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April 7, 2020

Abstract

We relate together different models of non linear acoustic in thermo-elastic media
as the Kuznetsov equation, the Westervelt equation, the Khokhlov-Zabolotskaya-
Kuznetsov (KZK) equation and the Nonlinear Progressive wave Equation (NPE)
and estimate the time during which the solutions of these models keep closed in the
L2 norm. The KZK and NPE equations are considered as paraxial approximations
of the Kuznetsov equation. The Westervelt equation is obtained as a nonlinear
approximation of the Kuznetsov equation. Aiming to compare the solutions of the
exact and approximated systems in found approximation domains the well-posedness
results (for the Kuznetsov equation in a half-space with periodic in time initial and
boundary data) are obtained.
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1 Introduction.

One of the most general model to describe an acoustic wave propagation in an homoge-
neous thermo-elastic medium is the compressible Navier-Stokes system in R

n

∂tρ+ div(ρv) = 0, (1)

ρ[∂tv + (v.∇)v] = −∇p+ η∆v +
(

ζ +
η

3

)

∇. div(v), (2)

ρT [∂tS + (v.∇)S] = κ∆T + ζ(divv)2

+
η

2

(

∂xk
vi + ∂xi

vk −
2

3
δik∂xi

vi

)2

, (3)

p = p(ρ, S), (4)

where the pressure p is given by the state law p = p(ρ, S) . The density ρ , the velocity
v , the temperature T and the entropy S are unknown functions in system (1)–(4). The
coefficients ζ, κ and η are constant viscosity coefficients. For the acoustical framework
the wave motion is supposed to be potential and the viscosity coefficients are supposed
to be small in terms of a dimensionless small parameter ε > 0 , which also characterizes
the size of the perturbations near the constant state (ρ0, 0, S0, T0) . Here the velocity v0

is taken equal to 0 just using a Galilean transformation.
Actually, ε is the Mach number, which is supposed to be small [5] ( ǫ = 10−5 for the

propagation in water with an initial power of the order of 0.3W/cm2 ):

ρ− ρ0
ρ0

∼ T − T0

T0
∼ |v|

c
∼ ǫ,

where c =
√

p′(ρ0) is the speed of sound in the unperturbed media.
Hence as in [12, 43], system (1)–(4) becomes an isentropic Navier-Stokes system

∂tρε + div(ρεvε) = 0 , (5)

ρε[∂tvε + (vε · ∇)vε] = −∇p(ρε) + εν∆vε , (6)

with the approximate state equation p(ρ, S) = p(ρε) +O(ε3) :

p(ρε) = p0 + c2(ρε − ρ0) +
(γ − 1)c2

2ρ0
(ρε − ρ0)

2, (7)

where γ = Cp/CV denotes the ratio of the heat capacities at constant pressure and at
constant volume respectively and with a small enough and positive viscosity coefficient:

εν = β + κ

(

1

CV

− 1

Cp

)

.

If we go on physical assumptions of the wave motion [5, 18, 31, 50] for the perturbations
of the density or of the velocity or of the pressure, the isentropic system (5)–(6) gives
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1. the Westervelt equation for the potential of the velocity, derived initially by West-
ervelt [50] and later by other authors [1, 49]:

∂2
tΠ− c2∆Π = ε∂t

(

ν

ρ0
∆Π+

γ + 1

2c2
(∂tΠ)

2

)

(8)

with the same constants introduced for the Navier-Stokes system.

2. the Kuznetsov equation also for the potential of the velocity, firstly introduced by
Kuznetsov [31] for the velocity potential, see also Refs. [18, 23, 28, 33] for other
different methods of its derivation:

∂2
t u− c2△u = ε∂t

(

(∇u)2 +
γ − 1

2c2
(∂tu)

2 +
ν

ρ0
∆u

)

. (9)

3. the Khokhlov-Zabolotskaya-Kuznetsov (KZK) [5, 42] for the density:

c∂2
τzI −

(γ + 1)

4ρ0
∂2
τ I

2 − ν

2c2ρ0
∂3
τ I −

c2

2
∆yI = 0. (10)

4. the Nonlinear Progressive wave Equation (NPE) derived in Ref. [39] also for the
density:

∂2
τzξ +

(γ + 1)c

4ρ0
∂2
z [(ξ)

2]− ν

2ρ0
∂3
zξ +

c

2
∆yξ = 0. (11)

For higher order models as the nonlinear Jordan-Moore-Gibson-Thompson (JMGT) equa-
tion, containing the Kuznetsov equation as a particular or a limit case, see [24, 26, 27]
and their references. In this article we don’t consider such higher order models and focus
our attention on the Kuznetsov equation considered here as the most complete equation.

In [12] it is shown that the Kuznetsov equation comes from the Navier-Stokes or Euler
system only by small perturbations, but to obtain the KZK and the NPE equations we also
need to perform in addition to the small perturbations a paraxial change of variables. In
this article we derive the KZK and the NPE equations from the Kuznetsov equation just
performing the corresponding paraxial change of variables and show that the Westervelt
equation can be also viewed as an approximation of the Kuznetsov equation by a nonlinear
perturbation.

The physical context and the physical usage of the KZK and the NPE equations are
different: the NPE equation is helpful to describe short-time pulses and a long-range
propagation, for instance, in an ocean wave-guide, where the refraction phenomena are
important [7, 38], while the KZK equation typically models the ultrasonic propagation
with strong diffraction phenomena, combining with finite amplitude effects (see [42] and
the references therein). But in the same time [12], there is a bijection between the variables
of these two models and they can be presented by the same type differential operator with
constant positive coefficients:

Lu = 0, L = ∂2
tx − c1∂x(∂x·)2 − c2∂

3
x ± c3∆y for t ∈ R

+, x ∈ R, y ∈ R
n−1.

3



Therefore, the results on the solutions of the KZK equation from [21, 41] are valid for the
NPE equation.

The interest to study how closed are the solutions of the general model of the non-
linear wave motion, described by the Kuznetsov equation, and of simplified models with
more particular area of application (such as the KZK equation and the NPE equation
which are valid only with additional assumptions on the wave propagation describing
by the paraxial changes of variables) is naturally motivated by the questions about the
accuracy of the approximations and of a comparative analysis of the solutions of these
models.

If we formally consider the differential operators in the Kuznetsov equation (9) and
the Westervelt equation (8), we notice that the Westervelt equation keeps only one of two
non-linear terms of the Kuznetsov equation, producing cumulative effects in a progressive
wave propagation [1]. The question how closed are the solutions of these two models,
which differ on presence of local nonlinear term, was also open so far.

The mentioned approximation questions are treated theoretically in this article.
Let us also notice that the Kuznetsov equation (9) (and also the Westervelt equa-

tion (8)) is a non-linear wave equation with terms of different order (the wave operator
is of order ε0 and the nonlinear and viscosity terms are of order ε ). But the KZK- and
NPE-paraxial approximations allow to have the approximate equations with all terms of
the same order, i.e. the KZK and NPE equations. For the well posedness of the Cauchy
problem for the Kuznetsov equation we cite [11] and for boundary value problems in
regular bounded domains see [25, 29, 40].

We present the structure of the paper and its mains results in the next subsection.

1.1 Main results

To keep a physical sense of the approximation problems, we consider especially the two
or three dimensional cases, i.e. R

n with n = 2 or 3 , and in the following we use the
notation x = (x1, x

′) ∈ R
n with one propagative axis x1 ∈ R and the traversal variable

x′ ∈ R
n−1 .

To be able to consider the approximation of the Kuznetsov equation by the KZK
equation (see Section 2), we establish (see Theorems 7 and 8 in Appendix A) global well
posedness results for the Kuznetsov equation in the half space similar to the previous
framework for the KZK and the Navier-Stokes system considered in [12]. Theorem 7 cor-
responds to the well posedness of the periodic in time Dirichlet boundary valued problem
for the Kuznetsov equation in the half space R

+ × R
n−1 (see Eq. (21)) for small enough

boundary data. In this case the boundary condition is considered as the initial condition
of the corresponding Cauchy problem in R

n . The proof is based on the maximal regular-
ity result for the corresponding linear problem given in Theorem 6 and on the application
of a result of the nonlinear functional analysis from [48, 1.5. Cor., p. 368] (see also [11,
Thm. 4.2]). We also applied it to prove (see Theorem 8) the well posedness for the initial
boundary valued problem for the Kuznetsov equation in the half space (28), once again
combining with the maximal regularity result for the linear problem (see the proof of
Lemma 2).
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Table 1: Approximation results for models derived from the Kuznetsov equation

KZK NPE Westervelt

periodic
boundary condition

problem

initial
boundary value

problem

viscous
and inviscid

case viscous case inviscid case

Theorem Theorem 1 Theorem 2 Theorem 3 Theorem 5

Derivation
paraxial approximation
u = Φ(t− x1

c
, εx1,

√
εx′)

paraxial approximation
u = Ψ(εt, x1 − ct,

√
εx′) Π = u+ 1

c2
εu∂tu

Approxi-
mation
domain

the half space
{x1 > 0, x′ ∈ R

n−1} Tx1 × R
2

R
n

Approxi-
mation
order O(ε) O(ε) O(ε2)

Estimation

‖I − Iaprox‖L2(Tt×Rn−1) ≤ ε

z ≤ K

‖(u− u)t(t)‖L2

+‖∇(u− u)(t)‖L2

≤ Kε.
t < T

ε

‖(u− u)t(t)‖L2

+‖∇(u− u)(t)‖L2

≤ Kε
t < T

ε

‖(u− u)t(t)‖L2

+‖∇(u− u)(t)‖L2

≤ Kε
t < T

ε

Initial
u0 ∈ Hs+3(Rn) u0 ∈ Hs+3(Rn)
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In Subsection 2.1 we derive the KZK equation from the Kuznetsov equation by intro-
ducing the paraxial change of variables (34).

