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Abstract

The paper is devoted to a new approach of the homogenization of linear
transport equations induced by a uniformly bounded sequence of vector fields
bε(x), the solutions of which uε(t, x) agree at t = 0 with a bounded sequence
of Lp

loc(R
N ) for some p ∈ (1,∞). Assuming that the sequence bε · ∇w1

ε is
compact in Lq

loc(R
N ) (q conjugate of p) for some gradient field ∇w1

ε bounded
in LN

loc(RN )N , and that there exists a uniformly bounded sequence σε > 0
such that σε bε is divergence free if N = 2 or is a cross product of (N − 1)
bounded gradients in LN

loc(RN )N if N ≥ 3, we prove that the sequence σε uε

converges weakly to a solution to a linear transport equation. It turns out that
the compactness of bε · ∇w1

ε is a substitute to the ergodic assumption of the
classical two-dimensional periodic case, and allows us to deal with non-periodic
vector fields in any dimension. The homogenization result is illustrated by
various and general examples.

Résumé

Cet article propose une nouvelle approche de l’homogénéisation des équations
de transport linéaires induites par une suite uniformément bornée de champs
de vecteurs bε(x) et dont les solutions uε(t, x) cöıncident en t = 0 avec une
suite bornée de Lp

loc(R
N ) pour un certain p ∈ (1,∞). En supposant que la suite

bε ·∇w1
ε est compacte dans Lq

loc(R
N ) (q exposant conjugué de p) pour un champ

de gradients ∇w1
ε borné dans LN

loc(RN )N et qu’il existe une suite uniformément
bornée σε > 0 telle que σε bε est à divergence nulle si N = 2 ou est un produit
vectoriel de (N−1) gradients bornés dans LN

loc(RN )N si N≥3, on montre que la
suite σε uε converge faiblement vers une solution d’une équation de transport.
Il s’avère que la compacité de bε ·∇w1

ε remplace la condition d’ergodicité du cas
périodique bidimensionnel classique et permet de traiter des champs de vecteurs
non périodiques en toute dimension. Le résultat d’homogénéisation est illustré
par différents exemples généraux.
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1 Introduction

In this paper we study the homogenization of the sequence of linear transport equa-
tions indexed by ε > 0,

∂uε
∂t
− bε(x) · ∇xuε = 0 in (0, T )× RN ,

uε(0, ·) = u0ε in RN .
(1.1)

where N ≥ 2, T > 0 and p ∈ [1,∞] with conjugate exponent q. Equation (1.1) is
associated with the flow Yε(t, x) defined by

∂Yε(t, x)

∂t
= bε(Yε(t, x)), t ∈ R

Yε(0, x) = x ∈ RN .
(1.2)

Using the DiPerna-Lions transport theory [8, Corollary II.1], if for instance bε is
a vector field in L∞(RN )N ∩ W 1,q

loc (RN )N with bounded divergence and the initial
condition u0ε is in Lp(RN ), then there exists a unique solution uε(t, x) to equation
(1.1) in L∞(0, T ;Lp(RN )).

Tartar [21] showed that the homogenization of first-order hyperbolic equations may
lead to nonlocal effective equations with memory effects. In this framework Amirat,
Hamdache and Ziani obtained memory effects for the homogenization of the transport
equation (1.1), first in dimension two when bε · ∇xuε = bε(t, x2) ∂x1

uε [1], and in a
more general setting [2, 3] they derived an integral representation of the memory term
of the homogenized equation using Young’s measures and a Radon transform.

In the present paper, rather than determining the “closure” set of the homogenized
equations of (1.1) as in [1, 2, 3], we provide some sufficient conditions under which the
homogenized equation of (1.1) remains a transport equation, namely the nature of
equation (1.1) is preserved through homogenization. Assuming that bε(x) = b(x/ε) is
a divergence free periodically oscillating vector field, Brenier [4] showed thanks to the
ergodic theorem that the solution uε of (1.1) converges. This result was improved in
dimension two by Hou and Xin [15] who proved thanks to a two-scale convergence ap-
proach that the homogenization of (1.1) leads to the averaged transport equation with´
T2 b(y) dy (TN denotes the N -dimensional torus). Golse [12, Theorem 8] extended

these results to the locally periodic case bε(x) = b(x, x/ε) with divyb(x, ·) = 0, as-
suming some ergodic property involving the flow associated with − b(x, ·). In [12, 13]
and in the generalizations [11, 10] with an application to Physics [9], Golse et al. also
studied the perturbed differential system satisfied by the pair (Iε, Jε) in RN × TN :

dIε
dt

= εf(Iε, Jε), t ∈ R

dJε
dt

= ω(Iε) + εg(Iε, Jε),

(1.3)

with f(I, ·), g(I, ·) periodic, which after an ε-rescaling is associated with a Liouville
partial differential equation of type (1.1) but more complicated. Assuming among
others that ω satisfies the Kolmogorov non-degeneracy type ergodic condition

meas
({
I ∈ RN , |I| ≤ R : |ω(I) · ξ| < α

})
−→
α→0

0 uniformly in ξ ∈ SN−1, (1.4)

2



or some variant, Golse et al. obtained an error estimate between the solution to system
(1.3) and the averaged system with

´
TN f(I, y) dy, as well as the velocity averaging

(homogenization) of the associated Liouville partial differential equation. They also
extended this result to a non-periodic framework.

