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Abstract

The paper is devoted to a new approach of the homogenization of linear transport
equations induced by a uniformly bounded sequence of vector fields bε(x), the solutions
of which uε(t, x) agree at t = 0 with a bounded sequence of Lploc(R

N ) for some p ∈ (1,∞).
Assuming that the sequence bε · ∇w1

ε is compact in Lqloc(R
N ) (q conjugate of p) for some

gradient field ∇w1
ε bounded in LNloc(RN )N , and that there exists a uniformly bounded

sequence σε > 0 such that σε bε is divergence free if N=2 or is a cross product of (N−1)
bounded gradients in LNloc(RN )N if N ≥ 3, we prove that the sequence σε uε converges
weakly to a solution to a linear transport equation. It turns out that the compactness
of bε · ∇w1

ε is a substitute to the ergodic assumption of the classical two-dimensional
periodic case, and allows us to deal with non-periodic vector fields in any dimension. The
homogenization result is illustrated by various and general examples.
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1 Introduction

In this paper we study the homogenization of the sequence of linear transport equations indexed
by ε > 0, 

∂uε
∂t
− bε · ∇xuε = 0 in (0, T )× RN , N ≥ 2

uε(0, ·) = u0ε in RN .

(1.1)

where T > 0 and p ∈ [1,∞] with conjugate exponent q. Using the DiPerna-Lions transport
theory [5, Corollary II.1], if for instance bε is a vector field in L∞(RN)N ∩ W 1,q

loc (RN)N with
bounded divergence and the initial condition u0ε is in Lp(RN), then there exists a unique solution
uε(t, x) to equation (1.1) in L∞(0, T ;Lp(RN)).

Tartar [14] has showed that the homogenization of first-order hyperbolic equations may
lead to nonlocal effective equations with memory effects, and E [6] has also obtained from
the homogenization of (1.1) effective higher-order hyperbolic equations. Hence, an interesting
problem consists in finding sufficient conditions for which the weak limit of the solution uε to
equation (1.1) is still a solution to a first-order transport equation. This type of homogenization
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result has first been derived in dimension two by Brenier [1] and by Hou, Xin [8], assuming
that bε(x) = b(x/ε) where b is a divergence free periodic regular vector field. These works have
been extended by E [6, Sec. 5] when bε(x) = b(x, x/ε) with b(x, y) divergence free both in x and
y, and by Tassa [15] when there exists a periodic positive regular function σ (which is called
an invariant measure for b) such that

div (σb) = 0 in R2. (1.2)

The main assumption of the periodic framework of [1, 8, 6, 15] is the ergodicity of the flow
associated with b (see, e.g., [13, Lect. 1], or [12, Chap. II, § 5]), namely any periodic invariant
function by the flow is constant, or equivalently, for any periodic regular function v,

b · ∇v = 0 in R2 ⇒ ∇v = 0 in R2, (1.3)

together with b 6= 0 in R2. By virtue of the Kolmogorov theorem (see, e.g., [13, Lect. 11] or [15,
Sec. 2]) in dimension two with b 6= 0, condition (1.3) is equivalent to

〈b1〉
〈b2〉

/∈ Q.

Here, we present a new approach which holds both in the non-periodic framework and in
any dimension with a suitable vector field bε. The ergodic assumption (1.3) together with b 6= 0
is now replaced by the existence of a sequence w1

ε in C1(RN) and q ∈ (1,∞) such that

0 < bε · ∇w1
ε → θ0 > 0 strongly in Lqloc(R

N), (1.4)

which is equivalent in the periodic case to the existence of a periodic gradient ∇w satisfying

b · ∇w = 1 in RN . (1.5)

Moreover, the invariant measure σ of the periodic case is replaced by a sequence σε satisfying
0 < c−1 < σε < c for some constant c > 1, and (see Remark 2.1 for an equivalent expression)

div (σε bε) = 0 if N = 2 and σε bε = ∇w2
ε × · · · × ∇wNε if N ≥ 3. (1.6)

The case where σε bε is only divergence free in dimension N ≥ 3 remains open. In this way the
vector field bε is naturally associated with the vector field Wε := (w1

ε , . . . , w
N
ε ) which induces a

global rectification of the field bε in the direction e1 (see Remark 2.1). Then, assuming in addi-
tion to (1.4), (1.6) that Wε is uniformly proper (see condition (2.1) below) and converges both
in C0

loc(RN)N and weakly in W 1,N
loc (RN)N , we prove (see Theorem 2.2) that up to a subsequence

σε uε converges weakly in L∞(0, T ;Lp(RN)) to a solution v to the transport equation
∂v

∂t
− ξ0 · ∇x

(
v

σ0

)
= 0 in (0, T )× RN

v(0, ·) = v0 in RN ,

(1.7)

where σ0 is the weak-∗ limit of σε in L∞(RN), ξ0 is the weak limit of σε bε in LN
′

loc(RN)N and
v0 the weak limit of σε u

0
ε in Lp(RN). Moreover, if σε converges strongly to σ0 in L1

loc(RN) (see
Remark 2.4) or u0ε converges strongly to u0 in Lploc(RN), then up to a subsequence uε converges
weakly in L∞(0, T ;Lp(RN)) to a solution u to the transport equation

∂u

∂t
− ξ0
σ0
· ∇xu = 0 in (0, T )× RN

u(0, ·) = u0 in RN .