For the approximation framework for their solutions we study two cases. The first
case is treated in Sub-subsection 2.2.1 and it considers the purely time periodic boundary
problem in the ansatz variables (z, τ, y) moving with the wave, where we use the well-
posedness result of Theorem 7. In this case the only viscous medium can be considered
as the condition to be periodic in time is not compatible with shock formations providing
the loss of the regularity which may occur in the inviscid medium (see [41, Thm. 1.3]).
The approximation results are formulated in Theorem 1.

The second case (see Sub-subsection 2.2.2) studies the initial boundary-value problem
for the Kuznetsov equation in the initial variables (t, x1, x

′) with data coming from the so-
lution of the KZK equation, using this time the well posedness results of Theorem 8. This
time we have the approximation results for the viscous and inviscid cases (see Theorem 2
and Remark 2).

In Section 3 we establish the approximation result between the Kuznetsov equation
and NPE equation in the viscous and inviscid cases (see Theorem 3).

Finally in Section 4 we compare the solutions of the Westervelt and the Kuznetsov
equations. We derive the Westervelt equation from the Kuznetsov equation by a nonlinear
change of variables in Subsection 4.1 and we validate the approximation in Subsection 4.2
(see Theorem 5 for viscous and inviscid cases).

We denote by u a solution of the “exact” problem for the Kuznetsov equation Exact(u) =
0 and by u an approximate solution, constructed by the derivation ansatz from a regular
solution of one of the approximate models (for instance of the KZK or of the NPE equa-
tions), i.e. u is a function which solves the Kuznetsov equation up to ε terms, denoted
by εR :

Approx(u) = Exact(u)− εR = 0.

In the approximation between the solutions of the Kuznetsov equation and of the Wester-
velt equation the remainder term appears with the size ε2 (it is natural since both models
contain terms of order ε0 and ε ).

We can summarize the obtained approximation results of the Kuznetsov equation in
the following way: if, once again, u is a solution of the Kuznetsov equation and u is
a solution of the NPE or of the KZK (for the initial boundary value problem) or of the
Westervelt equations found for rather closed initial data

‖∇t,x(u(0)− u(0))‖L2(Ω) ≤ δ ≤ ε,

then there exist constants K , C1 , C2 , C > 0 independent of ε , δ and on time, such
that for all t ≤ C

ε
it holds

‖∇t,x(u− u)‖L2(Ω) ≤ C1(ε
2t + δ)eC2εt ≤ Kε.

For a more detailed comparison between different models we include the main points of
our results to the comparative Table 1.

In Table 1 the line named “Initial data regularity” gives the information about the
regularity of the initial data for the approximate model, which ensure the same regularity
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of the solutions of an approximate model and of the solution of the Kuznetsov equation,
taken with the same initial data u(0) = u(0) , coming from the corresponding ansatz.

To have the remainder term R ∈ C([0, T ], L2(Ω)) we ensure that Exact(u) ∈ C([0, T ], L2(Ω)) ,
i.e. we need a sufficiently regular solution u . The minimal regularity of the initial data
to have a such u is given in Table 1 in the last line named “Data regularity for remainder
boundness”.

To summarize, the rest of the paper is organized as follows. Section 2 considers the
derivation (Subsection 2.1) of the KZK equation from the Kuznetsov equation and two
types of approximation results for the solutions of the Kuznetsov equation approximated
by the solutions of the KZK equation in Subsection 2.2. The approximation by the
solutions of the NPE equation is considered in Section 3. Section 4 contains the derivation
of the Westervelt equation and the approximation result for the solutions of the Kuznetsov
and the Westervelt equations. The well posedness results for the Kuznetsov equation
needed for the approximation results of Section 2 are detailed in Appendix A.

2 The Kuznetsov equation and the KZK equation.

2.1 Derivation of the KZK equation from the Kuznetsov equa-

tion.

If the velocity potential is given [31] by

u(x, t) = Φ(t− x1/c, ǫx1,
√
ǫx′) = Φ(τ, z, y), (12)

we directly obtain from the Kuznetsov equation (9) via the paraxial change of variables

τ = t− x1

c
, z = εx1, y =

√
εx′, (13)

that

∂2
t u− c2∆u− ε∂t

(

(∇u)2 +
γ − 1

2c2
(∂tu)

2 +
ν

ρ0
∆u

)

= ε

[

2c∂2
τzΦ− γ + 1

2c2
∂τ (∂τΦ)

2 − ν

ρ0c2
∂3
τΦ− c2∆yΦ

]

+ ε2RKuz−KZK (14)

with

ε2RKuz−KZK =ε2
(

−c2∂2
zΦ+

2

c
∂τ (∂τΦ∂zΦ)− ∂τ (∇yΦ)

2 +
2ν

cρ0
∂2
τ∂zΦ− ν

ρ0
∂τ∆yΦ

)

+ ε3
(

−∂τ (∂zΦ)
2 − ν

ρ0
∂τ∂

2
zΦ

)

. (15)

Let us notice that the paraxial change of variables (13) defines the axis of the propagation
x1 along which the wave changes its profile much slower than along the transversal axis
x′ . This is typical for the propagation of ultrasound waves.

Therefore, we find that the right-hand side ǫ -order terms in Eq. (14) is exactly the
KZK equation (10). Thanks to [41, Thms. 1.1–1.3] we have the well posedness result for
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the KZK equation in the half space with periodic boundary conditions of a period L on
τ and of mean value zero.

Due to the well posedness domain (Tτ × R
n−1) of the KZK equation, to validate the

approximation between the solutions of the KZK and the Kuznetsov equations, we need to
have the well posedness of the Kuznetsov equation on the half space with boundary con-
ditions coming from the initial condition for the KZK equation. For these well posedness
results see Appendix A.

2.2 Approximation of the solutions of the Kuznetsov equation by

the solutions of the KZK equation.

Let us consider the Cauchy problem associated with the KZK equation














c∂zI − (γ+1)
4ρ0

∂τI
2 − ν

2c2ρ0
∂2
τ I − c2

2
∂−1
τ ∆yI = 0 on Tτ × R+ × R

n−1,

I(τ, 0, y) = I0(τ, y) on Tτ × R
n−1,

(16)

for small enough initial data in order to have by [41, Thm. 1.2] a time periodic solution I
defined on R+×R

n−1 . As it was mentioned in Introduction 1.1, if ν > 0 , to compare the
solutions of the Kuznetsov and the KZK equations we consider two cases. The first case
(see Sub-subsection 2.2.1) consists in studies of the time periodic boundary problem for the
Kuznetsov equation (21) with the boundary condition imposed by the initial condition
I0 of the KZK equation. In Sub-subsection 2.2.2 we study the second case, when the
solution of the KZK equation, taken for τ = 0 , gives I(0, z, y) defined on R+ × R

n−1 ,
from which we deduce, according to the derivation ansatz, both an initial condition for
the Kuznetsov equation at t = 0 and a corresponding boundary condition. In this second
situation, it also makes sense to consider the inviscid case, briefly commented in the end
of Sub-subsection 2.2.2.

2.2.1 Approximation problem for the Kuznetsov with periodic boundary con-

ditions.

By [41, Thm. 1.2] there is a unique solution I(τ, z, y) of the Cauchy problem for the KZK
equation (16) such that

z 7→ I(τ, z, y) ∈ C([0,∞[, Hs(Ω1)) (17)

with
∫

Tτ
I(l, z, y)dl = 0 and Ω1 = Tτ × R

n−1 , where Tτ represents the periodicity in τ

of period L . The operator ∂−1
τ is defined by

∂−1
τ I(τ, z, y) :=

∫ τ

0

I(ℓ, z, y)dℓ+

∫ L

0

ℓ

L
I(ℓ, z, y)dℓ. (18)

Formula (18), which implies that ∂−1
τ I is L -periodic in τ and of mean value zero, gives

us the estimate
‖∂−1

τ I‖Hs(Ω1) ≤ C‖∂τ∂−1
τ I‖Hs(Ω1) = C‖I‖Hs(Ω1). (19)
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So ∂−1
τ I|z=0 ∈ Hs(Ω1) , and hence by (17)

z 7→ ∂−1
τ I(τ, z, y) ∈ C([0,∞[, Hs(Ω1)),

with
∫

Tτ
∂−1
τ I(s, z, y)ds = 0 .