Returning to the periodic case bε(x) = b(x/ε), Tassa [22] replaced in dimension
two the divergence free of b by the existence of a periodic positive regular function σ
such that

div (σb) = 0 in R2, (1.5)

i.e. σ is an invariant measure for b by the Liouville theorem. The main assumption
of the periodic framework bε(x) = b(x/ε) of [4, 15, 22] is the ergodicity of the flow
associated with b (see, e.g., [20, Lect. 1], or [19, Chap. II, § 5]), namely any periodic
invariant function by the flow is constant, or equivalently, for any periodic regular
function v,

b · ∇v = 0 in R2 ⇒ ∇v = 0 in R2, (1.6)

together with b 6= 0 in R2. By virtue of the Kolmogorov theorem (see, e.g., [20,
Lect. 11] or [22, Sec. 2]) in dimension two with b 6= 0, condition (1.6) is equivalent to
the ergodic assumption

ˆ
T2

b1(y)σ(y) dy,

ˆ
T2

b2(y)σ(y) dy are rationally independant, (1.7)

which is equivalent to the irrationality of the rotation number. In the locally periodic
case bε(x) = b(x, x/ε) of [12, Section 8] the ergodicity assumption states that for a.e.
x ∈ RN , the fluctuation of the vector field b(x, ·) around its average value is ergodic
with respect to the flow associated with − b(x, ·).

In the present paper, besides the closure results of [1, 2, 3] and the ergodic ap-
proaches of [4, 15, 12, 13, 22], we propose a new approach which holds both in a
non-periodic framework and in any dimension, assuming that the vector field bε sat-
isfies a non-ergodic condition which preserves the nature of equation (1.1) through
homogenization. More precisely, the ergodic assumption (1.6) or (1.7) of the peri-
odic framework is now replaced by the existence of a sequence w1

ε in C1(RN ) and
q ∈ (1,∞) such that

0 < bε · ∇w1
ε → θ0 > 0 strongly in Lqloc(R

N ), (1.8)

which is equivalent in the periodic case to the existence of a periodic gradient ∇w
satisfying

b · ∇w = 1 in RN . (1.9)

Moreover, the invariant measure σ of the periodic case is replaced by a sequence σε
satisfying 0 < c−1 < σε < c for some constant c > 1, and (see Remark 2.1 for an
equivalent expression)

div (σε bε) = 0 if N = 2 and σε bε = ∇w2
ε × · · · × ∇wNε if N ≥ 3. (1.10)

The case where σε bε is only divergence free in dimension N ≥ 3 remains open.
In this way the vector field bε is naturally associated with the vector field Wε :=
(w1

ε , . . . , w
N
ε ) which induces a global rectification of the field bε in the direction e1

(see Remark 2.1). Then, assuming in addition to (1.8), (1.10) that Wε is uniformly
proper (see condition (2.1) below) and converges both in C0

loc(RN )N and weakly in
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W 1,N
loc (RN )N , we prove (see Theorem 2.2) that up to a subsequence σε uε converges

weakly in L∞(0, T ;Lp(RN )) to a solution v to the transport equation
∂v

∂t
− ξ0 · ∇x

(
v

σ0

)
= 0 in (0, T )× RN

v(0, ·) = v0 in RN ,
(1.11)

where σ0 is the weak-∗ limit of σε in L∞(RN ), ξ0 is the weak limit of σε bε in

L
N

N−1

loc (RN )N and v0 the weak limit of σε u
0
ε in Lp(RN ). Moreover, if σε converges

strongly to σ0 in L1
loc(RN ) (see Remark 2.4) or u0ε converges strongly to u0 in Lploc(RN ),

then up to a subsequence uε converges weakly in L∞(0, T ;Lp(RN )) to a solution u to
the transport equation

∂u

∂t
− ξ0
σ0
· ∇xu = 0 in (0, T )× RN

u(0, ·) = u0 in RN .
(1.12)

The convergence of uε also turns out to be strong in L∞(0, T ;L2
loc(RN )) if u0ε converges

strongly to u0 in Lploc(RN ) with p > 2 (see the second part of Theorem 2.2).
The compactness condition (1.8) is the main assumption of Theorem 2.2. It is

equivalent to the compactness of the product σε det(DWε) which is connected to the
vector field bε by (1.10). The examples of Section 3 show that this condition may be
satisfied in quite general situations.

Section 2 is devoted to the statement of the main result and to its proof. Section 3
deals by three applications of Theorem 2.2. In Section 3.1 we study the case of
a diffeomorphism Wε on R2 such that det(DWε) is compact in Lploc(R2) for some
q ∈ (1,∞). In Section 3.2 we extend the periodic case of [4, 15, 22] with bε(x) = b(x/ε)
and the periodic case of [5, Sec. 4] on the asymptotic of the flow associated with b, in
the light of Theorem 2.2 with a periodically oscillating function σε(x) = σ(x/ε) (see
Proposition 3.1). In Section 3.3 we consider the case of a diffeomorphism Wε which
agrees at a fixed time t to a flow Xε(t, ·) associated with a suitable vector field aε (see
Proposition 3.2). In this general setting assumption (1.8) holds simply when div aε is
compact in Lqloc(RN ) for some q ∈ (1,∞).

Notations

• (e1, . . . , eN ) denotes the canonical basis of RN .

• · denotes the scalar product in RN and | · | the associated norm.

