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MODELS OF NONLINEAR ACOUSTICS VIEWED AS AN APPROXIMATION OF THE KUZNETSOV EQUATION

We relate together different models of non linear acoustic in thermo-elastic media as the Kuznetsov equation, the Westervelt equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Nonlinear Progressive wave Equation (NPE) and estimate the time during which the solutions of these models keep closed in the L 2 norm. The KZK and NPE equations are considered as paraxial approximations of the Kuznetsov equation. The Westervelt equation is obtained as a nonlinear approximation of the Kuznetsov equation. Aiming to compare the solutions of the exact and approximated systems in found approximation domains the well-posedness results (for the Kuznetsov equation in a half-space with periodic in time initial and boundary data) are obtained.

1 Introduction.

One of the most general model to describe an acoustic wave propagation in an homogeneous thermo-elastic medium is the compressible Navier-Stokes system in R n

∂ t ρ + div(ρv) = 0, (1) 
ρ[∂ t v + (v.∇)v] = -∇p + η∆v + ζ + η 3 ∇. div(v), (2) 
ρT

[∂ t S + (v.∇)S] = κ∆T + ζ(div v) 2 + η 2 ∂ x k v i + ∂ x i v k - 2 3 δ ik ∂ x i v i 2 , (3) 
p = p(ρ, S), (4) 
where the pressure p is given by the state law p = p(ρ, S) . The density ρ , the velocity v , the temperature T and the entropy S are unknown functions in system (1)-( 4). The coefficients ζ, κ and η are constant viscosity coefficients. For the acoustical framework the wave motion is supposed to be potential and the viscosity coefficients are supposed to be small in terms of a dimensionless small parameter ε > 0 , which also characterizes the size of the perturbations near the constant state (ρ 0 , 0, S 0 , T 0 ) . Here the velocity v 0 is taken equal to 0 just using a Galilean transformation. Actually, ε is the Mach number, which is supposed to be small [START_REF] Bakhvalov | Nonlinear Theory of Sound Beams[END_REF] ( ǫ = 10 -5 for the propagation in water with an initial power of the order of 0.3 W/cm 2 ):

ρ -ρ 0 ρ 0 ∼ T -T 0 T 0 ∼ |v| c ∼ ǫ,
where c = p ′ (ρ 0 ) is the speed of sound in the unperturbed media. Hence as in [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF][START_REF] Rozanova-Pierrat | Approximation of a compressible Navier-Stokes system by non-linear acoustical models[END_REF], system (1)-( 4) becomes an isentropic Navier-Stokes system

∂ t ρ ε + div(ρ ε v ε ) = 0 , (5) ρ ε [∂ t v ε + (v ε • ∇) v ε ] = -∇p(ρ ε ) + εν∆v ε , (6) 
with the approximate state equation p(ρ, S) = p(ρ ε ) + O(ε 3 ) :

p(ρ ε ) = p 0 + c 2 (ρ ε -ρ 0 ) + (γ -1)c 2 2ρ 0 (ρ ε -ρ 0 ) 2 , (7) 
where γ = C p /C V denotes the ratio of the heat capacities at constant pressure and at constant volume respectively and with a small enough and positive viscosity coefficient:

εν = β + κ 1 C V - 1 C p .
If we go on physical assumptions of the wave motion [START_REF] Bakhvalov | Nonlinear Theory of Sound Beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF][START_REF] Westervelt | Parametric acoustic array[END_REF] for the perturbations of the density or of the velocity or of the pressure, the isentropic system ( 5)-( 6) gives 1. the Westervelt equation for the potential of the velocity, derived initially by Westervelt [START_REF] Westervelt | Parametric acoustic array[END_REF] and later by other authors [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF][START_REF] Tjøtta | Nonlinear equations of acoustics, with application to parametric acoustic arrays[END_REF]:

∂ 2 t Π -c 2 ∆Π = ε∂ t ν ρ 0 ∆Π + γ + 1 2c 2 (∂ t Π) 2 (8) 
with the same constants introduced for the Navier-Stokes system.

2. the Kuznetsov equation also for the potential of the velocity, firstly introduced by Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] for the velocity potential, see also Refs. [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Jordan | An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation[END_REF][START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part I. Analytical comparison[END_REF][START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF] for other different methods of its derivation:

∂ 2 t u -c 2 △u = ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u . (9) 
3. the Khokhlov-Zabolotskaya-Kuznetsov (KZK) [START_REF] Bakhvalov | Nonlinear Theory of Sound Beams[END_REF][START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and nonviscous thermo-elastic media[END_REF] for the density:

c∂ 2 τ z I - (γ + 1) 4ρ 0 ∂ 2 τ I 2 - ν 2c 2 ρ 0 ∂ 3 τ I - c 2 2 ∆ y I = 0. (10) 
4. the Nonlinear Progressive wave Equation (NPE) derived in Ref. [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] also for the density:

∂ 2 τ z ξ + (γ + 1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] - ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0. (11) 
For higher order models as the nonlinear Jordan-Moore-Gibson-Thompson (JMGT) equation, containing the Kuznetsov equation as a particular or a limit case, see [START_REF] Jordan | Second-sound phenomena in inviscid, thermally relaxing gases[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound[END_REF][START_REF] Kaltenbacher | The Jordan-Moore-Gibson-Thompson equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time[END_REF] and their references. In this article we don't consider such higher order models and focus our attention on the Kuznetsov equation considered here as the most complete equation.