We define on Tt × R+ × R
n−1

u(t, x1, x
′) :=

c2

ρ0
∂−1
τ I(τ, z, y) =

c2

ρ0
∂−1
τ I

(

t− x1

c
, εx1,

√
εx′

)

(20)

with the paraxial change of variable (13) associated with the KZK equation. Thus u is
L -periodic in time and of mean value zero. Now we consider the following Kuznetsov
problem















utt − c2∆u− νε∆ut = αεut utt + βε∇u ∇ut on Tt × R+ × R
n−1,

u|x1=0 = g on Tt × R
n−1,

(21)

in which the boundary condition is imposed by the initial condition for the KZK equation:

g(t, x′) := u(t, 0, x′) =
c2

ρ0
∂−1
τ I0(τ, y). (22)

Let us define (see Eq. (12), and subsection 4.1 in [12] for more details)

Ĩ :=
ρ0
c2
∂τΦ. (23)

Then Ĩ is the solution of the Kuznetsov equation written in the following form with the
remainder RKuz−KZK defined in Eq. (15):















c∂z Ĩ − (γ+1)
4ρ0

∂τ Ĩ
2 − ν

2c2ρ0
∂2
τ Ĩ − c2

2
∆y∂

−1
τ Ĩ + ε ρ0

2c2
RKuz−KZK = 0,

Ĩ|z=0 = I0.

(24)

In Eq. (24) we can recognize the system associated with the KZK equation (10).
Now we can formulate the following approximation result between the solutions of the

KZK and Kuznetsov equations.

Theorem 1 Let ν > 0 . For s > max(n
2
, 2) and I0 ∈ Hs+ 3

2 (Tτ ×R
n−1) small enough in

Hs+ 3
2 (Tτ × R

n−1) , there exists a unique global solution I of the Cauchy problem for the
KZK equation (16) such that

z 7→ I(τ, z, y) ∈ C([0,∞[, Hs+ 3
2 (Tτ × R

n−1)).

In addition, there exists a unique global solution Ĩ of the Kuznetsov problem (24), in the
sense Ĩ := ρ0

c2
∂τΦ, with Φ(τ, z, y) := u(t, x1, x

′) with the paraxial change of variable (13)
and

u ∈ H2(Tt;H
s(R+ × R

n−1)) ∩H1(Tt;H
s+2(R+ × R

n−1)),

9



is the global solution of the periodic problem (21) for the Kuznetsov equation with g defined
by I0 as in Eq. (22). Moreover there exist C1 , C2 > 0 such that

1

2

d

dz
‖I − Ĩ‖2L2(Tτ×Rn−1) ≤ C1‖I − Ĩ‖2L2(Tτ×Rn−1) + C2ε‖I − Ĩ‖L2(Tτ×Rn−1),

which implies

‖I − Ĩ‖L2(Tτ×Rn−1)(z) ≤
C2

2
εze

C1
2
z ≤ C2

C1

ε(e
C1
2
z − 1)

and
‖I − Ĩ‖L2(Tτ×Rn−1)(z) ≤ Kε while z ≤ C

with K > 0 and C > 0 independent of ε .

Proof : For s > max(n
2
, 2) , the global well-posedness of I comes from [41, Thm. 1.2]

if I0 ∈ Hs+ 3
2 (Tτ ×R

n−1) is small enough. Moreover, since g is given by Eq. (22), thanks

to the definition of ∂−1
τ in (18) and the fact that I0 ∈ Hs+ 3

2 (Tτ × R
n−1) , we have

g ∈ Hs+ 3
2 (Tt × R

n−1) and ∂tg ∈ Hs+ 3
2 (Tt × R

n−1).

And thus
g ∈ H

7
4 (Tt;H

s(Rn−1)) ∩H1(Tt;H
s+2− 1

2 (Rn−1)).

Therefore we can use Theorem 7, which implies the global existence of the periodic in
time solution

u ∈ H2(Tt;H
s(R+ × R

n−1)) ∩H1(Tt;H
s+2(R+ × R

n−1)), (25)

of the Kuznetsov periodic boundary value problem (21) as I0 is small enough in Hs+ 3
2 (Tτ×

R
n−1) . Therefore, it also implies the global existence of Ĩ , defined in (23), which is the

solution of the exact Kuznetsov system (24).
Now we subtract the equations in systems (16) and (24) to obtain

c∂z(I − Ĩ)− γ + 1

2ρ0
(I − Ĩ)∂τI −

γ + 1

2ρ0
Ĩ∂τ (I − Ĩ)− ν

2c2ρ0
∂2
τ (I − Ĩ)

− c2

2
∂−1
τ ∆y(I − Ĩ) = ε

ρ0
2c2

RKuz−KZK.

Denoting Ω1 = Tτ×R
n−1 , we multiply this equation by (I− Ĩ) , integrate over Tτ ×R

n−1

and perform a standard integration by parts, which gives

c

2

d

dz
‖I − Ĩ‖2L2(Ω1)

− γ + 1

2ρ0

∫

Ω1

∂τI(I − Ĩ)2dτdy

− γ + 1

2ρ0

∫

Ω1

Ĩ(I − Ĩ)∂τ (I − Ĩ)dτdy

+
ν

2c2ρ0

∫

Ω1

(∂τ (I − Ĩ))2dτdy = ε
ρ0
2c2

∫

Ω1

RKuz−KZK(I − Ĩ)dτdy.
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Let us notice that
∫

Ω1

Ĩ(I − Ĩ)∂τ (I − Ĩ)dτdy =

∫

Ω1

[(Ĩ − I) + I)]
1

2
∂τ (I − Ĩ)2dτdy =

= −1

2

∫

Ω1

∂τI(I − Ĩ)2dτdy.

By (25) with s > max(n
2
, 2) , u is sufficiently regular to ensure

RKuz−KZK ∈ C(R+;L
2(Tτ × R

n−1)). (26)

This comes from the fact that in system (24) the “worst” term, asking the most regu-
larity of Φ , inside the remainder RKuz−KZK (see Eq. (15)) is ∂τ∂

2
zΦ with Ĩ given by

Eq. (23). As ∂3
t u ∈ L2(Tt;H

s−2(Ω)), we need to take s > max(n
2
, 2) to have ∂τ∂

2
zΦ in

L∞(R+;L
2(Tτ × R

n−1)) . Therefore, it holds
∣

∣

∣

∣

∫

Ω1

RKuz−KZK(I − Ĩ)dτdy

∣

∣

∣

∣

≤ ‖RKuz−KZK‖L2(Ω1)‖I − Ĩ‖L2(Ω1) ≤ C‖I − Ĩ‖L2(Ω1)

with a constant C > 0 independent of z thanks to (26). It leads to the estimate

1

2

d

dz
‖I − Ĩ‖2L2(Ω1)

≤ K sup
(τ,y)∈Ω1

|∂τI(τ, z, y)| ‖I − Ĩ‖2L2(Ω1)
+ Cε‖I − Ĩ‖L2(Ω1),

in which, due to the regularity of I for s and I0 (see [41]) the term

sup
(τ,y)∈Ω1

|∂τI(τ, z, y)|

is bounded by a constant C > 0 independent of z . Consequently, we have the desired
estimate and the other results follow from Gronwall’s Lemma. �

Remark 1 The regularity I0 ∈ Hs+ 3
2 (Tτ × R

n−1) for s > max(n
2
, 2) , imposed in Theo-

rem 1, is the minimal regularity to ensure (26).

2.2.2 Approximation problem for the Kuznetsov equation with initial-boundary

conditions.

Let the function I0(t, y) = I0(t,
√
εx′) be L -periodic on t and such that

I0 ∈ Hs(Tt × R
n−1)

for s ≥
[

n+1
2

]

and
∫ L

0
I0(s, y)ds = 0 . Hence [41], there is a unique solution I(τ, z, y) of

the Cauchy problem (16) for the KZK equation satisfying (17). We define u and g as
in Eqs. (20) and (22) respectively. Thus, for RKuz−KZK defined in Eq. (15), u is the
solution of the following system














∂2
t u− c2∆u− ε∂t

(

(∇u)2 + γ−1
2c2

(∂tu)
2 + ν

ρ0
∆u

)

= ε2RKuz−KZK in Tt × Ω,

u = g on Tt × ∂Ω.

(27)
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In the same time let us consider for a sufficiently large T > 0 the solution u (see The-
orem 8 for its global existence and uniqueness) of the Dirichlet boundary-value problem
for the Kuznetsov equation































utt − c2∆u− νε∆ut = αεututt + βε∇u∇ut in [0,+∞[×Ω,

u = g on [0,∞[×∂Ω,

u(0) = u0, ut(0) = u1 in Ω,

(28)

taking u0 := u(0) and u1 := ut(0) and considering the time periodic function g defined
by Eq. (22) as a function on [0, T ] .

To compare u and u , we obtain the following stability result:

Theorem 2 Let T , ν > 0 , n ≥ 2 , s ∈ R
+ , Ω = R

+ ×R
n−1 and I0 ∈ Hs(Tt ×R

n−1) .
Then, the following statements are valid.

1. If s ≥ 6 for n = 2 and 3 , or else
[

s
2

]

> n
2
+ 1 , there exists a constant C0 > 0

such that ‖I0‖Hs < C0 implies the global well-posedness of the Cauchy problem for
the KZK equation with the following regularity:

for 0 ≤ k ≤
[s

2

]

I ∈ Ck({z > 0};Hs−2k(Tτ × R
n−1)).

Moreover it implies the well-posedness of (27) with

u ∈ Ck({z > 0};Hs−2k(Tτ × R
n−1)), ∂tu ∈ Ck({z > 0};Hs−2k(Tτ × R

n−1)),

or again
u ∈ H2(Tt, H

[ s2 ]−1(Ω)) ∩H1(Tt, H
[ s2 ](Ω)). (29)

The imposed regularity of I0 (see Table 1) is minimal to ensure that RKuz−KZK

(see Eq. (15) for the definition) is in C([0,+∞[;L2(R+ × R
n−1)) .