• IN is the unit matrix of RN×N , and R⊥ is the clockwise 90◦ rotation matrix in
R2×2.

• For M ∈ RN×N , MT denotes the transpose of M .

• YN := [0, 1)
N

, and 〈f〉 denotes the average-value of a function f ∈ L1(YN ).

• For any open set Ω of RN and k ∈ N∪{∞}, Ckc (Ω), respectively Ckb (Ω), denotes
the space of the Ck functions with compact support in Ω, respectively bounded
in Ω.
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• For k ∈ N ∪ {∞} and p ∈ [1,∞], Ck] (YN ) denotes the space of the YN -periodic

functions in Ck(RN ), and Lp] (YN ) denotes the space of the YN -periodic functions

in Lploc(RN ) (i.e. in Lp(K) for any compact set K of RN ).

• For u ∈ L1
loc(RN ) and U = (Uj)1≤j≤d ∈ L1

loc(RN )N .

∇xu := (∂x1
u, . . . , ∂xN

u) and DU :=
[
∂xi

Uj
]
1≤i,j≤d.

The matrix-valued function DU stands for the transposition of the Jacobian
matrix of the vector field U .

• For ξ1, . . . , ξN in RN , the cross product ξ2 × · · · × ξN is defined by

ξ1 · (ξ2 × · · · × ξN ) = det (ξ1, ξ2, . . . , ξN ) for ξ1 ∈ RN , (1.13)

where det is the determinant with respect to the canonical basis (e1, . . . , eN ).

• oε denotes a term which tends to zero as ε→ 0.

• C denotes a constant which may vary from line to line.

2 The main result

Let Wε = (w1
ε , . . . , w

N
ε ), ε > 0, be a sequence of vector fields in C1(RN )N which is

uniformly proper, i.e. for any compact set K of RN there exists a compact set K ′ of
RN satisfying

W−1ε (K) ⊂ K ′ for any small enough ε > 0, (2.1)

and let W ∈ C1(RN )N be such that

Wε →W in C0
loc(RN )N and Wε ⇀W in W 1,N

loc (RN )N . (2.2)

Let bε be a vector field in C0
b (RN )N ∩W 1,q

loc (RN )N with bounded divergence and let

σε be a positive function in C0(RN ) ∩W 1,q
loc (RN ) satisfying for some constant c > 1,

c−1 ≤ σε ≤ c and σε bε =

{
R⊥∇w2

ε if N = 2

∇w2
ε × · · · × ∇wNε if N ≥ 3,

in RN . (2.3)

Also assume that for p ∈ (1,∞) with conjugate exponent q, there exists a positive
function θ0 in C0(RN ) such that

θε := bε · ∇w1
ε > 0 in RN and θε → θ0 > 0 strongly in Lqloc(R

N ). (2.4)

Finally, assume:

• either that there exists a constant B > 0 such that

|div bε| ≤ B a.e. in RN , (2.5)

• or the regularity condition

bε ∈ C1
b (RN )N , σε ∈ C1(RN ) and u0ε ∈ C1(RN ). (2.6)

5



Remark 2.1. The definition (2.3) of bε can be also written for any dimension N ≥ 2
as the existence of (N − 1) gradients ∇w2

ε , . . . ,∇wNε satisfying

∀ ξ ∈ RN , σε bε · ξ = det
(
ξ,∇w2

ε , . . . ,∇wNε
)
. (2.7)

In dimension N ≥ 3 this is exactly the definition of the cross product∇w2
ε×· · ·×∇wNε

(see (1.13)). In dimension N = 2 this means exactly that σε bε = R⊥∇w2
ε , which is

equivalent to
div (σε bε) = 0 in R2. (2.8)

However, in dimension N ≥ 3 condition (2.3) is stronger than σε bε divergence free.
The definition (2.3) of bε and the definition (2.4) of θε are equivalent to the global

rectification of the field bε by the diffeomorphism Wε

DWT
ε bε = θε e1 in RN , (2.9)

in the direction e1 with the compact range θε.

Then, we have the following homogenization result.

Theorem 2.2. Let T > 0, let p ∈ (1,∞) and let u0ε be a bounded sequence in Lp(RN ),
N ≥ 2. Assume that conditions (2.1) to (2.4) together with (2.5) or (2.6) hold true.
Let uε be the solution to the transport equation (1.1) and set vε := σε uε. Then,
up to a subsequence vε converges weakly in L∞(0, T ;Lp(RN )) to a solution v to the
transport equation 

∂v

∂t
− ξ0 · ∇x

(
v

σ0

)
= 0 in (0, T )× RN

v(0, ·) = v0 in RN ,
(2.10)

where (Cof denotes the cofactors matrix)

ξ0 = Cof (DW ) e1 ∈ C0(RN )N , (2.11)

σε bε ⇀ ξ0 in L
N

N−1

loc (RN )N , σε ⇀ σ0 in L∞(RN ) ∗, σε u
0
ε ⇀ v0 in Lp(RN ).

