[END_REF] with an application to Physics [START_REF] Dumas | A mathematical theory of planar particle channeling in crystals[END_REF], Golse et al. also studied the perturbed differential system satisfied by the pair (

I ε , J ε ) in R N × T N :        dI ε dt = εf (I ε , J ε ), t ∈ R dJ ε dt = ω(I ε ) + εg(I ε , J ε ), (1.3) 
with f (I, •), g(I, •) periodic, which after an ε-rescaling is associated with a Liouville partial differential equation of type (1.1) but more complicated. Assuming among others that ω satisfies the Kolmogorov non-degeneracy type ergodic condition

meas I ∈ R N , |I| ≤ R : |ω(I) • ξ| < α -→ α→0 0 uniformly in ξ ∈ S N -1 , (1.4)
or some variant, Golse et al. obtained an error estimate between the solution to system (1.3) and the averaged system with ´TN f (I, y) dy, as well as the velocity averaging (homogenization) of the associated Liouville partial differential equation. They also extended this result to a non-periodic framework.

Returning to the periodic case b ε (x) = b(x/ε), Tassa [START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] replaced in dimension two the divergence free of b by the existence of a periodic positive regular function σ such that div (σb) = 0 in R 2 , (

i.e. σ is an invariant measure for b by the Liouville theorem. The main assumption of the periodic framework b ε (x) = b(x/ε) of [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] 

v, b • ∇v = 0 in R 2 ⇒ ∇v = 0 in R 2 , (1.6) 
together with b = 0 in R which is equivalent to the irrationality of the rotation number. In the locally periodic case b ε (x) = b(x, x/ε) of [START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF]Section 8] the ergodicity assumption states that for a.e.

x ∈ R N , the fluctuation of the vector field b(x, •) around its average value is ergodic with respect to the flow associated with -b(x, •).

In the present paper, besides the closure results of [START_REF] Amirat | Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux" (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium[END_REF][START_REF] Amirat | Homogénéisation par décomposition en fréquences d'une équation de transport dans R n " (French) [Homogenization by decomposition into frequencies of a transport equation in R n ][END_REF][START_REF] Amirat | Homogenisation of parametrised families of hyperbolic problems[END_REF] and the ergodic approaches of [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF][START_REF] Golse | On perturbations of dynamical systems and the velocity averaging method for PDEs[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF], we propose a new approach which holds both in a non-periodic framework and in any dimension, assuming that the vector field b ε satisfies a non-ergodic condition which preserves the nature of equation (1.1) through homogenization. More precisely, the ergodic assumption (1.6) or (1.7) of the periodic framework is now replaced by the existence of a sequence

w 1 ε in C 1 (R N ) and q ∈ (1, ∞) such that 0 < b ε • ∇w 1 ε → θ 0 > 0 strongly in L q loc (R N ), (1.8) 
which is equivalent in the periodic case to the existence of a periodic gradient ∇w

satisfying b • ∇w = 1 in R N . (1.9)
Moreover, the invariant measure σ of the periodic case is replaced by a sequence σ ε satisfying 0 < c -1 < σ ε < c for some constant c > 1, and (see Remark 2.1 for an equivalent expression)

div (σ ε b ε ) = 0 if N = 2 and σ ε b ε = ∇w 2 ε × • • • × ∇w N ε if N ≥ 3. (1.10)
The case where σ ε b ε is only divergence free in dimension N ≥ 3 remains open. In this way the vector field b ε is naturally associated with the vector field W ε := (w 1 ε , . . . , w N ε ) which induces a global rectification of the field b ε in the direction e 1 (see Remark 2.1). Then, assuming in addition to (1.8), (1.10) that W ε is uniformly proper (see condition (2.1) below) and converges both in C 0 loc (R N ) N and weakly in W 1,N loc (R N ) N , we prove (see Theorem 2.2) that up to a subsequence σ ε u ε converges weakly in L ∞ (0, T ; L p (R N )) to a solution v to the transport equation

     ∂v ∂t -ξ 0 • ∇ x v σ 0 = 0 in (0, T ) × R N v(0, •) = v 0 in R N , (1.11) 
where σ 0 is the weak- * limit of σ ε in L ∞ (R N ), ξ 0 is the weak limit of σ ε b ε in

L N N -1 loc (R N ) N and v 0 the weak limit of σ ε u 0 ε in L p (R N ). Moreover, if σ ε converges strongly to σ 0 in L 1 loc (R N ) (see Remark 2.4
) or u 0 ε converges strongly to u 0 in L p loc (R N ), then up to a subsequence u ε converges weakly in L ∞ (0, T ; L p (R N )) to a solution u to the transport equation

     ∂u ∂t - ξ 0 σ 0 • ∇ x u = 0 in (0, T ) × R N u(0, •) = u 0 in R N .
(1.12)

The convergence of u ε also turns out to be strong in L ∞ (0, T ; L 2 loc (R N )) if u 0 ε converges strongly to u 0 in L p loc (R N ) with p > 2 (see the second part of Theorem 2.2). The compactness condition (1.8) is the main assumption of Theorem 2.2. It is equivalent to the compactness of the product σ ε det(DW ε ) which is connected to the vector field b ε by (1.10). The examples of Section 3 show that this condition may be satisfied in quite general situations.