2. If
[

s
2

]

> n
2
+ 2 , taking the same initial data for the exact boundary-value problem

for the Kuznetsov equation (28) as for u , i.e.

u(0) = u(0) =
c2

ρ0
∂−1
τ I(−x1

c
, εx1,

√
εx′) ∈ H [ s2 ](Ω),

ut(0) = ut(0) =
c2

ρ0
∂τI(−

x1

c
, εx1,

√
εx′) ∈ H [ s2 ]−1(Ω),

there exists C0 > 0 such that ‖I0‖Hs < C0 implies the well-posedness of the exact
Kuznetsov equation (28) supplemented with the Dirichlet boundary condition

g =
c2

ρ0
∂−1
τ I0 ∈ Hs(Tt × R

n−1) ⊂ H7/4(]0, T [;H [ s2 ]−2(∂Ω))

∩H1(]0, T [;H [ s2 ]−2+3/2(∂Ω))
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ensuring the regularity

u ∈ H2(]0, T [, H [ s2 ]−1(Ω)) ∩H1(]0, T [, H [ s2 ](Ω)). (30)

Moreover, there exist constants K , C , C1 , C2 > 0 , all independent of ε , such
that for all t ≤ C

ε

√

‖(u− u)t(t)‖2L2(Ω) + ‖∇(u− u)(t)‖2L2(Ω) ≤ C1ε
2teC2εt ≤ Kε. (31)

3. In addition, let u be a solution of the Dirichlet boundary-value problem (28) for the
Kuznetsov equation, with g defined by Eq. (22) and with initial data u0 ∈ Hm+2(Ω) ,
u1 ∈ Hm+1(Ω) for m > n

2
such that

‖(u− u)t(0)‖2L2(Ω) + ‖∇(u− u)(0)‖2L2(Ω) ≤ δ2 ≤ ε2. (32)

Then there exist constants K , C , C1 , C2 > 0 , all independent of ε , such that
for all t ≤ C

ε

√

‖(u− u)t(t)‖2L2(Ω) + ‖∇(u− u)(t)‖2L2(Ω) ≤ C1(ε
2t+ δ2)eC2εt ≤ Kε. (33)

Proof : Let u and g be defined by Eqs. (20) and (22) respectively by the solution
I of the Cauchy problem (16) for the KZK equation with I|z=0 = I0 ∈ Hs(Tt × R

n−1)
and s ≥ 6 for n = 2 and 3 , or else

[

s
2

]

> n
2
+ 1 . In this case, u is the global

solution of the approximated Kuznetsov system (27), what is a direct consequence of
Theorem 1.2 in Ref. [41]. If I0 ∈ Hs(Tt × R

n−1) with the chosen s , then I ∈ C({z >
0};Hs(Tτ×R

n−1)) . But knowing, thanks to estimate (19), that ∆k
yI0 ∈ Hs−2k(Tt×R

n−1)

implies also ∂−k
t ∆k

yI0 ∈ Hs−2k(Tt×R
n−1) for 1 ≤ k ≤

[

s
2

]

, the condition in [41, Thm. 1.2,

Point 4] is verified and thus we have the following regularity of I on z : for 0 ≤ k ≤
[

s
2

]

I(τ, z, y) ∈ Ck({z > 0};Hs−2k(Tτ × R
n−1)).

As u is defined by (20), we deduce (using as previously the notation Ω1 = Tτ × R
n−1 )

u(τ, z, y) and ∂τu(τ, z, y) ∈Ck({z > 0};Hs−2k(Ω1)), if 0 ≤ k ≤
[s

2

]

,

∂2
τu(τ, z, y) ∈Ck({z > 0};Hs−1−2k(Ω1)), if 0 ≤ k ≤

[s

2

]

− 1,

but we can also say [21, 41], thanks to the exponential decay of the solution of the KZK
equation on z , that

u(τ, z, y) and ∂τu(τ, z, y) ∈Hk({z > 0};Hs−2k(Ω1)),

∂2
τu(τ, z, y) ∈Hk({z > 0};Hs−1−2k(Ω1)).

This implies for the chosen s that

u(t, x1, x
′) and ∂tu(t, x1, x

′) ∈ L2(Tt;H
[ s2 ](Ω)) ∩H2(Tt;H

[ s2 ]−1(Ω)),

∂2
t u(t, x1, x

′) ∈ L2(Tt;H
[ s2 ]−1(Ω)) ∩H2(Tt;H

[ s2 ]−2(Ω)).
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Therefore

u(t, x1, x
′) ∈C1([0,+∞[;H [ s2 ]−1(Ω),

∂2
t u(t, x1, x

′) ∈C([0,+∞[;H [ s2 ]−2(Ω).

For the chosen s these regularities of u(t, x1, x
′) give us regularity (29) and allow to have

all left-hand terms in the approximated Kuznetsov system (27) of the desired regularity,
i.e C([0,+∞[;L2(Ω)) . In addition for

[

s
2

]

> n
2
+ 2 with the chosen g , u0 = u(0) and

u1 = ut(0) in the conditions of the theorem we have

u0 ∈ H [ s2 ](Ω), u1 ∈ H [ s2 ]−1(Ω)

with
g ∈ Hs(Tt × R

n−1) and ∂tg ∈ Hs(Tt × R
n−1).

This implies

g ∈ H7/4(]0, T [;H [ s2 ]−2(∂Ω)) ∩H1(]0, T [;H [ s2 ]−2+3/2(∂Ω))

with
[

s
2

]

− 2 > n
2

, as required by Theorem 8 to have the well-posedness of the solution
of the Kuznetsov equation u during the time t ∈ [0, T ] associated with system (28).
This completes the well-posedness results and we deduce that u have the desired regular-
ity (30), announced in the theorem. Moreover, we have RKuz−KZK in C([0,+∞[, L2(Ω)).

Let us now prove (33) from point 3 as it directly implies estimate (31) from point 2 .
We subtract the Kuznetsov equation from the approximated Kuznetsov equation (see
system (27)), multiply by (u − u)t and integrate over Ω to obtain, as in Ref. [11], the
following stability estimate:

1

2

d

dt

(

∫

Ω

A(t, x) (u− u)2t+c2(∇(u− u))2dx
)

≤ Cε sup(‖utt‖L∞(Ω); ‖∆u‖L∞(Ω); ‖∇ut‖L∞(Ω))

·
(

‖(u− u)t‖2L2(Ω) + ‖∇(u− u)‖2L2(Ω)

)

+ ε2
∫

Ω

RKuz−KZK(u− u)tdx,

where 1
2
≤ A(t, x) ≤ 3

2
for 0 ≤ t ≤ T and x ∈ Ω . By regularity of the solutions,

sup(‖utt‖L∞(Ω); ‖∆u‖L∞(Ω); ‖∇ut‖L∞(Ω)) is bounded in time on [0, T ] . Moreover, we have
‖RKuz−KZK(t)‖L2(Ω) bounded for t ∈ [0, T ] by the regularity of u , where RKuz−KZK is
defined in Eq. (15). Then after integration on [0, t] , we can write

‖(u− u)t(t)‖2L2(Ω)+‖∇(u− u)(t)‖2L2(Ω)

≤3(‖(u− u)t(0)‖2L2(Ω) + ‖∇(u− u)(0)‖2L2(Ω))

C1ε

∫ t

0

‖(u− u)t(s)‖2L2(Ω) + ‖∇(u− u)(s)‖2L2(Ω)ds

+ C2ε
2

∫ t

0

√

‖(u− u)t(s)‖2L2(Ω) + ‖∇(u− u)(s)‖2L2(Ω)ds.
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Thanks to (32) we finally find by the Gronwall Lemma that for t ≤ C
ε

estimate (33) holds
true, thereby concluding the proof. �

Remark 2 Let us discuss the corresponding approximation results in the inviscid case.
We have two approximation results:

1. between the solutions UKZK of the KZK equation and UEuler of the Euler sys-
tem [12, 42] (see [12, Thm 6.8] for the definitions of UEuler and UKZK ) in a
cone

C(T ) = {0 < t < T | T <
T0

ε
} ×Qε(t)

with

Qε(s) = {x = (x1, x
′) : |x1| ≤

R

ε
−Ms, M ≥ c, x′ ∈ R

n−1}

and with
‖∇UEuler‖L∞([0,

T0
ε
[;Hs−1(Qε))

< εC for s >
[n

2

]

+ 1;

2. between the solutions UEuler of the Euler system and UKuzn of the Kuznetsov
equation [12] (see [12, Thm. 6.6] for the definitions of UEuler and UKuzn ) in
[0, T0

ε
[×R

n containing C(T ) .

Consequently, we obtain the approximation result between the solutions UKZK of the KZK
equation and the solutions UKuzn of the Kuznetsov equation in C(T ) by the triangular
inequality:

‖UKuzn −UKZK‖2L2(Qε(t))
≤ K(ε3t+ δ2)eKεt ≤ 9ε2,

as soon as ‖(UKuzn −UKZK)(0)‖L2(Qε(0)) ≤ δ < ε . The initial data are constructed on
the initial data I0 for the KZK equation. More precisely we take I0 ∈ Hs(Tτ ×R

n−1) for
s > max{10,

[

n
2

]

+ 1}, which ensures in the case of the same initial data

UKuzn(0) = UKZK(0) = UEuler(0)

the existence with necessary regularity of all solutions: of the KZK equation, of the Euler
system and of the Kuznetsov equation. Otherwise, to ensure the boundness and the mini-
mal regularity C([0, T0

ε
[;L2(Qε)) of the remainder terms it sufficient to impose s ≥ 6 .