(2.12)

Moreover, if in addition bε ∈ W
1,p/(p−2)
loc (RN )N with p > 2 and the sequence u0ε

converges strongly to u0 ∈ Lploc(RN ) with σ0 ∈ W 1,∞(R) and ξ0 ∈ L∞(RN )N ∩
W

1,p/(p−2)
loc (RN )N , then uε converges strongly in L∞(0, T ;L2

loc(RN )) to the solution u
to the transport equation

∂u

∂t
− ξ0
σ0
· ∇xu = 0 in (0, T )× RN

u(0, ·) = u0 in RN .
(2.13)

Remark 2.3. If in Theorem 2.2 we assume in addition that σ0 is in W 1,∞(RN ) and
ξ0 belongs to L∞(RN )N ∩W 1,q

loc (RN )N , then by virtue of [8, Corollary II.1] there exists
a unique solution v to the transport equation (2.10).

Remark 2.4. In addition to the conditions (2.1) to (2.4) assume that σε converges
strongly in L1

loc(RN ) to σ0 ∈ W 1,q
loc (RN ). Then, we have v = σ0 u and v0 = σ0 u

0

where u0 is the weak limit of u0ε in Lp(RN ), which implies that equation (2.10) is
equivalent to equation (2.13). Therefore, uε converges weakly in L∞(0, T ;Lp(RN ))
to a solution u to the transport equation (2.13).
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To prove Theorem 2.2 we need the following Lp-estimate.

Lemma 2.5. Let bε ∈ L∞(RN )N ∩W 1,q
loc (RN )N with bounded divergence be such that

• either estimate (2.5) holds true,

• or both conditions (2.3) and (2.6) hold true.

Then, there exists a constant C > 0 such that for any u0ε ∈ Lp(RN ) with p ∈ [1,∞),
the solution uε to equation (1.1) satisfies the estimate

‖uε(t, ·)‖Lp(RN ) ≤ C ‖u0ε‖Lp(RN ) for a.e. t ∈ (0, T ), (2.14)

Proof of Theorem 2.2. First of all, note that by (2.3) and (2.4) we have

det(DWε) = σε θε > 0 in RN . (2.15)

This combined with property (2.1) and Hadamard-Caccioppoli’s theorem [6] (or Hadamard-
Lévy’s theorem) implies that Wε is a C1-diffeomorphism on RN . Moreover, since by

(2.15) det(DWε) is positive and by (2.2) Wε converges weakly in W 1,N
loc (RN )N , by

virtue of Müller’s theorem [16] det(DWε) weakly converges to det(DW ) in L1
loc(RN ).

Hence, passing to the limit in (2.15) together with the strong convergence (2.4) of θε,
the weak convergence (2.12) of σε and the boundedness (2.3) of σε we get that

det(DW ) = σ0 θ0 ≥ c−1 θ0 > 0 a.e. in RN , (2.16)

which taking into account the continuity of DW and θ0 implies that det(DW ) > 0
in RN . Moreover, again by the uniform character of (2.1) W is a proper mapping.
Therefore, W is also a C1-diffeomorphism on RN .

The weak formulation of equation (1.1) is that for any function φ ∈ C1
c ([0, T ) ×

RN ),

ˆ T

0

ˆ
RN

uε
∂φ

∂t
dx dt+

ˆ
RN

u0ε(x)φ(0, x) dx =

ˆ T

0

ˆ
RN

uε div (φ bε) dx dt. (2.17)

Using a density argument with σε ∈W 1,q
loc (RN ), we can replace the test function φ by

σε ϕ for any ϕ ∈ C1
c ([0, T ) × RN ). This combined with the divergence free of σε bε

leads us to the new formulation

ˆ T

0

ˆ
RN

σε uε
∂ϕ

∂t
dx dt+

ˆ
RN

σε(x)u0ε(x)ϕ(0, x) dx =

ˆ T

0

ˆ
RN

uε σε bε · ∇xϕdx dt.

(2.18)
We pass easily to the limit in the left hand-side of (2.18). The delicate point comes
from the right-hand side of (2.18).

By the Lp-estimate (2.14) of Lemma 2.5 combined with the uniform boundedness
of σε in (2.3) there exists a subsequence, still denoted by ε, such that vε = σε uε
converges weakly to some function v in L∞(0, T ;Lp(RN )).

Let ψ ∈ C1
c ([0, T ) × RN ) the support of which is contained in some compact set

[t0, t1]×K of [0, T )× RN , and define

ϕε(t, x) := ψ(t,Wε(x)) for (t, x) ∈ (0, T )× RN , (2.19)
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so that ∇xϕε(t, x) = DWε(x)∇yψ(t, y). Hence, making the change of variables y =
Wε(x) and using (2.9) we deduce that

ˆ T

0

ˆ
RN

vε(t, x) bε(x) · ∇xϕε(t, x) dx dt =

ˆ T

0

ˆ
W−1

ε (K)

vε(t, x) bε(x) · ∇xϕε(t, x) dx dt

=

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θε(W

−1
ε (y)) e1 · ∇yψ(t, y) det(DW−1ε )(y) dy dt.

(2.20)
First, using successively the Hölder inequality combined with the Lp-estimate (2.14),
the inclusion (2.1) and the Lq-strong convergence (2.4) of θε, we have∣∣∣∣∣

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) (θε − θ0)(W−1ε (y)) e1 · ∇yψ(t, y) det(DW−1ε )(y) dy dt

∣∣∣∣∣
≤ Cψ

ˆ T

0

(ˆ
K

∣∣vε(t,W−1ε (y))
∣∣p det(DW−1ε )(y) dy

) 1
p

×

(ˆ
K

∣∣(θε − θ0)(W−1ε (y))
∣∣q det(DW−1ε )(y) dy

) 1
q

dt

≤ Cψ
ˆ T

0

‖vε(t, ·)‖Lp(K′)‖θε − θ0‖Lq(K′) dt = oε,

which implies that

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θε(W

−1
ε (y)) e1 · ∇yψ(t, y) det(DW−1ε )(y) dy dt

=

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θ0(W−1ε (y)) e1 · ∇yψ(t, y) det(DW−1ε )(y) dy dt+ oε.