In [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF] it is shown that the Kuznetsov equation comes from the Navier-Stokes or Euler system only by small perturbations, but to obtain the KZK and the NPE equations we also need to perform in addition to the small perturbations a paraxial change of variables. In this article we derive the KZK and the NPE equations from the Kuznetsov equation just performing the corresponding paraxial change of variables and show that the Westervelt equation can be also viewed as an approximation of the Kuznetsov equation by a nonlinear perturbation.

The physical context and the physical usage of the KZK and the NPE equations are different: the NPE equation is helpful to describe short-time pulses and a long-range propagation, for instance, in an ocean wave-guide, where the refraction phenomena are important [START_REF] Caine | A tutorial on the non-linear progressive wave equation (NPE). Part 2. Derivation of the three-dimensional cartesian version without use of perturbation expansions[END_REF][START_REF] Mcdonald | A tutorial on the nonlinear progressive wave equation (NPE)-part 1[END_REF], while the KZK equation typically models the ultrasonic propagation with strong diffraction phenomena, combining with finite amplitude effects (see [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and nonviscous thermo-elastic media[END_REF] and the references therein). But in the same time [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF], there is a bijection between the variables of these two models and they can be presented by the same type differential operator with constant positive coefficients:

Lu = 0, L = ∂ 2 tx -c 1 ∂ x (∂ x •) 2 -c 2 ∂ 3 x ± c 3 ∆ y for t ∈ R + , x ∈ R, y ∈ R n-1 .
Therefore, the results on the solutions of the KZK equation from [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] are valid for the NPE equation.

The interest to study how closed are the solutions of the general model of the nonlinear wave motion, described by the Kuznetsov equation, and of simplified models with more particular area of application (such as the KZK equation and the NPE equation which are valid only with additional assumptions on the wave propagation describing by the paraxial changes of variables) is naturally motivated by the questions about the accuracy of the approximations and of a comparative analysis of the solutions of these models.

If we formally consider the differential operators in the Kuznetsov equation ( 9) and the Westervelt equation ( 8), we notice that the Westervelt equation keeps only one of two non-linear terms of the Kuznetsov equation, producing cumulative effects in a progressive wave propagation [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF]. The question how closed are the solutions of these two models, which differ on presence of local nonlinear term, was also open so far.

The mentioned approximation questions are treated theoretically in this article.

Let us also notice that the Kuznetsov equation ( 9) (and also the Westervelt equation ( 8)) is a non-linear wave equation with terms of different order (the wave operator is of order ε 0 and the nonlinear and viscosity terms are of order ε ). But the KZK-and NPE-paraxial approximations allow to have the approximate equations with all terms of the same order, i.e. the KZK and NPE equations. For the well posedness of the Cauchy problem for the Kuznetsov equation we cite [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and for boundary value problems in regular bounded domains see [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; Exponential decay[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF].

We present the structure of the paper and its mains results in the next subsection.

Main results

To keep a physical sense of the approximation problems, we consider especially the two or three dimensional cases, i.e. R n with n = 2 or 3 , and in the following we use the notation x = (x 1 , x ′ ) ∈ R n with one propagative axis x 1 ∈ R and the traversal variable

x ′ ∈ R n-1 .
To be able to consider the approximation of the Kuznetsov equation by the KZK equation (see Section 2), we establish (see Theorems 7 and 8 in Appendix A) global well posedness results for the Kuznetsov equation in the half space similar to the previous framework for the KZK and the Navier-Stokes system considered in [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF]. Theorem 7 corresponds to the well posedness of the periodic in time Dirichlet boundary valued problem for the Kuznetsov equation in the half space R + × R n-1 (see Eq. ( 21)) for small enough boundary data. In this case the boundary condition is considered as the initial condition of the corresponding Cauchy problem in R n . The proof is based on the maximal regularity result for the corresponding linear problem given in Theorem 6 and on the application of a result of the nonlinear functional analysis from [START_REF] Sukhinin | On the solvability of the nonlinear stationary transport equation[END_REF]1.5. Cor.,p. 368] (see also [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]Thm. 4.2]). We also applied it to prove (see Theorem 8) the well posedness for the initial boundary valued problem for the Kuznetsov equation in the half space [START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part I. Analytical comparison[END_REF], once again combining with the maximal regularity result for the linear problem (see the proof of Lemma 2). 

u = Φ(t -x 1 c , εx 1 , √ εx ′ ) paraxial approximation u = Ψ(εt, x 1 -ct, √ εx ′ ) Π = u + 1 c 2 εu∂ t u Approxi- mation domain the half space {x 1 > 0, x ′ ∈ R n-1 } T x 1 × R 2 R n Approxi- mation order O(ε) O(ε) O(ε 2 ) Estimation I -I aprox L 2 (Tt×R n-1 ) ≤ ε z ≤ K (u -u) t (t) L 2 + ∇(u -u)(t) L 2 ≤ Kε. t < T ε (u -u) t (t) L 2 + ∇(u -u)(t) L 2 ≤ Kε t < T ε (u -u) t (t) L 2 + ∇(u -u)(t) L 2 ≤ Kε t < T ε s+3 n s+3 n
In Subsection 2.1 we derive the KZK equation from the Kuznetsov equation by introducing the paraxial change of variables [START_REF] Luo | Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms[END_REF].