(1.8)

2



The convergence of uε also turns out to be strong in L∞(0, T ;L2
loc(RN)) if u0ε converges strongly

to u0 in Lploc(RN) with p > 2 (see the second part of Theorem 2.2).
The compactness condition (1.4) is the main assumption of Theorem 2.2. It is equivalent to

the compactness of the product σε det(DWε) which is connected to the vector field bε by (1.6).
The examples of Section 3 show that this condition may be satisfied in quite general situations.

Section 2 is devoted to the statement of the main result and to its proof. Section 3 deals
by three applications of Theorem 2.2. In Section 3.1 we study the case of a diffeomorphism
Wε on R2 such that det(DWε) is compact in Lploc(R2) for some q ∈ (1,∞). In Section 3.2 we
extend the periodic case of [1, 8, 6, 15] with bε(x) = b(x/ε) and the periodic case of [2, Sec. 4]
on the asymptotic of the flow associated with b, in the light of Theorem 2.2 with a periodically
oscillating function σε(x) = σ(x/ε) (see Proposition 3.1). In Section 3.3 we consider the case of
a diffeomorphism Wε which agrees at a fixed time t to a flow Xε(t, ·) associated with a suitable
vector field aε (see Proposition 3.2). In this general setting assumption (1.4) holds simply when
div aε is compact in Lqloc(RN) for some q ∈ (1,∞).

Notations

• (e1, . . . , eN) denotes the canonical basis of RN .

• · denotes the scalar product in RN and | · | the associated norm.

• IN is the unit matrix of RN×N , and R⊥ is the clockwise 90◦ rotation matrix in R2×2.

• For M ∈ RN×N , MT denotes the transpose of M .

• YN := [0, 1)N , and 〈f〉 denotes the average-value of a function f ∈ L1(YN).

• For any open set Ω of RN and k ∈ N∪{∞}, Ck
c (Ω), respectively Ck

b (Ω), denotes the space
of the Ck functions with compact support in Ω, respectively bounded in Ω.

• For k ∈ N ∪ {∞} and p ∈ [1,∞], Ck
] (YN) denotes the space of the YN -periodic functions

in Ck(RN), and Lp] (YN) denotes the space of the YN -periodic functions in Lploc(RN) (i.e.

in Lp(K) for any compact set K of RN).

• For u ∈ L1
loc(RN) and U = (Uj)1≤j≤d ∈ L1

loc(RN)N .

∇xu := (∂x1 , . . . , ∂xN ) and DU :=
[
∂xiUj

]
1≤i,j≤d.

• For ξ1, . . . , ξN in RN , the cross product ξ2 × · · · × ξN is defined by

ξ1 · (ξ2 × · · · × ξN) = det (ξ1, ξ2, . . . , ξN) for ξ1 ∈ RN , (1.9)

where det is the determinant with respect to the canonical basis (e1, . . . , eN).

• oε denotes a term which tends to zero as ε→ 0.

• C denotes a constant which may vary from line to line.
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2 The main result

Let Wε = (w1
ε , . . . , w

N
ε ), ε > 0, be a sequence of vector fields in C1(RN)N which is uniformly

proper, i.e. for any compact set K of RN there exists a compact set K ′ of RN satisfying

W−1
ε (K) ⊂ K ′ for any small enough ε > 0, (2.1)

and let W ∈ C1(RN)N be such that

Wε → W in C0
loc(RN)N and Wε ⇀W in W 1,N

loc (RN)N . (2.2)

Let bε be a vector field in C0
b (RN)N ∩ W 1,q

loc (RN)N with bounded divergence and let σε be a
positive function in C0(RN) ∩W 1,q

loc (RN) satisfying for some constant c > 1,

c−1 ≤ σε ≤ c and σε bε =

{
R⊥∇w2

ε if N = 2

∇w2
ε × · · · × ∇wNε if N ≥ 3,

in RN . (2.3)

Also assume that for p ∈ (1,∞) with conjugate exponent q, there exists a positive function θ0
in C0(RN) such that

θε := bε · ∇w1
ε > 0 in RN and θε → θ0 > 0 strongly in Lqloc(R

N). (2.4)

Finally, assume:

• either that there exists a constant B > 0 such that

|div bε| ≤ B a.e. in RN , (2.5)

• or the regularity condition

bε ∈ C1
b (RN)N , σε ∈ C1(RN) and u0ε ∈ C1(RN). (2.6)