Next, by the uniform convergence (2.2)

∇yψ(t,Wε(x))→ ∇yψ(t,W (x)) in C0
loc([0, T ]× RN ).

Then, making the inverse change of variables x = W−1ε (y) together with (2.1) and
using the weak convergence of vε to v in L∞(0, T ;Lp(RN )), we have

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θ0(W−1ε (y)) e1 · ∇yψ(t, y) det(DW−1ε )(y) dy dt

=

ˆ T

0

ˆ
K′
vε(t, x) θ0(x) e1 · ∇yψ(t,Wε(x)) dx dt

=

ˆ T

0

ˆ
K′
v(t, x) θ0(x) e1 · ∇yψ(t,W (x)) dx dt+ oε.

Let ϕ ∈ C1
c ([0, T )× RN ) and define similarly to (2.19)

ϕ(t, x) := ψ(t,W (x)) for (t, x) ∈ [0, T )× RN ,

so that ∇xϕ(t, x) = DW (x)∇yψ(t, y). Therefore, passing to the limit in (2.20) we
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obtain that

ˆ T

0

ˆ
RN

vε(t, x) bε(x) · ∇xϕε(t, x) dx dt

=

ˆ T

0

ˆ
RN

v(t, x) θ0(x)
(
DW (x)T

)−1
e1 · ∇xϕ(t, x) dx dt+ oε.

(2.21)

On the other hand, using (2.9), (2.3) and the Murat-Tartar div-curl lemma in L
N

N−1 -
LN (see, e.g., [17, Theorem 2]) with convergences (2.2), (2.4), (2.12) we get that

DWT
ε (σε bε) = σε θε e1 ⇀ DWT ξ0 = σ0 θ0 e1 weakly in L1

loc(RN ). (2.22)

This combined with (2.16) yields equality (2.11). Convergences (2.21) and (2.22)
imply that

ˆ T

0

ˆ
RN

vε bε · ∇xϕε dx dt −→
ε→0

ˆ T

0

ˆ
RN

v

σ0
ξ0 · ∇xϕdx dt.

Finally, passing to the limit in formula (2.18) with ϕε, it follows that for any ϕ ∈
C1
c ([0, T )× RN ),

ˆ T

0

ˆ
RN

v
∂ϕ

∂t
dx dt+

ˆ
RN

v0(x)ϕ(0, x) dx =

ˆ T

0

ˆ
RN

v

σ0
ξ0 · ∇xϕdx dt,

which taking into account that ξ0 is divergence free yields the weak formulation of the
desired limit equation (2.10). This concludes the proof of the first part of Theorem 2.2.

Now, assume in addition that bε ∈W 1,p/(p−2)
loc (RN )N with p > 2 and u0ε converges

strongly to u0 in Lp(RN ) with σ0 ∈W 1,∞(RN ) and ξ0 ∈ L∞(RN )N∩W 1,p/(p−2)
loc (RN )N .

By [8, Theorem II.3 and Corollary II.1] u2ε is the unique solution to the equation (1.1)
with initial condition (u0ε)

2, or equivalently, for any φ ∈ C1
c ([0, T )× RN ),

ˆ T

0

ˆ
RN

u2ε
∂φ

∂t
dx dt+

ˆ
RN

(u0ε)
2(x)φ(0, x) dx =

ˆ T

0

ˆ
RN

u2ε div (φ bε) dx dt,

Replacing uε by u2ε in the first part of Theorem 2.2 and using the strong convergence
of u0ε we get that the sequence σε u

2
ε converges weakly in L∞(0, T ;Lp/2(RN )) to the

solution w to the transport equation
∂w

∂t
− ξ0 · ∇x

(
w

σ0

)
=
∂w

∂t
− ξ0
σ0
· ∇xw +

ξ0 · ∇σ0
σ2
0

w = 0 in (0, T )× RN

w(0, ·) = σ0 (u0)2 in RN .
(2.23)

Note that by virtue of [8, Corollary II.1] the solution w to equation (2.23) is unique

due to the regularities σ0 ∈ W 1,∞(RN ), ξ0 ∈ L∞(RN )N ∩ W 1,p/(p−2)
loc (RN )N with

divergence free. Moreover, again by [8, Theorem II.3 and Corollary II.1] v2 is the
unique solution to the equation induced by (2.10)

∂(v2)

∂t
− ξ0
σ0
· ∇x(v2) + 2

ξ0 · ∇σ0
σ0

v2 = 0 in (0, T )× RN

v2(0, ·) = (σ0 u
0)2 in RN ,
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or equivalently, for any φ ∈ C1
c ([0, T )× RN ),

ˆ T

0

ˆ
RN

v2
∂φ

∂t
dx dt+

ˆ
RN

(σ0 u
0)2(x)φ(0, x) dx

=

ˆ T

0

ˆ
RN

v2 div

(
φ
ξ0
σ0

)
dx dt+

ˆ T

0

ˆ
RN

2 v2
ξ0 · ∇σ0
σ2
0

φdx dt.