Section 2 is devoted to the statement of the main result and to its proof. Section 3 deals by three applications of Theorem 2.2. In Section 3.1 we study the case of a diffeomorphism W ε on R 2 such that det(DW ε ) is compact in L p loc (R 2 ) for some q ∈ (1, ∞). In Section 3.2 we extend the periodic case of [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] with b ε (x) = b(x/ε) and the periodic case of [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF]Sec. 4] on the asymptotic of the flow associated with b, in the light of Theorem 2.2 with a periodically oscillating function σ ε (x) = σ(x/ε) (see Proposition 3.1). In Section 3.3 we consider the case of a diffeomorphism W ε which agrees at a fixed time t to a flow X ε (t, •) associated with a suitable vector field a ε (see Proposition 3.2). In this general setting assumption (1.8) holds simply when div a ε is compact in L q loc (R N ) for some q ∈ (1, ∞).

Notations

• (e 1 , . . . , e N ) denotes the canonical basis of R N .

• • denotes the scalar product in R N and | • | the associated norm.

• I N is the unit matrix of R N ×N , and R ⊥ is the clockwise 90 • rotation matrix in R 2×2 . • For M ∈ R N ×N , M T denotes the transpose of M . • Y N := [0, 1)
N , and f denotes the average-value of a function f ∈ L 1 (Y N ).

• For any open set Ω of R N and k ∈ N ∪ {∞}, C k c (Ω), respectively C k b (Ω)
, denotes the space of the C k functions with compact support in Ω, respectively bounded in Ω.

• For k ∈ N ∪ {∞} and p ∈ [1, ∞], C k (Y N ) denotes the space of the Y N -periodic functions in C k (R N ), and L p (Y N ) denotes the space of the Y N -periodic functions in L p loc (R N ) (i.e. in L p (K) for any compact set K of R N ). • For u ∈ L 1 loc (R N ) and U = (U j ) 1≤j≤d ∈ L 1 loc (R N ) N . ∇ x u := (∂ x1 u, . . . , ∂ x N u) and DU := ∂ xi U j 1≤i,j≤d .
The matrix-valued function DU stands for the transposition of the Jacobian matrix of the vector field U .

• For ξ 1 , . . . , ξ N in R N , the cross product ξ 2 × • • • × ξ N is defined by ξ 1 • (ξ 2 × • • • × ξ N ) = det (ξ 1 , ξ 2 , . . . , ξ N ) for ξ 1 ∈ R N , (1.13) 
where det is the determinant with respect to the canonical basis (e 1 , . . . , e N ).

• o ε denotes a term which tends to zero as ε → 0.

• C denotes a constant which may vary from line to line.

The main result

Let W ε = (w 1 ε , . . . , w N ε ), ε > 0, be a sequence of vector fields in C 1 (R N ) N which is uniformly proper, i.e. for any compact set K of R N there exists a compact set K of R N satisfying W -1 ε (K) ⊂ K for any small enough ε > 0, ( 2.1) 
and let W ∈ C 1 (R N ) N be such that

W ε → W in C 0 loc (R N ) N and W ε W in W 1,N loc (R N ) N . (2.2) Let b ε be a vector field in C 0 b (R N ) N ∩ W 1,q loc (R N ) N with bounded divergence and let σ ε be a positive function in C 0 (R N ) ∩ W 1,q loc (R N ) satisfying for some constant c > 1, c -1 ≤ σ ε ≤ c and σ ε b ε = R ⊥ ∇w 2 ε if N = 2 ∇w 2 ε × • • • × ∇w N ε if N ≥ 3, in R N . (2.3) 
Also assume that for p ∈ (1, ∞) with conjugate exponent q, there exists a positive function θ 0 in C 0 (R N ) such that

θ ε := b ε • ∇w 1 ε > 0 in R N and θ ε → θ 0 > 0 strongly in L q loc (R N ). (2.4)
Finally, assume:

• either that there exists a constant B > 0 such that

|div b ε | ≤ B a.e. in R N , (2.5) 
• or the regularity condition

b ε ∈ C 1 b (R N ) N , σ ε ∈ C 1 (R N ) and u 0 ε ∈ C 1 (R N ). (2.6) Remark 2.1. The definition (2.
3) of b ε can be also written for any dimension N ≥ 2 as the existence of (N -1) gradients ∇w 2 ε , . . . , ∇w N ε satisfying

∀ ξ ∈ R N , σ ε b ε • ξ = det ξ, ∇w 2 ε , . . . , ∇w N ε . (2.7)
In dimension N ≥ 3 this is exactly the definition of the cross product 

∇w 2 ε ו • •×∇w N ε (see (1.13)). In dimension N = 2 this means exactly that σ ε b ε = R ⊥ ∇w 2 ε , which is equivalent to div (σ ε b ε ) = 0 in R 2 . ( 2 
diffeomorphism W ε DW T ε b ε = θ ε e 1 in R N , (2.9) 
in the direction e 1 with the compact range θ ε .