For the approximation framework for their solutions we study two cases. The first case is treated in Sub-subsection 2.2.1 and it considers the purely time periodic boundary problem in the ansatz variables (z, τ, y) moving with the wave, where we use the wellposedness result of Theorem 7. In this case the only viscous medium can be considered as the condition to be periodic in time is not compatible with shock formations providing the loss of the regularity which may occur in the inviscid medium (see [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]Thm. 1.3]). The approximation results are formulated in Theorem 1.

The second case (see Sub-subsection 2.2.2) studies the initial boundary-value problem for the Kuznetsov equation in the initial variables (t, x 1 , x ′ ) with data coming from the solution of the KZK equation, using this time the well posedness results of Theorem 8. This time we have the approximation results for the viscous and inviscid cases (see Theorem 2 and Remark 2).

In Section 3 we establish the approximation result between the Kuznetsov equation and NPE equation in the viscous and inviscid cases (see Theorem 3).

Finally in Section 4 we compare the solutions of the Westervelt and the Kuznetsov equations. We derive the Westervelt equation from the Kuznetsov equation by a nonlinear change of variables in Subsection 4.1 and we validate the approximation in Subsection 4.2 (see Theorem 5 for viscous and inviscid cases).

We denote by u a solution of the "exact" problem for the Kuznetsov equation Exact(u) = 0 and by u an approximate solution, constructed by the derivation ansatz from a regular solution of one of the approximate models (for instance of the KZK or of the NPE equations), i.e. u is a function which solves the Kuznetsov equation up to ε terms, denoted by εR :

Approx(u) = Exact(u) -εR = 0.

In the approximation between the solutions of the Kuznetsov equation and of the Westervelt equation the remainder term appears with the size ε 2 (it is natural since both models contain terms of order ε 0 and ε ). We can summarize the obtained approximation results of the Kuznetsov equation in the following way: if, once again, u is a solution of the Kuznetsov equation and u is a solution of the NPE or of the KZK (for the initial boundary value problem) or of the Westervelt equations found for rather closed initial data

∇ t,x (u(0) -u(0)) L 2 (Ω) ≤ δ ≤ ε, then there exist constants K , C 1 , C 2 , C > 0 independent of ε , δ and on time, such that for all t ≤ C ε it holds ∇ t,x (u -u) L 2 (Ω) ≤ C 1 (ε 2 t + δ)e C 2 εt ≤ Kε.
For a more detailed comparison between different models we include the main points of our results to the comparative Table 1.

In Table 1 the line named "Initial data regularity" gives the information about the regularity of the initial data for the approximate model, which ensure the same regularity of the solutions of an approximate model and of the solution of the Kuznetsov equation, taken with the same initial data u(0) = u(0) , coming from the corresponding ansatz.

To have the remainder term R ∈ C([0, T ], L 2 (Ω)) we ensure that Exact(u) ∈ C([0, T ], L 2 (Ω)) , i.e. we need a sufficiently regular solution u . The minimal regularity of the initial data to have a such u is given in Table 1 in the last line named "Data regularity for remainder boundness".

To summarize, the rest of the paper is organized as follows. Section 2 considers the derivation (Subsection 2.1) of the KZK equation from the Kuznetsov equation and two types of approximation results for the solutions of the Kuznetsov equation approximated by the solutions of the KZK equation in Subsection 2.2. The approximation by the solutions of the NPE equation is considered in Section 3. Section 4 contains the derivation of the Westervelt equation and the approximation result for the solutions of the Kuznetsov and the Westervelt equations. The well posedness results for the Kuznetsov equation needed for the approximation results of Section 2 are detailed in Appendix A.

2 The Kuznetsov equation and the KZK equation.

Derivation of the KZK equation from the Kuznetsov equa-

tion.

If the velocity potential is given [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] by

u(x, t) = Φ(t -x 1 /c, ǫx 1 , √ ǫx ′ ) = Φ(τ, z, y), (12) 
we directly obtain from the Kuznetsov equation ( 9) via the paraxial change of variables

τ = t - x 1 c , z = εx 1 , y = √ εx ′ , (13) 
that

∂ 2 t u -c 2 ∆u -ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u = ε 2c∂ 2 τ z Φ - γ + 1 2c 2 ∂ τ (∂ τ Φ) 2 - ν ρ 0 c 2 ∂ 3 τ Φ -c 2 ∆ y Φ + ε 2 R Kuz-KZK (14) 
with

ε 2 R Kuz-KZK =ε 2 -c 2 ∂ 2 z Φ + 2 c ∂ τ (∂ τ Φ∂ z Φ) -∂ τ (∇ y Φ) 2 + 2ν cρ 0 ∂ 2 τ ∂ z Φ - ν ρ 0 ∂ τ ∆ y Φ + ε 3 -∂ τ (∂ z Φ) 2 - ν ρ 0 ∂ τ ∂ 2 z Φ . ( 15 
)
Let us notice that the paraxial change of variables [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF] defines the axis of the propagation x 1 along which the wave changes its profile much slower than along the transversal axis x ′ . This is typical for the propagation of ultrasound waves. Therefore, we find that the right-hand side ǫ -order terms in Eq. ( 14) is exactly the KZK equation [START_REF] Dafermos | Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. Thanks to [41, Thms. 1.1-1.3] we have the well posedness result for the KZK equation in the half space with periodic boundary conditions of a period L on τ and of mean value zero.