Replacing the test function φ by ϕ/σ0 by a density argument, it follows that for any
function ϕ ∈ C1

c ([0, T )× RN ),

ˆ T

0

ˆ
RN

v2

σ0

∂ϕ

∂t
dx dt+

ˆ
RN

σ0(x) (u0)2(x)ϕ(0, x) dx

=

ˆ T

0

ˆ
RN

v2 div

(
ϕ
ξ0
σ2
0

)
dx dt+

ˆ T

0

ˆ
RN

2 v2
ξ0 · ∇σ0
σ3
0

ϕdx dt

=

ˆ T

0

ˆ
RN

v2

σ0
div

(
ϕ
ξ0
σ0

)
dx dt+

ˆ T

0

ˆ
RN

v2

σ0

ξ0 · ∇σ0
σ2
0

ϕdx dt,

which shows that v2/σ0 is also a solution to equation (2.23). By uniqueness we thus
get that w = v2/σ0. Similarly, the solution u to equation (2.13) agrees with v/σ0.
Finally, using these two equalities we have for any compact set K of RN ,

ˆ T

0

ˆ
K

σε(uε − u)2 dx dt =

ˆ T

0

ˆ
K

(σε u
2
ε − 2σε uε u+ σε u

2) dx dt

−→
ε→0

ˆ T

0

ˆ
K

(w − 2 v u+ σ0 u
2) dx dt = 0,

which concludes the proof of Theorem 2.2. �

Proof of Lemma 2.5. If the uniform boundedness (2.5) of div bε is satisfied, then
using the estimate (17) of [8, Proposition II.1] for the solution to the regularized
equation of (1.1) and the lower semi-continuity of the Lp-norm (p < ∞) we get
estimate (2.14).

Otherwise, assume that conditions (2.3) and (2.6) hold true. Using the regularity
of the data the proof is based on an explicit expression of the solution to equation
(1.1) from the flow Yε associated with the vector field bε by

∂Yε(t, x)

∂t
= bε(Yε(t, x)), t ∈ R

Yε(0, x) = x ∈ RN .
(2.24)

Let u0ε be a function in C1(RN ) ∩Lp(RN ). It is classical that the regular solution uε
to the transport equation (1.1) is given by

uε(t, x) = u0ε(Yε(t, x)) for (t, x) ∈ [0, T ]× RN . (2.25)

Let t ∈ [0, T ]. Making the change of variables combined with the semi-group property
of the flow

y = Yε(t, x) ⇔ x = Yε(−t, y),

10



we get that

ˆ
RN

∣∣u0ε(Yε(t, x))
∣∣p dx =

ˆ
RN

∣∣u0ε(y)
∣∣p ∣∣det(DyYε(−t, y))

∣∣ dy. (2.26)

Moreover, by (2.24) and the Liouville formula we have for any (τ, y) ∈ R× RN ,

det(DyYε(τ, y)) = exp

(ˆ τ

0

(div bε)(Yε(s, y)) ds

)
.

However, since by (2.3) σε bε is divergence free, we have

ˆ τ

0

(div bε)(Yε(s, y)) ds = −
ˆ τ

0

(
∇σε · bε
σε

)
(Yε(s, y)) ds

= −
ˆ τ

0

∂

∂s

(
lnσε(Yε(s, y))

)
ds = ln

(
σε(y)

σε(Yε(τ, y))

)
.

This combined with the boundedness of σε in condition (2.3) implies that

∀ (τ, y) ∈ R× RN , 0 < det(DyYε(τ, y)) =
σε(y)

σε(Yε(τ, y))
≤ c2.

Hence, we deduce from (2.26) that

ˆ
RN

|uε(x)|p dx =

ˆ
RN

∣∣u0ε(Yε(t, x))
∣∣p dx ≤ c2 ˆ

RN

∣∣u0ε(y)
∣∣p dy,

which yields the desired estimate (2.14). This concludes the proof of Lemma 2.5. �

3 Examples

The purpose of this section is to illustrate the homogenization of the transport equa-
tion (1.1) by various oscillating fields bε which satisfy the assumptions of Theorem 2.2.
It means giving examples of diffeomorphism Wε on RN satisfying the rectification
(2.9) of the vector field bε where the sequence θε > 0 is compact in Lqloc(RN ) for some
q ∈ (1,∞).

3.1 First example

Let αε, α ∈ C1(R) be such that for some constant c > 0,

αε → α in C0
loc(R), α′ε ≥ c in R, α′ε → α′ in L2

loc(R), (3.1)

and let βε, β ∈ C1(R) be such that for some constant C > 0,

βε → β in C0
loc(R), |βε| ≤ C in R, β′ε is bounded in L∞loc(R), (3.2)

Consider the vector field Wε ∈ C1(RN )N defined by

Wε(x) :=
(
αε(x1) exp

{
βε(αε(x1)αε(x2))

}
, αε(x2) exp

{
−βε(αε(x1)αε(x2))

})
, x ∈ R2,

(3.3)
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which is based on the characterization of the holomorphic mappings on C2 with
constant Jacobian [18]. The gradient of Wε is given by
∇w1

ε(x) = exp
{
βε(αε(x1)αε(x2))

}(α′ε(x1)
(
1 + αε(x1)αε(x2)β′ε(αε(x1)αε(x2))

)
α′ε(x2)α2

ε(x1)β′ε(αε(x1)αε(x2)
) )