3 Approximation of the solutions of the Kuznetsov equa-

tion with the solutions of the NPE equation.

Now let us go back to the NPE equation (11) and consider its ansatz (see [12] for the
derivation of the NPE equation from the isentropic Navier-Stokes system or the Euler
system). In contrast with Eq. (12) for the KZK equation, this time the velocity potential
is given [43] by

u(x, t) = Ψ(εt, x1 − ct,
√
ǫx′) = Ψ(τ, z, y). (34)
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Thus we directly obtain from the Kuznetsov equation (9) with the paraxial change of
variable

τ = εt, z = x1 − ct, y =
√
εx′, (35)

that

∂2
t u− c2∆u− ε∂t

(

(∇u)2 +
γ − 1

2c2
(∂tu)

2 +
ν

ρ0
∆u

)

= ε

(

−2c∂2
τzΨ− c2∆yΨ+

ν

ρ0
c∂3

zΨ+
γ + 1

2
c∂z(∂zΨ)2

)

+ ε2RKuz−NPE

with

ε2RKuz−NPE =ε2
(

∂2
τΨ− ν

ρ0
∂2
z∂τΨ+

ν

ρ0
c∆y∂zΨ− (γ − 1)∂τΨ ∂2

zΨ (36)

− 2(γ − 1)∂zΨ ∂2
τzΨ− 2∂zΨ ∂2

τzΨ+ 2c∇yΨ ∇y∂zΨ
)

+ ε3
(

− ν

ρ0
∆y∂τΨ+ 2

γ − 1

c
∂τΨ ∂2

τzΨ+
γ − 1

c
∂zΨ ∂2

τΨ

− 2∇yΨ ∇y∂τΨ
)

+ ε4(−γ − 1

c2
∂τΨ∂2

τΨ).

We obtain the NPE equation satisfying by ∂zΨ modulo a multiplicative constant:

∂2
τzΨ− γ + 1

4
∂z(∂zΨ)2 − ν

2ρ0
∂3
zΨ+

c

2
∆yΨ = 0.

In the sequel we work with ξ defined by

ξ(τ, z, y) =− ρ0
c
∂zΨ, (37)

which solves the Cauchy problem for the NPE equation















∂2
τzξ +

(γ+1)c
4ρ0

∂2
z [(ξ)

2]− ν
2ρ0

∂3
zξ +

c
2
∆yξ = 0 on R+ × Tz × R

n−1,

ξ(0, z, y) = ξ0(z, y) on Tz × R
n−1,

(38)

in the class of L− periodic functions with respect to the variable z and with mean value
zero along z . The introduction of the operator ∂−1

z defined similarly to ∂−1
τ in Eq. (18)

allows us to consider instead of Eq. (11) the following equivalent equation

∂τξ +
(γ + 1)c

4ρ0
∂z[(ξ)

2]− ν

2ρ0
∂2
zξ +

c

2
∂−1
z ∆yξ = 0 on R+ × Tz × R

n−1.

This time, in comparison with the KZK equation, we use the bijection between this two
models (see [12]). We also update our notation for Ω1 = Tz ×R

n−1
y and take s > n

2
+ 1 .

Suppose that

ξ0 ∈ Hs+2(Tz × R
n−1
y ) and

∫

Tz

ξ0(z, y) dz = 0.
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Consequently there exists a constant r > 0 such that if ‖ξ0‖Hs+2(Tz×R
n−1
y ) < r , then,

by [41, Thms. 1.1, 1.2], there exists a unique solution

ξ ∈ C([0,∞[;Hs+2(Tz × R
n−1
y ))

of the NPE Cauchy problem (38) satisfying

∫

Tz

ξ(τ, z, y) dz = 0 for any τ ≥ 0, y ∈ R
n−1.

We define ∂x1u(t, x1, x
′) := − c

ρ0
ξ(τ, z, y) with the change of variable (35) and

u(t, x1, x
′) = − c

ρ0
∂−1
z ξ(τ, z, y) =

(

− c

ρ0

)(
∫ z

0

ξ(τ, s, y)ds+

∫ L

0

s

L
ξ(τ, s, y)ds

)

.

We take u1(x1, x
′) := ∂tu(0, x1, x

′) and u0(x1, x
′) := − c

ρ0
∂−1
z ξ0(z, y) , which implies

u0 ∈ Hs+2(Tx1 × R
n−1
x′ ) and u1 ∈ Hs(Tx1 × R

n−1
x′ ).

Thus for these initial data there exists

u ∈ C([0,∞[;Hs+1(Tx1 × R
n−1
x′ )) ∩ C1([0,∞[;Hs(Tx1 × R

n−1
x′ )),

the unique solution on Tx1 × R
n−1
x′ of the approximated Kuznetsov system















utt − c2∆u− νε∆ut − αεututt − βε∇u∇ut = ε2RKuz−NPE,

u(0) = u0 ∈ Hs+2(Tx1 × R
n−1
x′ ), ut(0) = u1 ∈ Hs+1(Tx1 × R

n−1
x′ )

(39)

with RKuz−NPE defined in Eq. (36). If we consider the Cauchy problem















∂2
t u− c2∆u = ε∂t

(

(∇u)2 + γ−1
2c2

(∂tu)
2 + ν

ρ0
∆u

)

,

u(0) = u0, ut(0) = u1,

(40)

for the Kuznetsov equation on Tx1 × R
n−1
x′ with u0 and u1 derived from ξ0 , we have

‖u0‖Hs+2(Tx1×R
n−1
x′

) + ‖u1‖Hs(Tx1×R
n−1
x′

) ≤ C‖ξ0‖Hs+2(Tz×R
n−1
y ).

Hence, if ‖ξ0‖Hs+2(Tz×R
n−1
y ) is small enough [11], we have a unique bounded in time solu-

tion
u ∈ C([0,∞[;Hs+1(Ω)) ∩ C1([0,∞[;Hs(Ω))

of the Cauchy problem for the Kuznetsov equation (40).
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Theorem 3 For ν ≥ 0 let u and u be the defined above solutions of the exact Cauchy
problem (40) and of the approximated Cauchy problem (39) for the Kuznetsov equation
on Ω = Tx1 × R

n−1
x′ respectively. Then for ν > 0 there exist K , C , C1 , C2 > 0 such

that for all t < C
ε

estimate (31) is valid and in addition it holds Point 3 of Theorem 2.
Moreover, if for n ≤ 3 , and ξ0 ∈ Hs(Tx1 ×R

n−1) with s ≥ 4 , then the approximated
solution satisfies

u(t, x1, x
′) ∈ C([0,+∞[;H4(Ω)), ∂tu(t, x1, x

′) ∈ C([0,+∞[;H2(Ω)),

∂2
t u(t, x1, x

′) ∈ C([0,+∞[;L2(Ω)).

If for n ≥ 4 ξ0 ∈ Hs(Tx1 × R
n−1) with s ≥ n

2
+ 2 , then the approximated solution

satisfies

u(t, x1, x
′) ∈ C([0,+∞[;Hs(Ω)), ∂tu(t, x1, x

′) ∈ C([0,+∞[;Hs−2(Ω)),

∂2
t u(t, x1, x

′) ∈ C([0,+∞[;Hs−4(Ω)).

Under these conditions for n ≥ 1

RKuz−NPE ∈ C([0,+∞[;L2(Tx1 × R
n−1)).

For ν = 0 all previous results stay true on a finite time interval [0, T ] .

Proof : For ν > 0 the global existence of u and of u has already been shown. The
proof of the approximation estimate follows exactly the proof given for Theorem 2 and
thus is omitted. The case ν = 0 implies the same approximation result except that u
and u are only locally well posed on an interval [0, T ] .

We can see for n = 2 or 3 , using the previous arguments that the minimum regularity
of the initial data (see Table 1) to have the remainder terms

RKuz−NPE ∈ C([0,+∞[;L2(Tx1 × R
n−1))

corresponds to ξ0 ∈ Hs(Tx1 × R
n−1) with s ≥ 4 , since then for 0 ≤ k ≤ 2

ξ(τ, z, y) ∈ Ck([0,+∞[};Hs−2k(Tz × R
n−2)),

which finally implies with formula u = − c
ρ0
∂−1
z ξ that

u(t, x1, x
′) ∈ C([0,+∞[;H4(Ω)), ∂tu(t, x1, x

′) ∈ C([0,+∞[;H2(Ω)),

∂2
t u(t, x1, x

′) ∈ C([0,+∞[;L2(Ω)).

In the same way for n ≥ 4 we find the minimal regularity for ξ0 ∈ Hs(Ω) with s > n
2
+2

as it implies

u(t, x1, x
′) ∈ C([0,+∞[;Hs(Ω)), ∂tu(t, x1, x

′) ∈ C([0,+∞[;Hs−2(Ω)),

∂2
t u(t, x1, x

′) ∈ C([0,+∞[;Hs−4(Ω)).

The optimality of the previously chosen s also comes from the fact that in Eq. (36)
the least regular term in RKuz−NPE is ∂τΨ∂2

τΨ presenting for both viscous and inviscid
cases. �
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4 The Kuznetsov equation and the Westervelt equation

4.1 Derivation of the Westervelt equation from the Kuznetsov

equation.