Remark 2.1. The definition (2.3) of bε can be also written for any dimension N ≥ 2 as the
existence of (N − 1) gradients ∇w2

ε , . . . ,∇wNε satisfying

∀ ξ ∈ RN , σε bε · ξ = det
(
ξ,∇w2

ε , . . . ,∇wNε
)
. (2.7)

In dimension N ≥ 3 this is exactly the definition of the cross product ∇w2
ε × · · · × ∇wNε

(see (1.9)). In dimension N = 2 this means exactly that σε bε = R⊥∇w2
ε , which is equivalent to

div (σε bε) = 0 in R2. (2.8)

However, in dimension N ≥ 3 condition (2.3) is stronger than σε bε divergence free.
The definition (2.3) of bε and the definition (2.4) of θε are equivalent to the global rectifica-

tion of the field bε by the diffeomorphism Wε

DW T
ε bε = θε e1 in RN , (2.9)

in the direction e1 with the compact range θε.

Then, we have the following homogenization result.
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Theorem 2.2. Let T > 0, let p ∈ (1,∞) and let u0ε be a bounded sequence in Lp(RN). Assume
that conditions (2.1) to (2.4) together with (2.5) or (2.6) hold true. Let uε be the solution to
the transport equation (1.1) and set vε := σε uε. Then, up to a subsequence vε converges weakly
in L∞(0, T ;Lp(RN)) to a solution v to the transport equation

∂v

∂t
− ξ0 · ∇x

(
v

σ0

)
= 0 in (0, T )× RN

v(0, ·) = v0 in RN ,

(2.10)

where (Cof denotes the cofactors matrix)

ξ0 = Cof (DW ) e1 ∈ C0(RN)N , (2.11)

σε bε ⇀ ξ0 in LN
′

loc(RN)N , σε ⇀ σ0 in L∞(RN) ∗, σε u
0
ε ⇀ v0 in Lp(RN). (2.12)

Moreover, if in addition bε ∈ W 1,p/(p−2)
loc (RN)N with p > 2 and the sequence u0ε converges strongly

to u0 ∈ Lploc(RN) with σ0 ∈ W 1,∞(R) and ξ0 ∈ L∞(RN)N ∩W 1,p/(p−2)
loc (RN)N , then uε converges

strongly in L∞(0, T ;L2
loc(RN)) to the solution u to the transport equation

∂u

∂t
− ξ0
σ0
· ∇xu = 0 in (0, T )× RN

u(0, ·) = u0 in RN .

(2.13)

Remark 2.3. If in Theorem 2.2 we assume in addition that σ0 is in W 1,∞(RN) and ξ0 belongs
to L∞(RN)N ∩W 1,q

loc (RN)N , then by virtue of [5, Corollary II.1] there exists a unique solution v
to the transport equation (2.10).

Remark 2.4. In addition to the conditions (2.1) to (2.4) assume that σε converges strongly in
L1
loc(RN) to σ0 ∈ W 1,q

loc (RN). Then, we have v = σ0 u and v0 = σ0 u
0 where u0 is the weak limit

of u0ε in Lp(RN), which implies that equation (2.10) is equivalent to equation (2.13). Therefore,
uε converges weakly in L∞(0, T ;Lp(RN)) to a solution u to the transport equation (2.13).

To prove Theorem 2.2 we need the following Lp-estimate.

Lemma 2.5. Let bε ∈ L∞(RN)N ∩W 1,q
loc (RN)N with bounded divergence be such that

• either estimate (2.5) holds true,

• or both conditions (2.3) and (2.6) hold true.

Then, there exists a constant C > 0 such that for any u0ε ∈ Lp(RN) with p ∈ [1,∞), the solution
uε to equation (1.1) satisfies the estimate

‖uε(t, ·)‖Lp(RN ) ≤ C ‖u0ε‖Lp(RN ) for a.e. t ∈ (0, T ), (2.14)

Proof of Theorem 2.2. First of all, note that by (2.3) and (2.4) we have

det(DWε) = σε θε > 0 in RN . (2.15)

This combined with property (2.1) and Hadamard-Caccioppoli’s theorem [3] (or Hadamard-
Lévy’s theorem) implies that Wε is a C1-diffeomorphism on RN . Moreover, since by (2.15)
det(DWε) is positive and by (2.2) Wε converges weakly in W 1,N

loc (RN)N , by virtue of Müller’s
theorem [9] det(DWε) weakly converges to det(DW ) in L1

loc(RN). Hence, passing to the limit
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in (2.15) together with the strong convergence (2.4) of θε, the weak convergence (2.12) of σε
and the boundedness (2.3) of σε we get that

det(DW ) = σ0 θ0 ≥ c−1 θ0 > 0 a.e. in RN , (2.16)

which taking into account the continuity of DW and θ0 implies that det(DW ) > 0 in RN .
Moreover, again by the uniform character of (2.1) W is a proper mapping. Therefore, W is
also a C1-diffeomorphism on RN .