∇w2
ε(x) = exp

{
−βε(αε(x1)αε(x2))

}( −α′ε(x1)α2
ε(x2)β′ε(αε(x1)αε(x2))

α′ε(x2)
(
1− αε(x1)αε(x2)β′ε(αε(x1)αε(x2))

)) .
Also define bε := R⊥∇w2

ε and σε := 1, so that conditions (2.3) and (2.5) are fulfilled.
By (3.1) and (3.2) we have

Wε(x)
C0

loc(R
2)−→ W (x) :=

(
α(x1) exp

{
β(α(x1)α(x2))

}
, α(x2) exp

{
−β(α(x1)α(x2))

})
,

Wε ⇀W in H1
loc(R2),

so that conditions (2.2) are satisfied, and

bε · ∇w1
ε(x) = det(DWε)(x) = α′ε(x1)α′ε(x2)→ α′(x1)α′(x2) in L2

loc(R2), (3.4)

so that condition (2.4) is satisfied with p = 2. Moreover, since by (3.1)

∀ t ∈ R, |αε(t)− αε(0)| ≥ c |t|,

the sequence αε(0) converges, and βε is uniformly bounded in R, condition (2.1) holds
for Wε.

Note that the oscillations of the drift bε in equation (1.1) are only due to the
oscillations of the sequence β′ε which does not appear in the convergence (3.4) of the
Jacobian.

3.2 The periodic case

This section extends the periodic framework of [4, 15, 22], [12, Theorem 8], and [5,
Corollary 4.4].

Let W = (w1, . . . , wN ) be a vector field in C2(RN )N , and let M be a matrix in
RN×N such that(

x 7→W (x)−Mx
)
∈ C1

] (YN )N and σ := det(DW ) > 0 in RN . (3.5)

Consider the periodic vector field b ∈ C1
] (Y N )N defined by

σ b :=

{
R⊥∇w2 if N = 2

∇w2 × · · · × ∇wN if N ≥ 3.
(3.6)

We have the following result.

Proposition 3.1. Let u0ε ∈ C1(RN ) be a bounded sequence in Lp(RN ) with p ∈
(1,∞). Assume that conditions (3.5) and (3.6) hold true. Then, the vector fields Wε

and bε defined by

Wε(x) := εW
(x
ε

)
and bε(x) := b

(x
ε

)
for x ∈ RN , (3.7)
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satisfy the assumptions of Theorem 2.2.
Moreover, for any sequence u0ε in Lp(RN ) such that σ(x/ε)u0ε converges weakly to
v0 in Lp(RN ), the solution uε to equation (1.1) is such that σ(x/ε)uε converges
weakly in L∞(0, T ;Lp(RN )) to the solution v to the equation (2.10) with σ0 = 〈σ〉
and ξ0 = 〈σ b〉.

Proof of Proposition 3.1. By the quasi-affinity of the determinant (see, e.g., [7,
Sec. 4.3.2]) and by (3.5) we have

det(M) = det 〈DW 〉 =
〈

det(DW )
〉
> 0,

and by (3.7) there exists a constant C > 0 such that

∀x ∈ RN , |Wε(x)−Mx| ≤ Cε, (3.8)

which implies condition (2.1). Moreover, estimate (3.8) and the uniform bounded of
DWε imply easily the convergences (2.2) with the limit W (x) := Mx.

On the other hand, the definitions (3.5) of W , σ and the definition (3.6) of b show
clearly that condition (2.3) and the regularity (2.6) hold true. Moreover, we have

θ := b · ∇w1 =
det(DW )

σ
= 1 in RN ,

which implies (2.4) since θε(x) = θ(x/ε) = 1.
Moreover, let u0ε be a sequence in Lp(RN ) such that σ(x/ε)uε converges weakly

to v0 in Lp(RN ). By virtue of Theorem 2.2 combined with Remark 2.3 and using
the weak limit of a periodically oscillating sequence, the sequence σ(x/ε)uε converges
weakly in Lp(RN ) to the solution v to the equation (2.10) with σ0 = 〈σ〉 and ξ0 = 〈σ b〉.
The proof of Proposition 3.1 is now complete. �

3.3 The dynamic flow case

In this section we construct a sequence Wε from a dynamic flow associated with a
suitable but quite general sequence of vector fields aε.

Let aε, a be vector fields in C1(RN )N such that

aε → a in C0
loc(RN )N , aε ⇀ a in W 1,∞

loc (RN )N∗, (3.9)

and for some constant A > 0,

|aε|+ |div aε| ≤ A in RN . (3.10)

Also assume that there exists q ∈ (1,∞) such that

div aε → div a in Lqloc(R
N ). (3.11)

Consider the dynamic flow Xε associated with the vector field aε defined by
∂Xε(t, x)

∂t
= aε(Xε(t, x)), t ∈ R

Xε(0, x) = x ∈ Rd,
(3.12)

and let X be the limit flow associated with the limit vector field a.
Then, from any sequence of flows Xε we may derive a general sequence of vector

fields bε inducing the homogenization of the transport equation (1.1).
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Proposition 3.2. Let u0ε be a bounded sequence in Lp(RN ) with p ∈ (1,∞). Assume
that conditions (3.9), (3.10), (3.11) hold true. For a fixed t > 0, define the vector field
Wε := Xε(t, ·) from RN into RN , and the vector field bε by (2.3) with σε = 1. Then,
the sequences Wε and bε satisfy the assumptions of Theorem 2.2.
Moreover, for any sequence u0ε converging weakly to u0 in Lp(RN ), the solution uε to
equation (1.1) converges weakly in L∞(0, T ;Lp(RN )) to a solution u to the equation
(2.13) where σ0 = 1 and ξ0 = Cof (DxX(t, x)) e1.