Let u be a solution of the Kuznetsov equation (9). Similarly as in Ref. [1] we set

Π = u+
1

2c2
ε∂t[u

2] (41)

and obtain

∂2
tΠ− c2∆Π = ε∂t

(

ν

ρ0
∆u+

γ + 1

2c2
(∂tu)

2 +
1

c2
u(∂2

t − c2∆u)

)

.

By definition (41) of Π we have

∂2
tΠ− c2∆Π = ε∂t

(

ν

ρ0
∆Π+

γ + 1

2c2
(∂tΠ)

2

)

+ ε2RKuz−Wes, (42)

where

ε2RKuz−Wes =ε2∂t

[

− 1

2c2
ν

ρ0
∆(u∂tu)−

γ + 1

2c4
∂tu∂

2
t (u

2)

+
1

c2
u∂t

(

(∇u)2 +
γ − 1

2c2
(∂tu)

2 +
ν

ρ0
∆u

)]

+ ε3∂t

[

−γ + 1

8c6
[∂2

t (u
2)]2

]

. (43)

We recognize the Westervelt equation (8) obtained up to remainder terms of order ε2 .

4.2 Approximation of the solutions of the Kuznetsov equation by

the solutions of the Westervelt equation

The well-posedness of the Westervelt equation follows directly from [11]. For a solution
of the Cauchy problem (40) for the Kuznetsov equation u we define as in Subsection 4.1
Π by Eq. (41). Hence Π is the solution of the approximated Cauchy problem for the
Westervelt equation (42) with the initial data

Π(0) = Π0, ∂tΠ(0) = Π1, (44)

defined by

Π0 =u0 +
1

c2
εu0u1, (45)

Π1 =u1 +
1

c2
εu2

1 +
1

c2
εu0∂

2
t u(0) (46)

=u1 +
1

c2
εu2

1 +
1

c2
εu0

1

1− γ−1
c2

εu1

(

c2∆u0 +
ν

ρ0
ε∆u1 + 2ε∇u0∇u1

)
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with u0 and u1 initial data of the Cauchy problem (40) for the Kuznetsov equation.
For s > n

2
and ν > 0 , if we take u0 ∈ Hs+3(Rn) and u1 ∈ Hs+3(R3) , we have

Π0 ∈ Hs+3(Rn) ⊂ Hs+2(Rn) and Π1 ∈ Hs+1(Rn) with

‖Π0‖Hs+2(Rn) + ‖Π1‖Hs+1(Rn) ≤ C(‖u0‖Hs+3(Rn) + ‖u1‖Hs+3(Rn)).

In the inviscid case when ν = 0 , for s > n
2

if we still take u0 ∈ Hs+3(Rn) , but u1 ∈
Hs+2(R3) , we have Π0 ∈ Hs+2(Rn) and Π1 ∈ Hs+1(Rn) with the estimate

‖Π0‖Hs+2(Rn) + ‖Π1‖Hs+1(Rn) ≤ C(‖u0‖Hs+3(Rn) + ‖u1‖Hs+2(Rn)).

Then, similarly to our previous work [11], we obtain the following result.

Theorem 4 Let n ≥ 1 and s > n
2
.

1. If ν > 0 , u0 ∈ Hs+3(Rn) and u1 ∈ Hs+3(Rn) , then there exists a constant k2 > 0
such that for

‖u0‖Hs+4(Rn) + ‖u1‖Hs+3(Rn) < k2, (47)

the exact Cauchy problem for the Westervelt equation














∂2
tΠ− c2∆Π = ε∂t

(

ν
ρ0
∆Π+ γ+1

2c2
(∂tΠ)

2
)

,

Π(0) = Π0, ∂tΠ(0) = Π1

(48)

with Π0 and Π1 defined by Eqs. (45) and (46), has a unique global in time solution

Π ∈ H2(]0,+∞[, Hs(Rn)) ∩H1(]0,+∞[, Hs+2(Rn)) (49)

and if s ≥ 1

Π ∈ C([0,+∞[, Hs+2(Rn)) ∩ C1([0,+∞[, Hs+1(Rn)) ∩ C2([0,+∞[, Hs−1(Rn))
(50)

Moreover, Π , obtained from the solution u of the Kuznetsov equation with Eq. (41),
is the unique global in time solution of the approximated Cauchy problem (42), (44)
with the same regularity as Π .

2. Let ν = 0 , u0 ∈ Hs+3(Rn) and u1 ∈ Hs+2(Rn) . Then there exists a constant
k2 > 0 such that if

‖u0‖Hs+3(Rn) + ‖u1‖Hs+2(Rn) < k2, (51)

then the Cauchy problem (48) for the Westervelt equation with Π0 and Π1 , defined
by Eqs. (45) and (46), has a unique solution on all finite time interval [0, T ]

Π ∈ C([0, T ], Hs+2(Rn)) ∩ C1([0, T ], Hs+1(Rn)) ∩ C2([0, T ], Hs(Rn)). (52)

Moreover, Π , defined by Eq. (41), is the unique local in time solution of the ap-
proximated Cauchy problem (42), (44) with the same regularity as Π .
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For Π , solution of the Cauchy problem for the Westervelt equation (48), we set u such
that

Π = u+
ε

c2
u∂tu (53)

and we obtain

∂2
t u− c2∆u− ε

ν

ρ0
∆∂tu− ε

γ − 1

c2
∂tu∂

2
t u− 2ε∇u.∇∂tu

+ε

(

1

c2
∂tu∂

2
t u− ∂tu∆u+

1

c2
u∂3

t u− u∆∂tu

)

= ε2R1,Wes−Kuz

with

R1,Wes−Kuz =

[

ν

ρ0c2
(2∂tu∆∂tu+ 2(∇∂tu)

2 + ∂2
t u∆u+ u∆∂2

t + 2∇u.∇∂2
t u)

+
γ + 1

c4
((∂tu)

2 + u∂2
t u)∂

2
t u+

γ + 1

c4
(3∂tu∂

2
t u+ u∂3

t u)∂tu

]

+ε
γ + 1

c6
((∂tu)

2 + u∂2
t u)(3∂tu∂

2
t u+ u∂3

t u).

And as
∂2
t u− c2∆u = O(ε),

by inserting this in the term
(

1
c2
∂tu∂

2
t u− ∂tu∆u+ 1

c2
u∂3

t u− εu∆∂tu
)

we obtain

∂2
t u− c2∆u− ε

ν

ρ0
∆∂tu− ε

γ − 1

c2
∂tu∂

2
t u− 2ε∇u.∇∂tu = ε2RWes−Kuz (54)

with

ε2RWes−Kuz = ε2R1,Wes−Kuz − ε

(

1

c2
∂tu∂

2
t u− ∂tu∆u+

1

c2
u∂3

t u− u∆∂tu

)

.

Now we can write the following result for the approximation of the Kuznetsov equation
by the Westervelt equation.

Theorem 5 Let n ≥ 2 , s > n
2

with s ≥ 1 and ν ≥ 0 .
Let u0 ∈ Hs+3(Rn) and u1 ∈ Hs+3(Rn) if ν > 0 and let u1 ∈ Hs+2(Rn) if ν = 0 be

small enough in the sense of the existence of Π the solution of the Cauchy problem for
the Westervelt equation (48) with Π0 and Π1 defined by Eqs. (45) and (46). Let u be
defined by (53).

Consequently u is a solution of the approximated Kuznetsov equation (54) with u(0) =
u0 , ∂tu(0) = u1 . If the initial data for u , the solution of the Cauchy problem (40) for
the Kuznetsov equation, and for u satisfy (32), there exist K , C , C1 , C2 > 0 , all
independent of ε , such that for all t ≤ C

ε
it holds estimate (33).

Proof : The existence of u and u has already been shown in [11] and given in Theo-
rem 4. The proof of the approximation estimate follows exactly the proof of Theorem 2
and hence it is omitted. The regularity on u0 and u1 (see expressions of u0 and u1 in
Table 1) is minimal to ensure that RWes−Kuz (see Eq. (54)) is in C([0,+∞[;L2(Rn)) .
Indeed, with Π0 and Π1 defined by Eqs. (45) and (46) it is necessary to impose these
regularities in order to have the well-posedness of Π with the same regularity as in The-
orem 4. �
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A Well posedness of the Kuznetsov equation in the half

space.

We establish here the well posedness results for the Kuznetsov equation in the framework
of the KZK-approximation considered in Subsection 2.2. For two type of approximations
we need two different well posedness results.

A.1 Periodic boundary problem.