The weak formulation of equation (1.1) is that for any function φ ∈ C1
c ([0, T )× RN),

ˆ T

0

ˆ
RN

uε
∂φ

∂t
dx dt+

ˆ
RN

u0ε(x)φ(0, x) dx =

ˆ T

0

ˆ
RN

uε div (φ bε) dx dt. (2.17)

Using a density argument with σε ∈ W 1,q
loc (RN), we can replace the test function φ by σε ϕ for

any ϕ ∈ C1
c ([0, T )× RN). This combined with the divergence free of σε bε leads us to the new

formulationˆ T

0

ˆ
RN

σε uε
∂ϕ

∂t
dx dt+

ˆ
RN

σε(x)u0ε(x)ϕ(0, x) dx =

ˆ T

0

ˆ
RN

uε σε bε · ∇xϕdx dt. (2.18)

We pass easily to the limit in the left hand-side of (2.18). The delicate point comes from the
right-hand side of (2.18).

By the Lp-estimate (2.14) of Lemma 2.5 combined with the uniform boundedness of σε in
(2.3) there exists a subsequence, still denoted by ε, such that vε = σε uε converges weakly to
some function v in L∞(0, T ;Lp(RN)).

Let ψ ∈ C1
c ([0, T )×RN) the support of which is contained in some compact set [t0, t1]×K

of [0, T )× RN , and define

ϕε(t, x) := ψ(t,Wε(x)) for (t, x) ∈ (0, T )× RN , (2.19)

so that ∇xϕε(t, x) := DWε(x)∇yψ(t, y). Hence, making the change of variables y = Wε(x) and
using (2.9) we deduce that
ˆ T

0

ˆ
RN

vε(t, x) bε(x) · ∇xϕε(t, x) dx dt =

ˆ T

0

ˆ
W−1

ε (K)

vε(t, x) bε(x) · ∇xϕε(t, x) dx dt

=

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θε(W

−1
ε (y)) e1 · ∇yψ(t, y) det(DW−1

ε )(y) dy dt.

(2.20)

First, using successively the Hölder inequality combined with the Lp-estimate (2.14), the inclu-
sion (2.1) and the Lq-strong convergence (2.4) of θε, we have∣∣∣∣ ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) (θε − θ0)(W−1

ε (y)) e1 · ∇yψ(t, y) det(DW−1
ε )(y) dy dt

∣∣∣∣
≤ Cψ

ˆ T

0

(ˆ
K

∣∣vε(t,W−1
ε (y))

∣∣p det(DW−1
ε )(y) dy

) 1
p
(ˆ

K

∣∣(θε − θ0)(W−1
ε (y))

∣∣q det(DW−1
ε )(y) dy

) 1
p

dt

≤ Cψ

ˆ T

0

‖vε(t, ·)‖Lp(K′)‖θε − θ0‖Lq(K′) dt = oε,

which implies thatˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θε(W

−1
ε (y)) e1 · ∇yψ(t, y) det(DW−1

ε )(y) dy dt

ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θ0(W

−1
ε (y)) e1 · ∇yψ(t, y) det(DW−1

ε )(y) dy dt+ oε.
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Next, by the uniform convergence (2.2)

∇yψ(t,Wε(x))→ ∇yψ(t,W (x)) in C0
loc([0, T ]× RN).

Then, making the inverse change of variables x = W−1
ε (y) together with (2.1) and using the

weak convergence of vε to v in L∞(0, T ;Lp(RN)), we have
ˆ T

0

ˆ
K

vε(t,W
−1
ε (y)) θ0(W

−1
ε (y)) e1 · ∇yψ(t, y) det(DW−1

ε )(y) dy dt

=

ˆ T

0

ˆ
K′
vε(t, x) θ0(x) e1 · ∇yψ(t,Wε(x)) dx dt =

ˆ T

0

ˆ
K′
v(t, x) θ0(x) e1 · ∇yψ(t,W (x)) dx dt+ oε.

Let ϕ ∈ C1
c ([0, T )× RN) and define similarly to (2.19)

ϕ(t, x) := ψ(t,W (x)) for (t, x) ∈ [0, T )× RN ,

so that ∇xϕ(t, x) := DW (x)∇yψ(t, y). Therefore, passing to the limit in (2.20) we obtain that
ˆ T

0

ˆ
RN

vε(t, x) bε(x) · ∇xϕε(t, x) dx dt

=

ˆ T

0

ˆ
RN

v(t, x) θ0(x)
(
DW (x)T

)−1
e1 · ∇xϕ(t, x) dx dt+ oε.