Due to the well posedness domain (T τ × R n-1 ) of the KZK equation, to validate the approximation between the solutions of the KZK and the Kuznetsov equations, we need to have the well posedness of the Kuznetsov equation on the half space with boundary conditions coming from the initial condition for the KZK equation. For these well posedness results see Appendix A.

Approximation of the solutions of the Kuznetsov equation by

the solutions of the KZK equation.

Let us consider the Cauchy problem associated with the KZK equation

       c∂ z I -(γ+1) 4ρ 0 ∂ τ I 2 -ν 2c 2 ρ 0 ∂ 2 τ I -c 2 2 ∂ -1 τ ∆ y I = 0 on T τ × R + × R n-1 , I(τ, 0, y) = I 0 (τ, y) on T τ × R n-1 , (16) 
for small enough initial data in order to have by [41, Thm. 1.2] a time periodic solution I defined on R + × R n-1 . As it was mentioned in Introduction 1.1, if ν > 0 , to compare the solutions of the Kuznetsov and the KZK equations we consider two cases. The first case (see Sub-subsection 2.2.1) consists in studies of the time periodic boundary problem for the Kuznetsov equation ( 21) with the boundary condition imposed by the initial condition I 0 of the KZK equation. In Sub-subsection 2.2.2 we study the second case, when the solution of the KZK equation, taken for τ = 0 , gives I(0, z, y) defined on R + × R n-1 , from which we deduce, according to the derivation ansatz, both an initial condition for the Kuznetsov equation at t = 0 and a corresponding boundary condition. In this second situation, it also makes sense to consider the inviscid case, briefly commented in the end of Sub-subsection 2.2.2.

Approximation problem for the Kuznetsov with periodic boundary conditions.

By [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]Thm. 1.2] there is a unique solution I(τ, z, y) of the Cauchy problem for the KZK equation ( 16) such that

z → I(τ, z, y) ∈ C([0, ∞[, H s (Ω 1 )) (17) 
with Tτ I(l, z, y)dl = 0 and

Ω 1 = T τ × R n-1
, where T τ represents the periodicity in τ of period L . The operator ∂ -1 τ is defined by

∂ -1 τ I(τ, z, y) := τ 0 I(ℓ, z, y)dℓ + L 0 ℓ L I(ℓ, z, y)dℓ. (18) 
Formula ( 18), which implies that ∂ -1 τ I is L -periodic in τ and of mean value zero, gives us the estimate

∂ -1 τ I H s (Ω 1 ) ≤ C ∂ τ ∂ -1 τ I H s (Ω 1 ) = C I H s (Ω 1 ) . ( 19 
) So ∂ -1 τ I| z=0 ∈ H s (Ω 1 )
, and hence by ( 17)

z → ∂ -1 τ I(τ, z, y) ∈ C([0, ∞[, H s (Ω 1 )),
with Tτ ∂ -1 τ I(s, z, y)ds = 0 . We define on

T t × R + × R n-1 u(t, x 1 , x ′ ) := c 2 ρ 0 ∂ -1 τ I(τ, z, y) = c 2 ρ 0 ∂ -1 τ I t - x 1 c , εx 1 , √ εx ′ (20)
with the paraxial change of variable ( 13) associated with the KZK equation. Thus u is L -periodic in time and of mean value zero. Now we consider the following Kuznetsov problem

       u tt -c 2 ∆u -νε∆u t = αεu t u tt + βε∇u ∇u t on T t × R + × R n-1 , u| x 1 =0 = g on T t × R n-1 , (21) 
in which the boundary condition is imposed by the initial condition for the KZK equation:

g(t, x ′ ) := u(t, 0, x ′ ) = c 2 ρ 0 ∂ -1 τ I 0 (τ, y). (22) 
Let us define (see Eq. ( 12), and subsection 4.1 in [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF] for more details)

Ĩ := ρ 0 c 2 ∂ τ Φ. ( 23 
)
Then Ĩ is the solution of the Kuznetsov equation written in the following form with the remainder R Kuz-KZK defined in Eq. ( 15):

       c∂ z Ĩ -(γ+1) 4ρ 0 ∂ τ Ĩ2 -ν 2c 2 ρ 0 ∂ 2 τ Ĩ -c 2 2 ∆ y ∂ -1 τ Ĩ + ε ρ 0 2c 2 R Kuz-KZK = 0, Ĩ| z=0 = I 0 . (24) 
In Eq. ( 24) we can recognize the system associated with the KZK equation [START_REF] Dafermos | Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. Now we can formulate the following approximation result between the solutions of the KZK and Kuznetsov equations.