Let us consider the following periodic in time problem for the Kuznetsov equation in the
half space Ω = R+ × R

n−1 with periodic in time Dirichlet boundary conditions given
by (21), where g is an L -periodic in time and of mean value zero function. To show the
well-posedness of problem (21) we study the maximal regularity of the associated linear
operator and then use an equivalent to the fixed point theorem. Using [9, Lem. 3.5 p. 13],
we directly obtain the following result of maximal regularity:

Theorem 6 Let n = 3 and p ∈]1,+∞[ . Then there exists a unique solution u ∈
W 2

p (Tt;L
p(Ω)) ∩W 1

p (Tt;W
2
p (Ω)) with the mean value zero

∫

Tt

u(s, x) ds = 0 ∀x ∈ Ω (55)

of the following periodic boundary value problem














utt − c2∆u− νε∆ut = f on Tt × Ω,

u = g on Tt × ∂Ω

(56)

if and only if the functions f and g satisfy

f ∈ Lp(Tt;L
p(Ω)) and g ∈ W

2− 1
2p

p (Tt;L
p(∂Ω)) ∩W 1

p (Tt;W
2− 1

p
p (∂Ω)) (57)

and are of mean value zero:
∫

Tt

f(l, x) dl = 0 ∀x ∈ Ω and
∫

Tt

g(l, x′) dl = 0 ∀x′ ∈ ∂Ω. (58)

Moreover, the following stability estimate holds

‖u‖W 2
p (Tt;Lp(Ω))∩W 1

p (Tt;W 2
p (Ω)) ≤ C

(

‖f‖Lp(Tt;Lp(Ω))

+ ‖g‖
W

2− 1
2p

p (Tt;Lp(∂Ω))∩W 1
p (Tt;W

2− 1
p

p (∂Ω))

)

.

Proof : On one hand, if f and g satisfy (57)–(58), the necessity of the conditions
is shown in Ref. [9]. On the other hand, the conditions (57)–(58) are sufficient by a
direct application of the trace theorems recalled in Ref. [9] pp. 6–7 and proved in Ref. [13]
Section 3 for example. �

The results of Ref. [9] allow to see that Theorem 6 does not depend on n , moreover if
we look at the case p = 2 the linearity of the operator ∂2

t − c2∆ − ν∆∂t from Eq. (56)
implies that we can work with Hs(Ω) instead of L2(Ω) :
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Lemma 1 Let n ∈ N
∗ and s ≥ 0 . There exists a unique solution of the periodic in time

boundary value problem for the linear strongly damped wave equation (56)

u ∈ X =

{

u ∈ H2(Tt;H
s(Ω)) ∩H1(Tt;H

s+2(Ω))|
∫

Tt

u(s, x) ds = 0 ∀x ∈ Ω

}

(59)

if and only if f and g satisfy

f ∈ L2(Tt;H
s(Ω)) and g ∈ FT = H

7
4 (Tt;H

s(∂Ω)) ∩H1(Tt;H
s+ 3

2 (∂Ω)) (60)

along with (58).
Moreover the following stability estimate holds

‖u‖X ≤ C(‖f‖L2(Tt;Hs(Ω)) + ‖g‖FT
).

Here H2(Tt;H
s(Ω))∩H1(Tt;H

s+2(Ω)) is endowed with its usual norm denoted here and
in the sequel by ‖.‖X .

To prove the global well-posedness of the periodic in time boundary value problem (21)
for the Kuznetsov equation we use its boundary condition as the initial condition of the
corresponding Cauchy problem in R

n and we combine the maximal regularity result for
system (56) with [48, 1.5 Cor., p. 368] (see also [11, Thm. 4.2]) applying the same method
as previously done for the Cauchy problem associated with the Kuznetsov equation [11].

Theorem 7 Let ν > 0 , n ∈ N
∗ and s > n

2
. Let X be defined by ( 59 ) and the boundary

condition g ∈ FT be defined by (60) and in addition, let g be of mean value zero (see
Eq. (58)).

Then there exist r∗ = O(1) and C1 = O(1) such that for all r ∈ [0, r∗[ , if ‖g‖FT
≤

√
νε

C1
r, there exists a unique solution u ∈ X of the periodic problem (21) for the Kuznetsov

equation such that ‖u‖X ≤ 2r .

Proof : For g ∈ FT defined in (60) and satisfying (58), let us denote by u∗ ∈ X the
unique solution of the linear problem (56) with f = 0 and g ∈ FT .

In addition, according to Theorem 1, we take X defined in (59), this time for s > n
2

(we need this regularity to control the non-linear terms), and introduce the Banach spaces

X0 := {u ∈ X| u|∂Ω = 0 on Tt × ∂Ω} (61)

and

Y =

{

f ∈ L2(Tt;H
s(Ω))|

∫

Tt

f(s, x) ds = 0 ∀x ∈ Ω

}

.

Then by Lemma 1, the linear operator

L : X0 → Y, u ∈ X0 7→ L(u) := utt − c2∆u− νε∆ut ∈ Y,

is a bi-continuous isomorphism.

23



Let us now notice that if v is the unique solution of the non-linear Dirichlet problem































vtt − c2∆v − νε∆vt = αε(v + u∗)t(v + u∗)tt on Tt × Ω,

+βε∇(v + u∗).∇(v + u∗)t

v = 0 on Tt × ∂Ω,

(62)

then u = v + u∗ is the unique solution of the periodic problem (21). Let us prove the
existence of a such v , using [48, 1.5 Cor., p. 368].

We suppose that ‖u∗‖X ≤ r and define for v ∈ X0

Φ(v) := αε(v + u∗)t(v + u∗)tt + βε∇(v + u∗).∇(v + u∗)t.

For w and z in X0 such that ‖w‖X ≤ r and ‖z‖X ≤ r , we estimate the norm
‖Φ(w)− Φ(z)‖Y . By applying the triangular inequality we have

‖Φ(w)− Φ(z)‖Y ≤ αε
(

‖u∗
t (w − z)tt‖Y + ‖(w − z)tu

∗
tt‖Y

+ ‖wt(w − z)tt‖Y + ‖(w − z)tztt‖Y
)

+ βε
(

‖∇u∗∇(w − z)t‖Y + ‖∇(w − z)∇u∗
t‖Y

+ ‖∇w∇(w − z)t‖Y + ‖∇(w − z)∇zt‖Y
)

.

Now, for all a and b in X with s ≥ s0 >
n
2

it holds

‖atbtt‖Y ≤‖at‖L∞(Tt×Ω)‖btt‖Y
≤CH1(Tt;Hs0(Ω))→L∞(Tt×Ω)‖at‖H1(Tt;Hs0(Ω))‖b‖X
≤CH1(Tt;Hs0(Ω))→L∞(Tt×Ω)‖a‖X‖b‖X ,

where CH1(Tt;Hs0 (Ω))→L∞(Tt×Ω) is the embedding constant of H1(Tt;H
s0(Ω)) in L∞(Tt ×

Ω) , independent of s , but depending only on the dimension n . In the same way, for all
a and b in X it holds

‖∇a∇bt‖Y ≤ CH1(Tt;Hs0 (Ω))→L∞(Tt×Ω)‖a‖X‖b‖X .

Taking a and b equal to u∗ , w , z or w− z , as ‖u∗‖X ≤ r , ‖w‖X ≤ r and ‖z‖X ≤ r ,
we obtain

‖Φ(w)− Φ(z)‖Y ≤ 4(α+ β)CH1(Tt;Hs0(Ω))→L∞(Tt×Ω)εr‖w − z‖X .

By the fact that L is a bi-continuous isomorphism, there exists a minimal constant
Cε = O

(

1
εν

)

> 0 , coming from the inequality

C0εν‖u‖2X ≤ ‖f‖Y ‖u‖X
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for u , a solution of the linear problem (56) with homogeneous boundary data (for a
maximal constant C0 = O(1) > 0 ) such that

‖u‖X ≤ Cε‖Lu‖Y ∀u ∈ X0.

Hence, for all f ∈ Y
PLUX0

(f) ≤ CεPUY
(f) = Cε‖f‖Y .

Then we find for w and z in X0 , such that ‖w‖X ≤ r , ‖z‖X ≤ r , and also for
‖u∗‖X ≤ r , that with the notation

Θ(r) := 4Cε(α + β)CH1(Tt;Hs0(Ω))→L∞(Tt×Ω)εr

it holds
PLUX0

(Φ(w)− Φ(z)) ≤ Θ(r)‖w − z‖X .
Thus we apply [48, 1.5 Cor., p. 368] with f(x) = L(x) − Φ(x) and x0 = 0 . Therefore,
knowing that Cε =

C0

εν
, we have, that for all r ∈ [0, r∗[ with

r∗ =
ν

4C0(α+ β)CH1(Tt;Hs0 (Ω))→L∞(Tt×Ω)

= O(1), (63)

for all y ∈ Φ(0) + w(r)LUX0 ⊂ Y with

w(r) = r − 2
C0

ν
CH1(Tt;Hs0 (Ω))→L∞(Tt×Ω)(α+ β)r2,

there exists a unique v ∈ 0 + rUX0 such that L(v) − Φ(v) = y . Since we are seeking
v , which solves the non-linear problem (62), we need to impose y = 0 , i.e. that v be
the solution of the non-linear problem (62), then we need to impose y = 0 and thus, to
ensure that

0 ∈ Φ(0) + w(r)LUX0.