Then, we have the following homogenization result.

Theorem 2.2. Let T > 0, let p ∈ (1, ∞) and let u 0 ε be a bounded sequence in L p (R N ), N ≥ 2. Assume that conditions (2.1) to (2.4) together with (2.5) or (2.6) hold true. Let u ε be the solution to the transport equation (1.1) and set

v ε := σ ε u ε . Then, up to a subsequence v ε converges weakly in L ∞ (0, T ; L p (R N )) to a solution v to the transport equation      ∂v ∂t -ξ 0 • ∇ x v σ 0 = 0 in (0, T ) × R N v(0, •) = v 0 in R N , (2.10) 
where (Cof denotes the cofactors matrix)

ξ 0 = Cof (DW ) e 1 ∈ C 0 (R N ) N , (2.11) 
σ ε b ε ξ 0 in L N N -1 loc (R N ) N , σ ε σ 0 in L ∞ (R N ) * , σ ε u 0 ε v 0 in L p (R N ). (2.12) Moreover, if in addition b ε ∈ W 1,p/(p-2) loc (R N ) N with p > 2 and the sequence u 0 ε converges strongly to u 0 ∈ L p loc (R N ) with σ 0 ∈ W 1,∞ (R) and ξ 0 ∈ L ∞ (R N ) N ∩ W 1,p/(p-2) loc (R N ) N , then u ε converges strongly in L ∞ (0, T ; L 2 loc (R N )) to the solution u to the transport equation      ∂u ∂t - ξ 0 σ 0 • ∇ x u = 0 in (0, T ) × R N u(0, •) = u 0 in R N .
(2.13) Remark 2.4. In addition to the conditions (2.1) to (2.4) assume that σ ε converges strongly in L 1 loc (R N ) to σ 0 ∈ W 1,q loc (R N ). Then, we have v = σ 0 u and v 0 = σ 0 u 0 where u 0 is the weak limit of u 0 ε in L p (R N ), which implies that equation (2.10) is equivalent to equation (2.13). Therefore, u ε converges weakly in L ∞ (0, T ; L p (R N )) to a solution u to the transport equation (2.13).

Remark 2.3. If in Theorem 2.2 we assume in addition that σ 0 is in W 1,∞ (R N ) and ξ 0 belongs to L ∞ (R N ) N ∩W 1,q loc (R N ) N ,
To prove Theorem 2.2 we need the following L p -estimate.

Lemma 2.5. Let b ε ∈ L ∞ (R N ) N ∩ W 1,q
loc (R N ) N with bounded divergence be such that • either estimate (2.5) holds true,

• or both conditions (2.3) and (2.6) hold true.

Then, there exists a constant C > 0 such that for any u 0 ε ∈ L p (R N ) with p ∈ [1, ∞), the solution u ε to equation (1.1) satisfies the estimate

u ε (t, •) L p (R N ) ≤ C u 0 ε L p (R N ) for a.e. t ∈ (0, T ), (2.14) 
Proof of Theorem 2.2. First of all, note that by (2.3) and (2.4) we have

det(DW ε ) = σ ε θ ε > 0 in R N . (2.15)
This combined with property (2.1) and Hadamard-Caccioppoli's theorem [START_REF] Caccioppoli | Sugli elementi uniti delle trasformazioni funzionali: un teorema di esistenza e unicit ed alcune sue applicazioni[END_REF] (or Hadamard-Lévy's theorem) implies that W ε is a C 1 -diffeomorphism on R N . Moreover, since by (2.15) det(DW ε ) is positive and by (2.2) W ε converges weakly in W 1,N loc (R N ) N , by virtue of Müller's theorem [START_REF] Müller | A surprising higher integrability property of mappings with positive determinant[END_REF] det(DW ε ) weakly converges to det(DW ) in L 1 loc (R N ). Hence, passing to the limit in (2.15) together with the strong convergence (2.4) of θ ε , the weak convergence (2.12) of σ ε and the boundedness (2.3) of σ ε we get that

det(DW ) = σ 0 θ 0 ≥ c -1 θ 0 > 0 a.e. in R N , (2.16) 
which taking into account the continuity of DW and θ 0 implies that det(DW ) > 0 in R N . Moreover, again by the uniform character of (2.1) W is a proper mapping. Therefore, W is also a C 1 -diffeomorphism on R N . The weak formulation of equation (1.1) is that for any function

φ ∈ C 1 c ([0, T ) × R N ), ˆT 0 ˆRN u ε ∂φ ∂t dx dt + ˆRN u 0 ε (x) φ(0, x) dx = ˆT 0 ˆRN u ε div (φ b ε ) dx dt.
(2.17)

Using a density argument with σ ε ∈ W 1,q loc (R N ), we can replace the test function φ by σ ε ϕ for any ϕ ∈ C 1 c ([0, T ) × R N ). This combined with the divergence free of σ ε b ε leads us to the new formulation

ˆT 0 ˆRN σ ε u ε ∂ϕ ∂t dx dt + ˆRN σ ε (x) u 0 ε (x) ϕ(0, x) dx = ˆT 0 ˆRN u ε σ ε b ε • ∇ x ϕ dx dt.
(2.18) We pass easily to the limit in the left hand-side of (2.18). The delicate point comes from the right-hand side of (2.18).