(2.21)

On the other hand, using (2.9), (2.3) and the Murat-Tartar div-curl lemma in LN
′
-LN (see,

e.g., [10, Théorème 2]) with convergences (2.2), (2.4), (2.12) we get that

DW T
ε (σε bε) = σε θε e1 ⇀ DW T ξ0 = σ0 θ0 e1 weakly in L1

loc(RN). (2.22)

This combined with (2.16) yields equality (2.11). Convergences (2.21) and (2.22) imply that
ˆ T

0

ˆ
RN

vε bε · ∇xϕε dx dt −→
ε→0

ˆ T

0

ˆ
RN

v

σ0
ξ0 · ∇xϕdx dt.

Finally, passing to the limit in formula (2.18) with ϕε, it follows that for any ϕ ∈ C1
c ([0, T )×RN),

ˆ T

0

ˆ
RN

v
∂ϕ

∂t
dx dt+

ˆ
RN

v0(x)ϕ(0, x) dx =

ˆ T

0

ˆ
RN

v

σ0
ξ0 · ∇xϕdx dt,

which taking into account that ξ0 is divergence free yields the weak formulation of the desired
limit equation (2.10). This concludes the proof of the first part of Theorem 2.2.

Now, assume in addition that bε ∈ W 1,p/(p−2)
loc (RN)N with p > 2 and u0ε converges strongly to

u0 in Lp(RN) with σ0 ∈ W 1,∞(RN) and ξ0 ∈ L∞(RN)N ∩W 1,p/(p−2)
loc (RN)N . By [5, Theorem II.3

and Corollary II.1] u2ε is the unique solution to the equation (1.1) with initial condition (u0ε)
2,

or equivalently, for any φ ∈ C1
c ([0, T )× RN),

ˆ T

0

ˆ
RN

u2ε
∂φ

∂t
dx dt+

ˆ
RN

(u0ε)
2(x)φ(0, x) dx =

ˆ T

0

ˆ
RN

u2ε div (φ bε) dx dt,

Replacing uε by u2ε in the first part of Theorem 2.2 and using the strong convergence of u0ε we
get that the sequence σε u

2
ε converges weakly in L∞(0, T ;Lp/2(RN)) to the solution w to the

transport equation
∂w

∂t
− ξ0 · ∇x

(
w

σ0

)
=
∂w

∂t
− ξ0
σ0
· ∇xw +

ξ0 · ∇σ0
σ2
0

w = 0 in (0, T )× RN

w(0, ·) = σ0 (u0)2 in RN .

(2.23)
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Note that by virtue of [5, Corollary II.1] the solution w to equation (2.23) is unique due to the

regularities σ0 ∈ W 1,∞(RN), ξ0 ∈ L∞(RN)N ∩W 1,p/(p−2)
loc (RN)N with divergence free. Moreover,

again by [5, Theorem II.3 and Corollary II.1] v2 is the unique solution to the equation induced
by (2.10) 

∂(v2)

∂t
− ξ0
σ0
· ∇x(v

2) + 2
ξ0 · ∇σ0
σ0

v2 = 0 in (0, T )× RN

v2(0, ·) = (σ0 u
0)2 in RN ,

or equivalently, for any φ ∈ C1
c ([0, T )× RN),

ˆ T

0

ˆ
RN

v2
∂φ

∂t
dx dt+

ˆ
RN

(σ0 u
0)2(x)φ(0, x) dx

=

ˆ T

0

ˆ
RN

v2 div

(
φ
ξ0
σ0

)
dx dt+

ˆ T

0

ˆ
RN

2 v2
ξ0 · ∇σ0
σ2
0

φ dx dt.

Replacing the test function φ by ϕ/σ0 by a density argument, it follows that for any function
ϕ ∈ C1

c ([0, T )× RN),

ˆ T

0

ˆ
RN

v2

σ0

∂ϕ

∂t
dx dt+

ˆ
RN

σ0(x) (u0)2(x)ϕ(0, x) dx

=

ˆ T

0

ˆ
RN

v2 div

(
ϕ
ξ0
σ2
0

)
dx dt+

ˆ T

0

ˆ
RN

2 v2
ξ0 · ∇σ0
σ3
0

ϕdx dt

=

ˆ T

0

ˆ
RN

v2

σ0
div

(
ϕ
ξ0
σ0

)
dx dt+

ˆ T

0

ˆ
RN

v2

σ0

ξ0 · ∇σ0
σ2
0

ϕdx dt,

which shows that v2/σ0 is also a solution to equation (2.23). By uniqueness we thus get that
w = v2/σ0. Similarly, the solution u to equation (2.13) agrees with v/σ0. Finally, using these
two equalities we have for any compact set K of RN ,

ˆ T

0

ˆ
K

σε(uε − u)2 dx dt =

ˆ T

0

ˆ
K

(σε u
2
ε − 2σε uε u+ σε u

2) dx dt

−→
ε→0

ˆ T

0

ˆ
K

(w − 2 v u+ σ0 u
2) dx dt = 0,

which concludes the proof of Theorem 2.2. �

Proof of Lemma 2.5. If the uniform boundedness (2.5) of div bε is satisfied, then using the
estimate (17) of [5, Proposition II.1] for the solution to the regularized equation of (1.1) and
the lower semi-continuity of the Lp-norm (p <∞) we get estimate (2.14).