Theorem 1 Let ν > 0 . For s > max( n 2 , 2) and I 0 ∈ H s+ 3 2 (T τ × R n-1 ) small enough in H s+ 3 2 (T τ × R n-1
) , there exists a unique global solution I of the Cauchy problem for the KZK equation ( 16) such that

z → I(τ, z, y) ∈ C([0, ∞[, H s+ 3 2 (T τ × R n-1 )).
In addition, there exists a unique global solution Ĩ of the Kuznetsov problem [START_REF] Jordan | Second-sound phenomena in inviscid, thermally relaxing gases[END_REF], in the sense

Ĩ := ρ 0 c 2 ∂ τ Φ, with Φ(τ, z, y) := u(t, x 1 , x ′ ) with the paraxial change of variable (13) and u ∈ H 2 (T t ; H s (R + × R n-1 )) ∩ H 1 (T t ; H s+2 (R + × R n-1 )),
is the global solution of the periodic problem [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] for the Kuznetsov equation with g defined by I 0 as in Eq. [START_REF] John | Nonlinear Wave Equations, Formation of Singularities[END_REF]. Moreover there exist C 1 , C 2 > 0 such that

1 2 d dz I -Ĩ 2 L 2 (Tτ ×R n-1 ) ≤ C 1 I -Ĩ 2 L 2 (Tτ ×R n-1 ) + C 2 ε I -Ĩ L 2 (Tτ ×R n-1 ) ,
which implies

I -Ĩ L 2 (Tτ ×R n-1 ) (z) ≤ C 2 2 εze C 1 2 z ≤ C 2 C 1 ε(e C 1 2 z -1)
and

I -Ĩ L 2 (Tτ ×R n-1 ) (z) ≤ Kε while z ≤ C with K > 0 and C > 0 independent of ε . Proof : For s > max( n 2 , 2) , the global well-posedness of I comes from [41, Thm. 1.2] if I 0 ∈ H s+ 3 2 (T τ × R n-1
) is small enough. Moreover, since g is given by Eq. ( 22), thanks to the definition of ∂ -1 τ in [START_REF] Hamilton | Nonlinear Acoustics[END_REF] and the fact that

I 0 ∈ H s+ 3 2 (T τ × R n-1 ) , we have g ∈ H s+ 3 2 (T t × R n-1 ) and ∂ t g ∈ H s+ 3 2 (T t × R n-1 ).
And thus

g ∈ H 7 4 (T t ; H s (R n-1 )) ∩ H 1 (T t ; H s+2-1 2 (R n-1 )).
Therefore we can use Theorem 7, which implies the global existence of the periodic in time solution

u ∈ H 2 (T t ; H s (R + × R n-1 )) ∩ H 1 (T t ; H s+2 (R + × R n-1 )), (25) 
of the Kuznetsov periodic boundary value problem [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] as

I 0 is small enough in H s+ 3 2 (T τ × R n-1
) . Therefore, it also implies the global existence of Ĩ , defined in [START_REF] Jordan | An analytical study of Kuznetsov's equation: Diffusive solitons, shock formation, and solution bifurcation[END_REF], which is the solution of the exact Kuznetsov system [START_REF] Jordan | Second-sound phenomena in inviscid, thermally relaxing gases[END_REF]. Now we subtract the equations in systems ( 16) and ( 24) to obtain

c∂ z (I -Ĩ) - γ + 1 2ρ 0 (I -Ĩ)∂ τ I - γ + 1 2ρ 0 Ĩ∂ τ (I -Ĩ) - ν 2c 2 ρ 0 ∂ 2 τ (I -Ĩ) - c 2 2 ∂ -1 τ ∆ y (I -Ĩ) = ε ρ 0 2c 2 R Kuz-KZK .
Denoting Ω 1 = T τ ×R n-1 , we multiply this equation by (I -Ĩ) , integrate over T τ ×R n-1 and perform a standard integration by parts, which gives

c 2 d dz I -Ĩ 2 L 2 (Ω 1 ) - γ + 1 2ρ 0 Ω 1 ∂ τ I(I -Ĩ) 2 dτ dy - γ + 1 2ρ 0 Ω 1 Ĩ(I -Ĩ)∂ τ (I -Ĩ)dτ dy + ν 2c 2 ρ 0 Ω 1 (∂ τ (I -Ĩ)) 2 dτ dy = ε ρ 0 2c 2 Ω 1 R Kuz-KZK (I -Ĩ)dτ dy.
Let us notice that

Ω 1 Ĩ(I -Ĩ)∂ τ (I -Ĩ)dτ dy = Ω 1 [( Ĩ -I) + I)] 1 2 ∂ τ (I -Ĩ) 2 dτ dy = = - 1 2 Ω 1 ∂ τ I(I -Ĩ) 2 dτ dy.
By [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF] with s > max( n 2 , 2) , u is sufficiently regular to ensure

R Kuz-KZK ∈ C(R + ; L 2 (T τ × R n-1 )). ( 26 
)
This comes from the fact that in system [START_REF] Jordan | Second-sound phenomena in inviscid, thermally relaxing gases[END_REF] the "worst" term, asking the most regularity of Φ , inside the remainder R Kuz-KZK (see Eq. ( 15)) is ∂ τ ∂ 2 z Φ with Ĩ given by Eq. ( 23). As

∂ 3 t u ∈ L 2 (T t ; H s-2 (Ω)), we need to take s > max( n 2 , 2) to have ∂ τ ∂ 2 z Φ in L ∞ (R + ; L 2 (T τ × R n-1 )) . Therefore, it holds Ω 1 R Kuz-KZK (I -Ĩ)dτ dy ≤ R Kuz-KZK L 2 (Ω 1 ) I -Ĩ L 2 (Ω 1 ) ≤ C I -Ĩ L 2 (Ω 1 )
with a constant C > 0 independent of z thanks to [START_REF] Kaltenbacher | Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound[END_REF]. It leads to the estimate

1 2 d dz I -Ĩ 2 L 2 (Ω 1 ) ≤ K sup (τ,y)∈Ω 1 |∂ τ I(τ, z, y)| I -Ĩ 2 L 2 (Ω 1 ) + Cε I -Ĩ L 2 (Ω 1 ) ,
in which, due to the regularity of I for s and I 0 (see [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]) the term

sup (τ,y)∈Ω 1 |∂ τ I(τ, z, y)|
is bounded by a constant C > 0 independent of z . Consequently, we have the desired estimate and the other results follow from Gronwall's Lemma.