By the L p -estimate (2.14) of Lemma 2.5 combined with the uniform boundedness of σ ε in (2.3) there exists a subsequence, still denoted by ε, such that

v ε = σ ε u ε converges weakly to some function v in L ∞ (0, T ; L p (R N )). Let ψ ∈ C 1 c ([0, T ) × R N ) the support of which is contained in some compact set [t 0 , t 1 ] × K of [0, T ) × R N , and define ϕ ε (t, x) := ψ(t, W ε (x)) for (t, x) ∈ (0, T ) × R N , (2.19) 
so that ∇ x ϕ ε (t, x) = DW ε (x)∇ y ψ(t, y). Hence, making the change of variables y = W ε (x) and using (2.9) we deduce that

ˆT 0 ˆRN v ε (t, x) b ε (x) • ∇ x ϕ ε (t, x) dx dt = ˆT 0 ˆW -1 ε (K) v ε (t, x) b ε (x) • ∇ x ϕ ε (t, x) dx dt = ˆT 0 ˆK v ε (t, W -1 ε (y)) θ ε (W -1 ε (y)) e 1 • ∇ y ψ(t, y) det(DW -1 ε )(y) dy dt.
(2.20) First, using successively the Hölder inequality combined with the L p -estimate (2.14), the inclusion (2.1) and the L q -strong convergence (2.4) of θ ε , we have

ˆT 0 ˆK v ε (t, W -1 ε (y)) (θ ε -θ 0 )(W -1 ε (y)) e 1 • ∇ y ψ(t, y) det(DW -1 ε )(y) dy dt ≤ C ψ ˆT 0 ˆK v ε (t, W -1 ε (y)) p det(DW -1 ε )(y) dy 1 p × ˆK (θ ε -θ 0 )(W -1 ε (y)) q det(DW -1 ε )(y) dy 1 q dt ≤ C ψ ˆT 0 v ε (t, •) L p (K ) θ ε -θ 0 L q (K ) dt = o ε , which implies that ˆT 0 ˆK v ε (t, W -1 ε (y)) θ ε (W -1 ε (y)) e 1 • ∇ y ψ(t, y) det(DW -1 ε )(y) dy dt = ˆT 0 ˆK v ε (t, W -1 ε (y)) θ 0 (W -1 ε (y)) e 1 • ∇ y ψ(t, y) det(DW -1 ε )(y) dy dt + o ε .
Next, by the uniform convergence (2.2)

∇ y ψ(t, W ε (x)) → ∇ y ψ(t, W (x)) in C 0 loc ([0, T ] × R N ).
Then, making the inverse change of variables x = W -1 ε (y) together with (2.1) and using the weak convergence of v ε to v in L ∞ (0, T ; L p (R N )), we have

ˆT 0 ˆK v ε (t, W -1 ε (y)) θ 0 (W -1 ε (y)) e 1 • ∇ y ψ(t, y) det(DW -1 ε )(y) dy dt = ˆT 0 ˆK v ε (t, x) θ 0 (x) e 1 • ∇ y ψ(t, W ε (x)) dx dt = ˆT 0 ˆK v(t, x) θ 0 (x) e 1 • ∇ y ψ(t, W (x)) dx dt + o ε . Let ϕ ∈ C 1 c ([0, T ) × R N ) and define similarly to (2.19) ϕ(t, x) := ψ(t, W (x)) for (t, x) ∈ [0, T ) × R N ,
so that ∇ x ϕ(t, x) = DW (x)∇ y ψ(t, y). Therefore, passing to the limit in (2.20) we obtain that

ˆT 0 ˆRN v ε (t, x) b ε (x) • ∇ x ϕ ε (t, x) dx dt = ˆT 0 ˆRN v(t, x) θ 0 (x) DW (x) T -1 e 1 • ∇ x ϕ(t, x) dx dt + o ε .
(2.21)

On the other hand, using (2.9), (2.3) and the Murat-Tartar div-curl lemma in L N N -1 -L N (see, e.g., [17, Theorem 2]) with convergences (2.2), (2.4), (2.12) we get that 

DW T ε (σ ε b ε ) = σ ε θ ε e 1 DW T ξ 0 = σ 0 θ 0 e 1 weakly in L 1 loc (R N ). ( 2 
ˆT 0 ˆRN v ε b ε • ∇ x ϕ ε dx dt -→ ε→0 ˆT 0 ˆRN v σ 0 ξ 0 • ∇ x ϕ dx dt.
Finally, passing to the limit in formula (2.18) with ϕ ε , it follows that for any ϕ ∈