Otherwise, assume that conditions (2.3) and (2.6) hold true. Using the regularity of the
data the proof is based on an explicit expression of the solution to equation (1.1) from the flow
Yε associated with the vector field bε by

∂Yε(t, x)

∂t
= bε(Yε(t, x)), t ∈ R

Yε(0, x) = x ∈ Rd.

(2.24)

Let u0ε be a function in C1(RN)N ∩ Lp(RN). It is classical that the regular solution uε to the
transport equation (1.1) is given by

uε(t, x) = u0ε(Yε(t, x)) for (t, x) ∈ [0, T ]× RN . (2.25)
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Let t ∈ [0, T ]. Making the change of variables combined with the semi-group property of the
flow

y = Yε(t, x) ⇔ x = Yε(−t, y),

we get that ˆ
RN

∣∣u0ε(Yε(t, x))
∣∣p dx =

ˆ
RN

∣∣u0ε(y)
∣∣p ∣∣ det(DyYε(−t, y))

∣∣ dy. (2.26)

Moreover, by (2.24) and the Liouville formula we have for any (τ, y) ∈ R× RN ,

det(DyYε(τ, y)) = exp

(ˆ τ

0

(div bε)(Yε(s, y)) ds

)
.

However, since by (2.3) σε bε is divergence free, we have

ˆ τ

0

(div bε)(Yε(s, y)) ds = −
ˆ τ

0

(
∇σε · bε
σε

)
(Yε(s, y)) ds

= −
ˆ τ

0

∂

∂s

(
lnσε(Yε(s, y))

)
ds = ln

(
σε(y)

σε(Yε(τ, y))

)
.

This combined with the boundedness of σε in condition (2.3) implies that

∀ (τ, y) ∈ R× RN , 0 < det(DyYε(τ, y)) =
σε(y)

σε(Yε(τ, y))
≤ c2.

Hence, we deduce from (2.26) that

ˆ
RN

|uε(x)|p dx =

ˆ
RN

∣∣u0ε(Yε(t, x))
∣∣p dx ≤ c2

ˆ
RN

∣∣u0ε(y)
∣∣p dy,

which yields the desired estimate (2.14). This concludes the proof of Lemma 2.5. �

3 Examples

The purpose of this section is to illustrate the homogenization of the transport equation (1.1)
by various oscillating fields bε which satisfy the assumptions of Theorem 2.2. It means giving
examples of diffeomorphism Wε on RN satisfying the rectification (2.9) of the vector field bε
where the sequence θε > 0 is compact in Lqloc(RN) for some q ∈ (1,∞).

3.1 First example

Let αε, α ∈ C1(R) be such that for some constant c > 0,

αε → α in C0
loc(R), α′ε ≥ c in R, α′ε → α′ in L2

loc(R), (3.1)

and let βε, β ∈ C1(R) be such that for some constant C > 0,

βε → β in C0
loc(R), |βε| ≤ C in R, β′ε is bounded in L∞loc(R), (3.2)

Consider the vector field Wε ∈ C1(RN)N defined by

Wε(x) :=
(
αε(x1) exp

{
βε(αε(x1)αε(x2))

}
, αε(x2) exp

{
−βε(αε(x1)αε(x2))

})
, x ∈ R2, (3.3)
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which is based on the characterization of the holomorphic mappings on C2 with constant
Jacobian [11]. The gradient of Wε is given by

∇w1
ε(x) = exp

{
βε(αε(x1)αε(x2))

}(α′ε(x1)(1 + αε(x1)αε(x2)β
′
ε(αε(x1)αε(x2))

)
α′ε(x2)α

2
ε(x1)β

′
ε(αε(x1)αε(x2)

) )

∇w2
ε(x) = exp

{
−βε(αε(x1)αε(x2))

}( −α′ε(x1)α2
ε(x2)β

′
ε(αε(x1)αε(x2))

α′ε(x2)
(
1− αε(x1)αε(x2)β′ε(αε(x1)αε(x2))

)) .
Also define bε := R⊥∇w2

ε and σε := 1, so that conditions (2.3) and (2.5) are fulfilled.
By (3.1) and (3.2) we have

Wε(x)→ W (x) :=
(
α(x1) exp

{
β(α(x1)α(x2))

}
, α(x2) exp

{
−β(α(x1)α(x2))

})
in C0

loc(R2),

Wε ⇀W in H1
loc(R2),

so that conditions (2.2) is satisfied, and

bε · ∇w1
ε(x) = det(DWε)(x) = α′ε(x1)α

′
ε(x2)→ α′(x1)α

′(x2) in L2
loc(R2), (3.4)

so that condition (2.4) is satisfied with p = 2. Moreover, since by (3.1)

∀ t ∈ R, |αε(t)− αε(0)| ≥ c |t|,

the sequence αε(0) converges, and βε is uniformly bounded in R, condition (2.1) holds for Wε.
Note that the oscillations of the drift bε in equation (1.1) are only due to the oscillations of

the sequence β′ε which does not appear in the convergence (3.4) of the Jacobian.