Remark 1

The regularity I 0 ∈ H s+ 3 2 (T τ × R n-1 ) for s > max( n 2 , 2) , imposed in Theorem 1, is the minimal regularity to ensure (26).

Approximation problem for the Kuznetsov equation with initial-boundary conditions.

Let the function I 0 (t, y) = I 0 (t, √ εx ′ ) be L -periodic on t and such that

I 0 ∈ H s (T t × R n-1 )
for s ≥ n+1 2 and L 0 I 0 (s, y)ds = 0 . Hence [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF], there is a unique solution I(τ, z, y) of the Cauchy problem [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF] for the KZK equation satisfying [START_REF] Gustafsson | Incompletely parabolic problems in fluid dynamics[END_REF]. We define u and g as in Eqs. ( 20) and ( 22) respectively. Thus, for R Kuz-KZK defined in Eq. ( 15), u is the solution of the following system

       ∂ 2 t u -c 2 ∆u -ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u = ε 2 R Kuz-KZK in T t × Ω, u = g on T t × ∂Ω. (27) 
In the same time let us consider for a sufficiently large T > 0 the solution u (see Theorem 8 for its global existence and uniqueness) of the Dirichlet boundary-value problem for the Kuznetsov equation

               u tt -c 2 ∆u -νε∆u t = αεu t u tt + βε∇u∇u t in [0, +∞[×Ω, u = g on [0, ∞[×∂Ω, u(0) = u 0 , u t (0) = u 1 in Ω, (28) 
taking u 0 := u(0) and u 1 := u t (0) and considering the time periodic function g defined by Eq. ( 22) as a function on [0, T ] .

To compare u and u , we obtain the following stability result:

Theorem 2 Let T , ν > 0 , n ≥ 2 , s ∈ R + , Ω = R + × R n-1 and I 0 ∈ H s (T t × R n-1 ) .
Then, the following statements are valid.

1. If s ≥ 6 for n = 2 and 3 , or else s 2 > n 2 + 1 , there exists a constant C 0 > 0 such that I 0 H s < C 0 implies the global well-posedness of the Cauchy problem for the KZK equation with the following regularity:

for 0 ≤ k ≤ s 2 I ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )).
Moreover it implies the well-posedness of [START_REF] Kaltenbacher | The Jordan-Moore-Gibson-Thompson equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time[END_REF] with

u ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )), ∂ t u ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )),
or again

u ∈ H 2 (T t , H [ s 2 ] -1 (Ω)) ∩ H 1 (T t , H [ s 2 ] (Ω)). ( 29 
)
The imposed regularity of I 0 (see Table 1) is minimal to ensure that R Kuz-KZK (see Eq. ( 15) for the definition) is in

C([0, +∞[; L 2 (R + × R n-1 )) . 2. If s 2 > n 2 + 2
, taking the same initial data for the exact boundary-value problem for the Kuznetsov equation (28) as for u , i.e.

u(0) = u(0) = c 2 ρ 0 ∂ -1 τ I(- x 1 c , εx 1 , √ εx ′ ) ∈ H [ s 2 ] (Ω), u t (0) = u t (0) = c 2 ρ 0 ∂ τ I(- x 1 c , εx 1 , √ εx ′ ) ∈ H [ s 2 ]-1 (Ω),
there exists C 0 > 0 such that I 0 H s < C 0 implies the well-posedness of the exact Kuznetsov equation ( 28) supplemented with the Dirichlet boundary condition

g = c 2 ρ 0 ∂ -1 τ I 0 ∈ H s (T t × R n-1 ) ⊂ H 7/4 (]0, T [; H [ s 2 ]-2 (∂Ω)) ∩ H 1 (]0, T [; H [ s 2 ]-2+3/2 (∂Ω))
ensuring the regularity

u ∈ H 2 (]0, T [, H [ s 2 ]-1 (Ω)) ∩ H 1 (]0, T [, H [ s 2 ] (Ω)). (30) 
Moreover, there exist constants

K , C , C 1 , C 2 > 0 , all independent of ε , such that for all t ≤ C ε (u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤ C 1 ε 2 te C 2 εt ≤ Kε. (31) 
3. In addition, let u be a solution of the Dirichlet boundary-value problem [START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part I. Analytical comparison[END_REF] for the Kuznetsov equation, with g defined by Eq. ( 22) and with initial data

u 0 ∈ H m+2 (Ω) , u 1 ∈ H m+1 (Ω) for m > n 2 such that (u -u) t (0) 2 L 2 (Ω) + ∇(u -u)(0) 2 L 2 (Ω) ≤ δ 2 ≤ ε 2 . ( 32 
)
Then there exist constants