C 1 c ([0, T ) × R N ), ˆT 0 ˆRN v ∂ϕ ∂t dx dt + ˆRN v 0 (x) ϕ(0, x) dx = ˆT 0 ˆRN v σ 0 ξ 0 • ∇ x ϕ dx dt,
which taking into account that ξ 0 is divergence free yields the weak formulation of the desired limit equation (2.10). This concludes the proof of the first part of Theorem 2.2. Now, assume in addition that b ε ∈ W 

φ ∈ C 1 c ([0, T ) × R N ), ˆT 0 ˆRN u 2 ε ∂φ ∂t dx dt + ˆRN (u 0 ε ) 2 (x) φ(0, x) dx = ˆT 0 ˆRN u 2 ε div (φ b ε ) dx dt,
Replacing u ε by u 2 ε in the first part of Theorem 2.2 and using the strong convergence of u 0 ε we get that the sequence σ ε u 2 ε converges weakly in L ∞ (0, T ; L p/2 (R N )) to the solution w to the transport equation

     ∂w ∂t -ξ 0 • ∇ x w σ 0 = ∂w ∂t - ξ 0 σ 0 • ∇ x w + ξ 0 • ∇σ 0 σ 2 0 w = 0 in (0, T ) × R N w(0, •) = σ 0 (u 0 ) 2 in R N .
(2.23) Note that by virtue of [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]Corollary II.1] the solution w to equation (2.23) is unique due to the regularities 

σ 0 ∈ W 1,∞ (R N ), ξ 0 ∈ L ∞ (R N ) N ∩ W
     ∂(v 2 ) ∂t - ξ 0 σ 0 • ∇ x (v 2 ) + 2 ξ 0 • ∇σ 0 σ 0 v 2 = 0 in (0, T ) × R N v 2 (0, •) = (σ 0 u 0 ) 2 in R N , or equivalently, for any φ ∈ C 1 c ([0, T ) × R N ), ˆT 0 ˆRN v 2 ∂φ ∂t dx dt + ˆRN (σ 0 u 0 ) 2 (x) φ(0, x) dx = ˆT 0 ˆRN v 2 div φ ξ 0 σ 0 dx dt + ˆT 0 ˆRN 2 v 2 ξ 0 • ∇σ 0 σ 2 0 φ dx dt.
Replacing the test function φ by ϕ/σ 0 by a density argument, it follows that for any

function ϕ ∈ C 1 c ([0, T ) × R N ), ˆT 0 ˆRN v 2 σ 0 ∂ϕ ∂t dx dt + ˆRN σ 0 (x) (u 0 ) 2 (x) ϕ(0, x) dx = ˆT 0 ˆRN v 2 div ϕ ξ 0 σ 2 0 dx dt + ˆT 0 ˆRN 2 v 2 ξ 0 • ∇σ 0 σ 3 0 ϕ dx dt = ˆT 0 ˆRN v 2 σ 0 div ϕ ξ 0 σ 0 dx dt + ˆT 0 ˆRN v 2 σ 0 ξ 0 • ∇σ 0 σ 2 0 ϕ dx dt,
which shows that v 2 /σ 0 is also a solution to equation (2.23). By uniqueness we thus get that w = v 2 /σ 0 . Similarly, the solution u to equation (2.13) agrees with v/σ 0 . Finally, using these two equalities we have for any compact set

K of R N , ˆT 0 ˆK σ ε (u ε -u) 2 dx dt = ˆT 0 ˆK(σ ε u 2 ε -2 σ ε u ε u + σ ε u 2 ) dx dt -→ ε→0 ˆT 0 ˆK(w -2 v u + σ 0 u 2 ) dx dt = 0,
which concludes the proof of Theorem 2.2.

Proof of Lemma 2.5. If the uniform boundedness (2.5) of div b ε is satisfied, then using the estimate [START_REF] Murat | Compacité par compensation[END_REF] of [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]Proposition II.1] for the solution to the regularized equation of (1.1) and the lower semi-continuity of the L p -norm (p < ∞) we get estimate (2.14). Otherwise, assume that conditions (2.3) and (2.6) hold true. Using the regularity of the data the proof is based on an explicit expression of the solution to equation (1.1) from the flow Y ε associated with the vector field b ε by

   ∂Y ε (t, x) ∂t = b ε (Y ε (t, x)), t ∈ R Y ε (0, x) = x ∈ R N . (2.24) Let u 0 ε be a function in C 1 (R N ) ∩ L p (R N ).
It is classical that the regular solution u ε to the transport equation (1.1) is given by 

u ε (t, x) = u 0 ε (Y ε (t, x)) for (t, x) ∈ [0, T ] × R N . ( 2 
= Y ε (t, x) ⇔ x = Y ε (-t, y), we get that ˆRN u 0 ε (Y ε (t, x)) p dx = ˆRN u 0 ε (y) p det(D y Y ε (-t, y)) dy. (2.26)
Moreover, by (2.24) and the Liouville formula we have for any (τ,

y) ∈ R × R N , det(D y Y ε (τ, y)) = exp ˆτ 0 (div b ε )(Y ε (s, y)) ds .
However, since by (2.3)