3.2 The periodic case

This section extends the periodic framework of [1, 8, 6, 15] and [2, Corollary 4.4].
Let W = (w1, . . . , wN) be a vector field in C2(RN)N , and let M be a matrix in RN×N such

that (
x 7→ W (x)−Mx

)
∈ C1

] (YN)N and σ := det(DW ) > 0 in RN . (3.5)

Consider the periodic vector field b ∈ C1
] (Y N)N defined by

σ b :=

{
R⊥∇w2 if N = 2

∇w2 × · · · × ∇wN if N ≥ 3.
(3.6)

We have the following result.

Proposition 3.1. Let u0ε ∈ C1(RN) be a bounded sequence in Lp(RN) with p ∈ (1,∞). Assume
that conditions (3.5) and (3.6) hold true. Then, the vector fields Wε and bε defined by

Wε(x) := εW
(x
ε

)
and bε(x) := b

(x
ε

)
for x ∈ RN , (3.7)

satisfy the assumptions of Theorem 2.2.
Moreover, for any sequence u0ε in Lp(RN) such that σ(x/ε)u0ε converges weakly to v0 in Lp(RN),
the solution uε to equation (1.1) is such that σ(x/ε)uε converges weakly in L∞(0, T ;Lp(RN))
to the solution v to the equation (2.10) with σ0 = 〈σ〉 and ξ0 = 〈σ b〉.
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Proof of Proposition 3.1. By the quasi-affinity of the determinant (see, e.g., [4, Sec. 4.3.2])
and by (3.5) we have

det(M) = det 〈DW 〉 =
〈

det(DW )
〉
> 0,

and by (3.7) there exists a constant C > 0 such that

∀x ∈ RN , |Wε(x)−Mx| ≤ Cε, (3.8)

which implies condition (2.1). Moreover, estimate (3.8) and the uniform bounded of DWε imply
easily the convergences (2.2) with the limit W (x) := Mx.

On the other hand, the definitions (3.5) of W , σ and the definition (3.6) of b show clearly
that condition (2.3) and the regularity (2.6) hold true. Moreover, we have

θ := b · ∇w1 =
det(DW )

σ
= 1 in RN ,

which implies (2.4) since θε(x) = θ(x/ε) = 1.
Moreover, let u0ε be a sequence in Lp(RN) such that σ(x/ε)uε converges weakly to v0 in

Lp(RN). By virtue of Theorem 2.2 combined with Remark 2.3 and using the weak limit of
a periodically oscillating sequence, the sequence σ(x/ε)uε converges weakly in Lp(RN) to the
solution v to the equation (2.10) with σ0 = 〈σ〉 and ξ0 = 〈σ b〉. The proof of Proposition 3.1 is
now complete. �

3.3 The dynamic flow case

In this section we construct a sequence Wε from a dynamic flow associated with a suitable but
quite general sequence of vector fields aε.

Let aε, a be vector fields in C1(RN)N such that

aε → a in C0
loc(RN)N , aε ⇀ a in W 1,∞

loc (RN)N∗, (3.9)

and for some constant A > 0,

|aε|+ |div aε| ≤ A in RN . (3.10)

Also assume that there exists q ∈ (1,∞) such that

div aε → div a in Lqloc(R
N). (3.11)

Consider the dynamic flow Xε associated with the vector field aε defined by
∂Xε(t, x)

∂t
= aε(Xε(t, x)), t ∈ R

Xε(0, x) = x ∈ Rd,

(3.12)

and let X be the limit flow associated with the limit vector field a.
Then, from any sequence of flows Xε we may derive a general sequence of vector fields bε

inducing the homogenization of the transport equation (1.1).

Proposition 3.2. Let u0ε be a bounded sequence in Lp(RN) with p ∈ (1,∞). Assume that
conditions (3.9), (3.10), (3.11) hold true. For a fixed t > 0, define the vector field Wε := Xε(t, ·)
from RN into RN , and the vector field bε by (2.3) with σε = 1. Then, the sequences Wε and bε
satisfy the assumptions of Theorem 2.2.
Moreover, for any sequence u0ε converging weakly to u0 in Lp(RN), the solution uε to equa-
tion (1.1) converges weakly in L∞(0, T ;Lp(RN)) to a solution u to the equation (2.13) where
σ0 = 1 and ξ0 = Cof (DxX(t, x)) e1.
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Remark 3.3. There is a strong correspondance between the conditions (3.9)-(3.10) and (3.11)
satisfied by the vector field aε, and respectively the conditions (2.2) and (2.4) satisfied by the
vector fields Wε and bε.