Remark 3.3. There is a strong correspondance between the conditions (3.9)-(3.10)
and (3.11) satisfied by the vector field aε, and respectively the conditions (2.2) and
(2.4) satisfied by the vector fields Wε and bε.

Proof of Proposition 3.2. First of all, conditions (2.3) and (2.5) are straightfor-
ward, since σε = 1 and bε is divergence free. Fix T > 0. By (3.10) we have

∀ t ∈ [0, T ], ∀x ∈ RN , |Xε(t, x)− x| ≤ AT, (3.13)

so that the uniform property (2.1) is satisfied by Wε.
Let K be a compact set of RN . Again by (3.13) there exists a compact set K ′ of

RN such that {
Xε(t, x), (t, x) ∈ [0, T ]×K

}
⊂ K ′. (3.14)

Let δ > 0. Since aε converges uniformly to a in K ′ and a ∈ C1(RN ) is k-Lipschitz in
K ′ for some k > 0, we have for any small enough ε > 0 and for any t ∈ [0, T ], for any
x, y ∈ K,∣∣Xε(t, x)−Xε(t, y)

∣∣ ≤ |x− y|+ ˆ t

0

∣∣aε(Xε(s, x))− aε(Xε(s, y))
∣∣ ds

≤ δ + |x− y|+ k

ˆ t

0

∣∣Xε(s, x)−Xε(s, y)
∣∣ ds.

Hence, by Gronwall’s inequality (see, e.g., [14, Sec. 17.3]) we get that for any small
enough ε > 0,

∀ t ∈ [0, T ], ∀x, y ∈ K, |Xε(t, x)−Xε(t, y)
∣∣ ≤ (δ + |x− y|) ekt,

which by (3.10) implies that for any small enough ε > 0,

∀ s, t ∈ [0, T ], ∀x, y ∈ K, |Xε(s, x)−Xε(t, y)
∣∣ ≤ A |s− t|+ (δ + |x− y|) ekt,

namely Xε is uniformly equicontinuous in the compact set [0, T ]×K. Therefore, by
virtue of Ascoli’s theorem this combined with (3.14) and (3.9) implies that up to a
subsequence Xε converges uniformly in [0, T ]×K to a solution X to

∀ t ∈ [0, T ], ∀x ∈ K, X(t, x) = x+

ˆ t

0

a(X(s, x)) ds,

i.e. X is the flow associated with the vector field a. Since a belongs to C1
b (RN ),

the flow X is uniquely determined (see, e.g., [14, Sec. 17.4]). Therefore, the whole
sequence Xε converges uniformly to X in [0, T ]×K. Moreover, by the differentiability
of the flow (see, e.g., [14, Sec. 17.6]) we have

∀ t ∈ [0, T ], ∀x ∈ K, DxXε(t, x) = IN +

ˆ t

0

DxXε(s, x)Dxaε(Xε(s, x)) ds, (3.15)
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which using (3.9), (3.14) and Gronwall’s inequality implies that there exists a constant
c > 0 such that

∀ t ∈ [0, T ], ∀x ∈ K, |DxXε(t, x)| ≤ |IN | ect.

Therefore, convergences (2.2) hold true.
On the other hand, by the Liouville formula associated with equation (3.15) and

estimate (3.10) we get that there exists a constant c > 1 such that

∀ t ∈ [0, T ], ∀x ∈ K, c−1 ≤ det (DxXε(t, x)) = exp

(ˆ t

0

(div aε)(Xε(s, x)) ds

)
≤ c,

(3.16)
which implies the existence of a constant C > 0 such that for any t ∈ [0, T ] and
x ∈ K,∣∣det (DxXε(t, x))− det (DxX(t, x))

∣∣
≤ C

ˆ T

0

|div aε − div a|(Xε(s, x)) ds+ C

ˆ T

0

∣∣(div a)(Xε(s, x))− (div a)(X(s, x))
∣∣ ds.

Hence, using successively Jensen’s inequality with respect to the integral in s, Fubini’s
theorem and the change of variables y = Xε(s, x) together with (3.14) and (3.16), it
follows that there exists a constant C > 0 such that for any t ∈ [0, T ],∥∥ det (DxXε(t, ·))− det (DxX(t, ·))

∥∥
Lq(K)

≤ C ‖div aε − div a‖Lq(K′) + C sup
[0,T ]×K

∣∣(div a)(Xε)− (div a)(X)
∣∣.

This combined with convergence (3.11) and the uniform convergence of Xε to X in
the compact set [0, T ]×K implies the convergence (2.4) of θε = det(DxXε(t, ·)).

Finally, let u0ε be a sequence in Lp(RN ) converging weakly to u0 in Lp(RN ). By
virtue of Theorem 2.2 combined with Remark 2.4 and recalling that σε = 1, the
sequence uε converges weakly in Lp(RN ) to a solution u to the equation (2.13) where
σ0 = 1 and by (2.11)

ξ0 = Cof (DxX(t, ·)) e1 in RN .
Proposition 3.2 is thus proved. �
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