σ ε b ε is divergence free, we have ˆτ 0 (div b ε )(Y ε (s, y)) ds = - ˆτ 0 ∇σ ε • b ε σ ε (Y ε (s, y)) ds = - ˆτ 0 ∂ ∂s ln σ ε (Y ε (s, y)) ds = ln σ ε (y) σ ε (Y ε (τ, y))
.

This combined with the boundedness of σ ε in condition (2.3) implies that

∀ (τ, y) ∈ R × R N , 0 < det(D y Y ε (τ, y)) = σ ε (y) σ ε (Y ε (τ, y)) ≤ c 2 .
Hence, we deduce from (2.26) that

ˆRN |u ε (x)| p dx = ˆRN u 0 ε (Y ε (t, x)) p dx ≤ c 2 ˆRN u 0 ε (y) p dy,
which yields the desired estimate (2.14). This concludes the proof of Lemma 2.5.

Examples

The purpose of this section is to illustrate the homogenization of the transport equation (1.1) by various oscillating fields b ε which satisfy the assumptions of Theorem 2.2. It means giving examples of diffeomorphism W ε on R N satisfying the rectification (2.9) of the vector field b ε where the sequence θ ε > 0 is compact in L q loc (R N ) for some q ∈ (1, ∞).

First example

Let α ε , α ∈ C 1 (R) be such that for some constant c > 0,

α ε → α in C 0 loc (R), α ε ≥ c in R, α ε → α in L 2 loc (R), (3.1) 
and let β ε , β ∈ C 1 (R) be such that for some constant C > 0,

β ε → β in C 0 loc (R), |β ε | ≤ C in R, β ε is bounded in L ∞ loc (R), (3.2) 
Consider the vector field

W ε ∈ C 1 (R N ) N defined by W ε (x) := α ε (x 1 ) exp β ε (α ε (x 1 )α ε (x 2 )) , α ε (x 2 ) exp -β ε (α ε (x 1 )α ε (x 2 )) , x ∈ R 2 , (3.3) 
which is based on the characterization of the holomorphic mappings on C 2 with constant Jacobian [START_REF] Nishimura | French) [Injective holomorphic mappings of two variables with constant Jacobian[END_REF]. The gradient of W ε is given by

             ∇w 1 ε (x) = exp β ε (α ε (x 1 )α ε (x 2 )) α ε (x 1 ) 1 + α ε (x 1 )α ε (x 2 )β ε (α ε (x 1 )α ε (x 2 )) α ε (x 2 )α 2 ε (x 1 )β ε (α ε (x 1 )α ε (x 2 ) ∇w 2 ε (x) = exp -β ε (α ε (x 1 )α ε (x 2 )) -α ε (x 1 )α 2 ε (x 2 )β ε (α ε (x 1 )α ε (x 2 )) α ε (x 2 ) 1 -α ε (x 1 ) α ε (x 2 )β ε (α ε (x 1 )α ε (x 2 )) . Also define b ε := R ⊥ ∇w 2
ε and σ ε := 1, so that conditions (2.3) and (2.5) are fulfilled. By (3.1) and (3.2) we have

W ε (x) C 0 loc (R 2 ) -→ W (x) := α(x 1 ) exp β(α(x 1 )α(x 2 )) , α(x 2 ) exp -β(α(x 1 )α(x 2 )) , W ε W in H 1 loc (R 2 ),
so that conditions (2.2) are satisfied, and

b ε • ∇w 1 ε (x) = det(DW ε )(x) = α ε (x 1 ) α ε (x 2 ) → α (x 1 ) α (x 2 ) in L 2 loc (R 2 ), (3.4) 
so that condition (2.4) is satisfied with p = 2. Moreover, since by (3.1)

∀ t ∈ R, |α ε (t) -α ε (0)| ≥ c |t|,
the sequence α ε (0) converges, and β ε is uniformly bounded in R, condition (2.1) holds for W ε . Note that the oscillations of the drift b ε in equation (1.1) are only due to the oscillations of the sequence β ε which does not appear in the convergence (3.4) of the Jacobian.

The periodic case

This section extends the periodic framework of [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF], [START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF]Theorem 8], and [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF]Corollary 4.4].

Let W = (w 1 , . . . , w N ) be a vector field in C 2 (R N ) N , and let M be a matrix in

R N ×N such that x → W (x) -M x ∈ C 1 (Y N ) N and σ := det(DW ) > 0 in R N .
(3.5)

Consider the periodic vector field b ∈ C 1 (Y N ) N defined by

σ b := R ⊥ ∇w 2 if N = 2 ∇w 2 × • • • × ∇w N if N ≥ 3. (3.6)
We have the following result.