Since − 1
w(r)

Φ(0) is an element of Y and LX0 = Y , there exists a unique z ∈ X0 such
that

Lz = − 1

w(r)
Φ(0). (64)

Let us show that ‖z‖X ≤ 1 , what will implies that 0 ∈ Φ(0) +w(r)LUX0 . Noticing that

‖Φ(0)‖Y ≤ αε‖vtvtt‖Y + βε‖∇v∇vt‖Y
≤ (α + β)εCH1(Tt;Hs0(Ω))→L∞(Tt×Ω)‖v‖2X
≤ (α + β)εCH1(Tt;Hs0(Ω))→L∞(Tt×Ω)r

2

and using (64) we find

‖z‖X ≤ Cε‖Lz‖Y = Cε
‖Φ(0)‖Y
w(r)

≤ CεCH1(Tt;Hs0(Ω))→L∞(Tt×Ω)(α + β)εr

(1− 2CεCH1(Tt;Hs0 (Ω))→L∞(Tt×Ω)(α+ β)εr)
<

1

2
,
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as soon as r < r∗ .
Consequently, z ∈ UX0 and Φ(0) + w(r)Lz = 0 . Then we conclude that for all

r ∈ [0, r∗[ , if ‖u∗‖X ≤ r , there exists a unique v ∈ rUX0 such that L(v) − Φ(v) = 0 ,
i.e. v is the solution of the non-linear problem (62). Thanks to the maximal regularity
and a priori estimate following from Theorem 1 with f = 0 , there exists a constant
C1 = O(ε0) > 0 , such that

‖u∗‖X ≤ C1√
νε

‖g‖FT
.

Thus, for all r ∈ [0, r∗[ and ‖g‖FT
≤

√
νε

C1
r , the function u = u∗ + v ∈ X is the unique

solution of the time periodic problem for the Kuznetsov equation and ‖u‖X ≤ 2r . �

A.2 Initial boundary value problem.

We still work on Ω = R+×R
n−1 and we study the initial boundary value problem for the

Kuznetsov equation on this space, i.e. the perturbation of an imposed initial condition
by a source on the boundary, which in Subsection 2.2.2 was determined by the solution
of the KZK equation.

Lemma 2 Let s ≥ 0 , n ∈ N . There exists a unique solution

u ∈ E := H2(R+;H
s(Ω)) ∩H1(R+;H

s+2(Ω)) (65)

of the linear problem






























utt − c2∆u− νε∆ut = f in R+ × Ω,

u = g on R+ × ∂Ω,

u(0) = u0, ut(0) = u1 in Ω

(66)

if and only if the data satisfy the following conditions

• f ∈ L2(R+;H
s(Ω)),

• for the boundary condition

g ∈ FR+ = H7/4(R+;H
s(∂Ω)) ∩H1(R+;H

s+3/2(∂Ω)), (67)

• u0 ∈ Hs+2(Ω) and u1 ∈ Hs+1(Ω) ,

• g(0) = u0 and gt(0) = u1 on ∂Ω in the trace sense.

In addition, the solution satisfies the stability estimate

‖u‖E ≤ C(‖f‖L2(R+;Hs(Ω)) + ‖g‖FR+
+ ‖u0‖Hs+2 + ‖u1‖Hs+1).
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In order to prove this result we will use the following lemma to remove the inhomogeneity
g .

Lemma 3 Let s ≥ 0 , n ∈ N and E defined in (65). There exists a unique solution
w ∈ E of the following linear problem































wtt − νε∆wt = 0 in R+ × Ω,

w = g on R+ × ∂Ω,

w(0) = 0, wt(0) = 0 in Ω

(68)

if and only if
g ∈ FR+ (the space FR+ is defined in (67)) and it holds the following compatibility

conditions:
for all x ∈ ∂Ω , g(0) = 0 and gt(0) = 0 .
Moreover, the solution w satisfies the stability estimate

‖w‖E ≤ C‖g‖FR+
.

Proof : First we prove the sufficiency. By assumption (67), we have

∂tg ∈ H3/4(R+;H
s(∂Ω)) ∩ L2(R+;H

s+3/2(∂Ω)).

Thanks to § 3 in Ref. [32, p. 288], we obtain a unique solution

v ∈ H1(R+;H
s(Ω)) ∩ L2(R+;H

s+2(Ω))

of the parabolic problem

vt − νε∆v = 0 in R+ × Ω, v = ∂tg on R+ × ∂Ω, v(0) = 0 in Ω.

Next we define for t ∈ R+ and x ∈ Ω the function

w(t, x) :=

∫ t

0

v(l, x)dl.

We have w(0) = 0 and wt(0) = 0 . Moreover, it satisfies

wtt − νε∆wt = 0, w(t)|∂Ω =

∫ t

0

gt(l) dl = g(t),

as g(0) = 0 . Therefore, w is a solution of problem (68). The necessity follows from the
spatial trace theorem ensuring that the trace operator Tr∂Ω : u 7→ u|∂Ω , considering as a
map

H1(R+;H
s(Ω)) ∩ L2(R+;H

s+2(Ω)) → H3/4(R+;H
s(∂Ω)) ∩ L2(R+;H

s+3/2(∂Ω)), (69)
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is bounded and surjective by [13, Lem. 3.5]. For the compatibility condition, thanks to [14,
Lem. 11], we also know that the temporal trace Trt=0 : g 7→ g|t=0 , considered as a map

H3/4(R+;H
s(∂Ω)) ∩ L2(R+;H

s+3/2(∂Ω)) → Hs+1/2(∂Ω), (70)

is well defined and bounded. Moreover, the spatial trace

Hs+1/2(Ω) → Hs(∂Ω) (71)

is bounded by [16, Thm. 1.5.1.1].
To obtain uniqueness, let w be a solution to (68) with g = 0 . Since wt solves the

heat problem with homogeneous data, we obtain wt = 0 and therefore also w = 0 by the
initial condition w(0) = 0 . The stability estimate follows from the closed graph theorem.
�

Let us prove Lemma 2: Proof : We obtain the uniqueness of the solution of the boundary
value problem for the linear strongly damped equation (66) from the fact that in the case
g = 0 we can consider −∆ as a self-adjoint and non negative operator with homogeneous
Dirichlet boundary conditions and we can use [15].

To verify the necessity of the conditions on the data, we suppose that u ∈ E (see
Eq. (65) for the definition of E ) is a solution of (66). Then

u, ut ∈ H1(R+;H
s(Ω)) ∩ L2(R+;H

s+2(Ω)) and thus f ∈ L2(R+;H
s(Ω)).

Taking as in the previous proof the spatial trace Tr∂Ω as in Eq. (69) we have

g, gt ∈ H3/4(R+;H
s(∂Ω)) ∩ L2(R+;H

s+3/2(∂Ω)), which implies g ∈ FR+.

By the Sobolev embedding H1(R+;H
s+2(Ω)) →֒ C(R+;H

s+2(Ω)) , it follows that u0 ∈
Hs+2(Ω) and we also have the temporal trace

u 7→ u|t=0 : H
1(R+;H

s(Ω)) ∩ L2(R+;H
s+2(Ω)) → Hs+1(Ω)

by [13, Lem. 3.7]. Following the proof of Lemma 3, we use Eqs. (70) and (71) to obtain
the compatibility conditions.

It remains to prove the sufficiency of the conditions. We extend u0 , u1 and f in odd
functions among x1 on R

n so that we have

ũ0 ∈ Hs+2(Rn), ũ1 ∈ Hs+1(Rn) and f̃ ∈ L2(R+;H
s(Rn)).

Considering the non homogeneous linear Cauchy problem














ũtt − c2∆ũ− νε∆ũt = f̃ in R+ × R
n,

ũ(0) = ũ0, ũt(0) = ũ0 in R
n,

by [11, Thm. 4.1] we obtain the existence of its unique solution

ũ ∈ H2(R+;H
s(Rn)) ∩H1(R+;H

s+2(Rn)).
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Let u ∈ E , denote the restriction of ũ to Ω and let g := g − u|∂Ω . By the spatial trace
theorem u|∂Ω ∈ FR+ , and hence g ∈ FR+ . Then the solution u of the non homogeneous
linear problem (66) is given by u = v + u , where v solves problem (66) with f = u0 =
u1 = 0 and g = g . >From Lemma 3 we have a unique solution v ∈ Eu of problem (68)
with g = g . Then the function w := v − v solves the following system































wtt −∆w − νε∆wt = c2∆v in R+ × Ω,

w = 0 on R+ × ∂Ω,

w(0) = 0, wt(0) = 0 in Ω,

which thanks to [15, Thm. 2.6] has a unique solution w ∈ E defined in (65). The function
u := w + v + u is the desired solution of system (66) and the stability estimate follows
from the closed graph theorem. This concludes the proof of Lemma 2. �

The next theorem follows from the maximal regularity result of Lemma 2 and of [48,
1.5. Cor., p. 368]. Its proof is similar to the proof of Theorem 7 and hence is omitted.

Theorem 8 Let ν > 0 , n ∈ N
∗ , Ω = R+ × R

n−1 and s > n
2
. Considering the initial

boundary value problem for the Kuznetsov equation in the half space with the Dirichlet
boundary condition (28) the following results hold: there exist constants r∗ = O(1) and
C1 = O(1) , such that for all initial data satisfying

• g ∈ FR+ := H7/4([0,∞[;Hs(∂Ω)) ∩H1([0,∞[;Hs+3/2(∂Ω)) ,

• u0 ∈ Hs+2(Ω) , u1 ∈ Hs+1(Ω) ,

• g(0) = u0|∂Ω and gt(0) = u1|∂Ω ,

and such that for r ∈ [0, r∗[

‖u0‖Hs+2(Ω) + ‖u1‖Hs+1(Ω) + ‖g‖F[0,T ]
≤ νε

C1
r,

there exists a unique solution of problem (28) for the Kuznetsov equation

u ∈ H2([0,∞[;Hs(Ω)) ∩H1([0,∞[;Hs+2(Ω)),

such that
‖u‖H2([0,∞[;Hs(Ω))∩H1([0,∞[;Hs+2(Ω)) ≤ 2r.
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