K , C , C 1 , C 2 > 0 , all independent of ε , such that for all t ≤ C ε (u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤ C 1 (ε 2 t + δ 2 )e C 2 εt ≤ Kε. (33) 
Proof : Let u and g be defined by Eqs. ( 20) and ( 22) respectively by the solution I of the Cauchy problem ( 16) for the KZK equation with

I| z=0 = I 0 ∈ H s (T t × R n-1 )
and s ≥ 6 for n = 2 and 3 , or else s 2 > n 2 + 1 . In this case, u is the global solution of the approximated Kuznetsov system [START_REF] Kaltenbacher | The Jordan-Moore-Gibson-Thompson equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time[END_REF], what is a direct consequence of Theorem 1.2 in Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]. If I 0 ∈ H s (T t × R n-1 ) with the chosen s , then I ∈ C({z > 0}; H s (T τ ×R n-1 )) . But knowing, thanks to estimate [START_REF] Hoff | Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data[END_REF], that ∆ k y I 0 ∈ H s-2k (T t ×R n-1 ) implies also ∂ -k t ∆ k y I 0 ∈ H s-2k (T t ×R n-1 ) for 1 ≤ k ≤ s 2 , the condition in [41, Thm. 1.2, Point 4] is verified and thus we have the following regularity of I on z : for 0

≤ k ≤ s 2 I(τ, z, y) ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )).
As u is defined by [START_REF] Hoff | Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids[END_REF], we deduce (using as previously the notation

Ω 1 = T τ × R n-1 ) u(τ, z, y) and ∂ τ u(τ, z, y) ∈C k ({z > 0}; H s-2k (Ω 1 )), if 0 ≤ k ≤ s 2 , ∂ 2 τ u(τ, z, y) ∈C k ({z > 0}; H s-1-2k (Ω 1 )), if 0 ≤ k ≤ s 2 -1,
but we can also say [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF], thanks to the exponential decay of the solution of the KZK equation on z , that u(τ, z, y) and

∂ τ u(τ, z, y) ∈H k ({z > 0}; H s-2k (Ω 1 )), ∂ 2 τ u(τ, z, y) ∈H k ({z > 0}; H s-1-2k (Ω 1 )
). This implies for the chosen s that

u(t, x 1 , x ′ ) and ∂ t u(t, x 1 , x ′ ) ∈ L 2 (T t ; H [ s 2 ] (Ω)) ∩ H 2 (T t ; H [ s 2 ] -1 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ L 2 (T t ; H [ s 2 ]-1 (Ω)) ∩ H 2 (T t ; H [ s 2 ]-2 (Ω)). Therefore u(t, x 1 , x ′ ) ∈C 1 ([0, +∞[; H [ s 2 ]-1 (Ω), ∂ 2 t u(t, x 1 , x ′ ) ∈C([0, +∞[; H [ s 2 ]-2 (Ω)
. For the chosen s these regularities of u(t, x 1 , x ′ ) give us regularity [START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: Local and global well-posedness; Exponential decay[END_REF] and allow to have all left-hand terms in the approximated Kuznetsov system (27) of the desired regularity, i.e C([0, +∞[; L 2 (Ω)) . In addition for s 2 > n 2 + 2 with the chosen g , u 0 = u(0) and u 1 = u t (0) in the conditions of the theorem we have

u 0 ∈ H [ s 2 ] (Ω), u 1 ∈ H [ s 2 ] -1 (Ω) with g ∈ H s (T t × R n-1 ) and ∂ t g ∈ H s (T t × R n-1 ).
This implies

g ∈ H 7/4 (]0, T [; H [ s 2 ]-2 (∂Ω)) ∩ H 1 (]0, T [; H [ s 2 ]-2+3/2 (∂Ω)) with s 2 -2 > n 2
, as required by Theorem 8 to have the well-posedness of the solution of the Kuznetsov equation u during the time t ∈ [0, T ] associated with system (28). This completes the well-posedness results and we deduce that u have the desired regularity [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF], announced in the theorem. Moreover, we have R Kuz-KZK in C([0, +∞[, L 2 (Ω)).

Let us now prove [START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF] from point 3 as it directly implies estimate (31) from point 2 . We subtract the Kuznetsov equation from the approximated Kuznetsov equation (see system [START_REF] Kaltenbacher | The Jordan-Moore-Gibson-Thompson equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time[END_REF]), multiply by (u -u) t and integrate over Ω to obtain, as in Ref. [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF], the following stability estimate:

1 2 d dt Ω A(t, x) (u -u) 2 t +c 2 (∇(u -u)) 2 dx ≤ Cε sup( u tt L ∞ (Ω) ; ∆u L ∞ (Ω) ; ∇u t L ∞ (Ω) ) • (u -u) t 2 L 2 (Ω) + ∇(u -u) 2 L 2 (Ω) + ε 2 Ω R Kuz-KZK (u -u) t dx,
where 1 2 ≤ A(t, x) ≤ 3 2 for 0 ≤ t ≤ T and x ∈ Ω . By regularity of the solutions, sup(

u tt L ∞ (Ω) ; ∆u L ∞ (Ω) ; ∇u t L ∞ (Ω) ) is bounded in time on [0, T ] . Moreover, we have R Kuz-KZK (t) L 2 (Ω) bounded for t ∈ [0, T ]
by the regularity of u , where R Kuz-KZK is defined in Eq. ( 15). Then after integration on [0, t] , we can write