Proposition 3.1. Let u 0 ε ∈ C 1 (R N ) be a bounded sequence in L p (R N ) with p ∈ (1, ∞). Assume that conditions (3.5) and (3.6) hold true. Then, the vector fields W ε and b ε defined by

W ε (x) := ε W x ε and b ε (x) := b x ε for x ∈ R N , (3.7) 
satisfy the assumptions of Theorem 2.2. Moreover, for any sequence u 0 ε in L p (R N ) such that σ(x/ε) u 0 ε converges weakly to v 0 in L p (R N ), the solution u ε to equation (1.1) is such that σ(x/ε) u ε converges weakly in L ∞ (0, T ; L p (R N )) to the solution v to the equation (2.10) with σ 0 = σ and ξ 0 = σ b .

Proof of Proposition 3.1. By the quasi-affinity of the determinant (see, e.g., [START_REF] Dacorogna | Direct Methods in the Calculus of Variations[END_REF]Sec. 4.3.2]) and by (3.5) we have det(M ) = det DW = det(DW ) > 0, and by (3.7) there exists a constant C > 0 such that

∀ x ∈ R N , |W ε (x) -M x| ≤ Cε, (3.8) 
which implies condition (2.1). Moreover, estimate (3.8) and the uniform bounded of DW ε imply easily the convergences (2.2) with the limit W (x) := M x.

On the other hand, the definitions (3.5) of W , σ and the definition (3.6) of b show clearly that condition (2.3) and the regularity (2.6) hold true. Moreover, we have

θ := b • ∇w 1 = det(DW ) σ = 1 in R N , which implies (2.4) since θ ε (x) = θ(x/ε) = 1.
Moreover, let u 0 ε be a sequence in L p (R N ) such that σ(x/ε) u ε converges weakly to v 0 in L p (R N ). By virtue of Theorem 2.2 combined with Remark 2.3 and using the weak limit of a periodically oscillating sequence, the sequence σ(x/ε) u ε converges weakly in L p (R N ) to the solution v to the equation (2.10) with σ 0 = σ and ξ 0 = σ b . The proof of Proposition 3.1 is now complete.

The dynamic flow case

In this section we construct a sequence W ε from a dynamic flow associated with a suitable but quite general sequence of vector fields a ε .

Let a ε , a be vector fields in

C 1 (R N ) N such that a ε → a in C 0 loc (R N ) N , a ε a in W 1,∞ loc (R N ) N * , (3.9) 
and for some constant A > 0,

|a ε | + |div a ε | ≤ A in R N . (3.10) Also assume that there exists q ∈ (1, ∞) such that div a ε → div a in L q loc (R N ). ( 3 

.11)

Consider the dynamic flow X ε associated with the vector field a ε defined by

   ∂X ε (t, x) ∂t = a ε (X ε (t, x)), t ∈ R X ε (0, x) = x ∈ R d , (3.12 
) and let X be the limit flow associated with the limit vector field a.

Then, from any sequence of flows X ε we may derive a general sequence of vector fields b ε inducing the homogenization of the transport equation (1.1). Proposition 3.2. Let u 0 ε be a bounded sequence in L p (R N ) with p ∈ (1, ∞). Assume that conditions (3.9), (3.10), (3.11) hold true. For a fixed t > 0, define the vector field W ε := X ε (t, •) from R N into R N , and the vector field b ε by (2.3) with σ ε = 1. Then, the sequences W ε and b ε satisfy the assumptions of Theorem 2.2. Moreover, for any sequence u 0 ε converging weakly to u 0 in L p (R N ), the solution u ε to equation (1.1) converges weakly in L ∞ (0, T ; L p (R N )) to a solution u to the equation (2.13) where σ 0 = 1 and ξ 0 = Cof (D x X(t, x)) e 1 .

Remark 3.3.

There is a strong correspondance between the conditions (3.9)-(3.10) and (3.11) satisfied by the vector field a ε , and respectively the conditions (2.2) and (2.4) satisfied by the vector fields W ε and b ε .

Proof of Proposition 3.2. First of all, conditions (2.3) and (2.5) are straightforward, since σ ε = 1 and b ε is divergence free. Fix T > 0. By (3.10) we have

∀ t ∈ [0, T ], ∀ x ∈ R N , |X ε (t, x) -x| ≤ A T, (3.13) 
so that the uniform property (2.1) is satisfied by W ε .

Let K be a compact set of R N . Again by (3.13) there exists a compact set

K of R N such that X ε (t, x), (t, x) ∈ [0, T ] × K ⊂ K . (3.14) 
Let δ > 0. Since a ε converges uniformly to a in K and a ∈ C 1 (R N ) is k-Lipschitz in K for some k > 0, we have for any small enough ε > 0 and for any t ∈ [0, T ], for any x, y ∈ K, X ε (t, x) -X ε (t, y) ≤ |x -y| + ˆt 0 a ε (X ε (s, x)) -a ε (X ε (s, y)) ds ≤ δ + |x -y| + k ˆt 0 X ε (s, x) -X ε (s, y) ds.