Proof of Proposition 3.2. First of all, conditions (2.3) and (2.5) are straightforward, since
σε = 1 and bε is divergence free. Fix T > 0. By (3.10) we have

∀ t ∈ [0, T ], ∀x ∈ RN , |Xε(t, x)− x| ≤ AT, (3.13)

so that the uniform property (2.1) is satisfied by Wε.
Let K be a compact set of RN . Again by (3.13) there exists a compact set K ′ of RN such

that {
Xε(t, x), (t, x) ∈ [0, T ]×K

}
⊂ K ′. (3.14)

Let δ > 0. Since aε converges uniformly to a in K ′ and a ∈ C1(RN) is k-Lipschitz in K ′ for
some k > 0, we have for any small enough ε > 0 and for any t ∈ [0, T ], for any x, y ∈ K,∣∣Xε(t, x)−Xε(t, y)

∣∣ ≤ |x− y|+ ˆ t

0

∣∣aε(Xε(s, x))− aε(Xε(s, y))
∣∣ ds

≤ δ + |x− y|+ k

ˆ t

0

∣∣Xε(s, x)−Xε(s, y)
∣∣ ds.

Hence, by Gronwall’s inequality (see, e.g., [7, Sec. 17.3]) we get that for any small enough ε > 0,

∀ t ∈ [0, T ], ∀x, y ∈ K, |Xε(t, x)−Xε(t, y)
∣∣ ≤ (δ + |x− y|) ekt,

which by (3.10) implies that for any small enough ε > 0,

∀ s, t ∈ [0, T ], ∀x, y ∈ K, |Xε(s, x)−Xε(t, y)
∣∣ ≤ A |s− t|+ (δ + |x− y|) ekt,

namely Xε is uniformly equicontinuous in the compact set [0, T ] × K. Therefore, by virtue
of Ascoli’s theorem this combined with (3.14) and (3.9) implies that up to a subsequence Xε

converges uniformly in [0, T ]×K to a solution X to

∀ t ∈ [0, T ], ∀x ∈ K, X(t, x) = x+

ˆ t

0

a(X(s, x)) ds,

i.e. X is the flow associated with the vector field a. Since a belongs to C1
b (RN), the flow X

is uniquely determined (see, e.g., [7, Sec. 17.4]). Therefore, the whole sequence Xε converges
uniformly to X in [0, T ] × K. Moreover, by the differentiability of the flow (see, e.g., [7,
Sec. 17.6]) we have

∀ t ∈ [0, T ], ∀x ∈ K, DxXε(t, x) = IN +

ˆ t

0

DxXε(s, x)Dxaε(Xε(s, x)) ds, (3.15)

which using (3.9), (3.14) and Gronwall’s inequality implies that there exists a constant c > 0
such that

∀ t ∈ [0, T ], ∀x ∈ K, |DxXε(t, x)| ≤ |IN | ect.
Therefore, convergences (2.2) hold true.

On the other hand, by the Liouville formula associated with equation (3.15) and estimate
(3.10) we get that there exists a constant c > 1 such that

∀ t ∈ [0, T ], ∀x ∈ K, c−1 ≤ det (DxXε(t, x)) = exp

(ˆ t

0

(div aε)(Xε(s, x)) ds

)
≤ c, (3.16)
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which implies the existence of a constant C > 0 such that for any t ∈ [0, T ] and x ∈ K,∣∣ det (DxXε(t, x))− det (DxX(t, x))
∣∣

≤ C

ˆ T

0

|div aε − div a|(Xε(s, x)) ds+ C

ˆ T

0

∣∣(div a)(Xε(s, x))− (div a)(X(s, x))
∣∣ ds.

Hence, using successively Jensen’s inequality with respect to the integral in s, Fubini’s theorem
and the change of variables y = Xε(s, x) together with (3.14) and (3.16), it follows that there
exists a constant C > 0 such that for any t ∈ [0, T ],∥∥ det (DxXε(t, ·))− det (DxX(t, ·))

∥∥
Lq(K)

≤ C ‖div aε − div a‖Lq(K′) + C sup
[0,T ]×K

∣∣(div a)(Xε)− (div a)(X)
∣∣.

This combined with convergence (3.11) and the uniform convergence of Xε to X in the compact
set [0, T ]×K implies the convergence (2.4) of θε = det(DxXε(t, ·)).

Finally, let u0ε be a sequence in Lp(RN) converging weakly to u0 in Lp(RN). By virtue of
Theorem 2.2 combined with Remark 2.4 and recalling that σε = 1, the sequence uε converges
weakly in Lp(RN) to a solution u to the equation (2.13) where σ0 = 1 and by (2.11)

ξ0 = Cof (DxX(t, ·)) e1 in RN .

Proposition 3.2 is thus proved. �
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