Hence, by Gronwall's inequality (see, e.g., [14, Sec. 17.3]) we get that for any small enough ε > 0, ∀ t ∈ [0, T ], ∀ x, y ∈ K, |X ε (t, x) -X ε (t, y) ≤ (δ + |x -y|) e kt , which by (3.10) implies that for any small enough ε > 0, ∀ s, t ∈ [0, T ], ∀ x, y ∈ K, |X ε (s, x) -X ε (t, y) ≤ A |s -t| + (δ + |x -y|) e kt , namely X ε is uniformly equicontinuous in the compact set [0, T ] × K. Therefore, by virtue of Ascoli's theorem this combined with (3.14) and (3.9) implies that up to a subsequence X ε converges uniformly in [0, T ] × K to a solution X to ∀ t ∈ [0, T ], ∀ x ∈ K, X(t, x) = x + ˆt 0 a(X(s, x)) ds, i.e. X is the flow associated with the vector field a. Since a belongs to C 1 b (R N ), the flow X is uniquely determined (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Sec. 17.4]). Therefore, the whole sequence X ε converges uniformly to X in [0, T ]×K. Moreover, by the differentiability of the flow (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Sec. 17 which using (3.9), (3.14) and Gronwall's inequality implies that there exists a constant c > 0 such that

∀ t ∈ [0, T ], ∀ x ∈ K, |D x X ε (t, x)| ≤ |I N | e ct .
Therefore, convergences (2.2) hold true.

On the other hand, by the Liouville formula associated with equation (3.15) and estimate (3.10) we get that there exists a constant c > 1 such that ∀ t ∈ [0, T ], ∀ x ∈ K, c -1 ≤ det (D x X ε (t, x)) = exp ˆt 0 (div a ε )(X ε (s, x)) ds ≤ c, (3.16) which implies the existence of a constant C > 0 such that for any t ∈ [0, T ] and x ∈ K, det (D x X ε (t, x)) -det (D x X(t, x))

≤ C
ˆT 0 |div a ε -div a|(X ε (s, x)) ds + C ˆT 0 (div a)(X ε (s, x)) -(div a)(X(s, x)) ds.

Hence, using successively Jensen's inequality with respect to the integral in s, Fubini's theorem and the change of variables y = X ε (s, x) together with (3.14) and (3.16), it follows that there exists a constant C > 0 such that for any t ∈ [0, T ],

det (D x X ε (t, •)) -det (D x X(t, •)) L q (K)

≤ C div a ε -div a L q (K ) + C sup This combined with convergence (3.11) and the uniform convergence of X ε to X in the compact set [0, T ] × K implies the convergence (2.4) of θ ε = det(D x X ε (t, •)).

Finally, let u 0 ε be a sequence in L p (R N ) converging weakly to u 0 in L p (R N ). By virtue of Theorem 2.2 combined with Remark 2.4 and recalling that σ ε = 1, the sequence u ε converges weakly in L p (R N ) to a solution u to the equation (2.13) where σ 0 = 1 and by (2.11) ξ 0 = Cof (D x X(t, •)) e 1 in R N .

Proposition 3.2 is thus proved.

. 8 )

 8 However, in dimension N ≥ 3 condition (2.3) is stronger than σ ε b ε divergence free. The definition (2.3) of b ε and the definition (2.4) of θ ε are equivalent to the global rectification of the field b ε by the

  then by virtue of [8, Corollary II.1] there exists a unique solution v to the transport equation (2.10).

1

  ,p/(p-2) loc (R N ) N with p > 2 and u 0 ε converges strongly tou 0 in L p (R N ) with σ 0 ∈ W 1,∞ (R N ) and ξ 0 ∈ L ∞ (R N ) N ∩W1,p/(p-2) loc (R N ) N . By [8, Theorem II.3 and Corollary II.1] u 2 ε is the unique solution to the equation (1.1) with initial condition (u 0 ε ) 2 , or equivalently, for any

1

  ,p/(p-2) loc (R N ) N with divergence free. Moreover, again by [8, Theorem II.3 and Corollary II.1] v 2 is the unique solution to the equation induced by(2.10) 

  .25) Let t ∈ [0, T ]. Making the change of variables combined with the semi-group property of the flow y

  .6]) we have∀ t ∈ [0, T ], ∀ x ∈ K, D x X ε (t, x) = I N + ˆt 0 D x X ε (s, x) D x a ε (X ε (s, x)) ds,(3.15)

[ 0 ,

 0 T ]×K (div a)(X ε ) -(div a)(X) .

  is the ergodicity of the flow associated with b (see, e.g., [20, Lect. 1], or [19, Chap. II, § 5]), namely any periodic invariant function by the flow is constant, or equivalently, for any periodic regular function
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