(u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤3( (u -u) t (0) 2 L 2 (Ω) + ∇(u -u)(0) 2 L 2 (Ω) ) C 1 ε t 0 (u -u) t (s) 2 L 2 (Ω) + ∇(u -u)(s) 2 L 2 (Ω) ds + C 2 ε 2 t 0 (u -u) t (s) 2 L 2 (Ω) + ∇(u -u)(s) 2 L 2 (Ω) ds.
Thanks to [START_REF] Ladyženskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF] we finally find by the Gronwall Lemma that for t ≤ C ε estimate (33) holds true, thereby concluding the proof.

Remark 2 Let us discuss the corresponding approximation results in the inviscid case. We have two approximation results:

1. between the solutions U KZK of the KZK equation and U Euler of the Euler system [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF][START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and nonviscous thermo-elastic media[END_REF] (see [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF]Thm 6.8] for the definitions of U Euler and U KZK ) in a cone

C(T ) = {0 < t < T | T < T 0 ε } × Q ε (t) with Q ε (s) = {x = (x 1 , x ′ ) : |x 1 | ≤ R ε -Ms, M ≥ c, x ′ ∈ R n-1 } and with ∇U Euler L ∞ ([0, T 0 ε [;H s-1 (Qε)) < εC for s > n 2 + 1;
2. between the solutions U Euler of the Euler system and U Kuzn of the Kuznetsov equation [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF] (see [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF]Thm. 6.6] for the definitions of U Euler and U Kuzn ) in [0, T 0 ε [×R n containing C(T ) . Consequently, we obtain the approximation result between the solutions U KZK of the KZK equation and the solutions U Kuzn of the Kuznetsov equation in C(T ) by the triangular inequality:

U Kuzn -U KZK 2 L 2 (Qε(t)) ≤ K(ε 3 t + δ 2 )
e Kεt ≤ 9ε 2 , as soon as (U Kuzn -U KZK )(0) L 2 (Qε(0)) ≤ δ < ε . The initial data are constructed on the initial data I 0 for the KZK equation. More precisely we take I 0 ∈ H s (T τ × R n-1 ) for s > max{10, n 2 + 1}, which ensures in the case of the same initial data

U Kuzn (0) = U KZK (0) = U Euler (0)
the existence with necessary regularity of all solutions: of the KZK equation, of the Euler system and of the Kuznetsov equation. Otherwise, to ensure the boundness and the mini-

mal regularity C([0, T 0 ε [; L 2 (Q ε ))
of the remainder terms it sufficient to impose s ≥ 6 .

3 Approximation of the solutions of the Kuznetsov equation with the solutions of the NPE equation.

Now let us go back to the NPE equation [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and consider its ansatz (see [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF] for the derivation of the NPE equation from the isentropic Navier-Stokes system or the Euler system). In contrast with Eq. ( 12) for the KZK equation, this time the velocity potential is given [START_REF] Rozanova-Pierrat | Approximation of a compressible Navier-Stokes system by non-linear acoustical models[END_REF] by

u(x, t) = Ψ(εt, x 1 -ct, √ ǫx ′ ) = Ψ(τ, z, y). ( 34 
)
Thus we directly obtain from the Kuznetsov equation ( 9) with the paraxial change of variable

τ = εt, z = x 1 -ct, y = √ εx ′ , (35) 
that

∂ 2 t u -c 2 ∆u -ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u = ε -2c∂ 2 τ z Ψ -c 2 ∆ y Ψ + ν ρ 0 c∂ 3 z Ψ + γ + 1 2 c∂ z (∂ z Ψ) 2 + ε 2 R Kuz-N P E with ε 2 R Kuz-N P E =ε 2 ∂ 2 τ Ψ - ν ρ 0 ∂ 2 z ∂ τ Ψ + ν ρ 0 c∆ y ∂ z Ψ -(γ -1)∂ τ Ψ ∂ 2 z Ψ (36) -2(γ -1)∂ z Ψ ∂ 2 τ z Ψ -2∂ z Ψ ∂ 2 τ z Ψ + 2c∇ y Ψ ∇ y ∂ z Ψ + ε 3 - ν ρ 0 ∆ y ∂ τ Ψ + 2 γ -1 c ∂ τ Ψ ∂ 2 τ z Ψ + γ -1 c ∂ z Ψ ∂ 2 τ Ψ -2∇ y Ψ ∇ y ∂ τ Ψ + ε 4 (- γ -1 c 2 ∂ τ Ψ∂ 2 τ Ψ).
We obtain the NPE equation satisfying by ∂ z Ψ modulo a multiplicative constant:

∂ 2 τ z Ψ - γ + 1 4 ∂ z (∂ z Ψ) 2 - ν 2ρ 0 ∂ 3 z Ψ + c 2 ∆ y Ψ = 0.
In the sequel we work with ξ defined by

ξ(τ, z, y) = - ρ 0 c ∂ z Ψ, (37) 
which solves the Cauchy problem for the NPE equation

       ∂ 2 τ z ξ + (γ+1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] -ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0 on R + × T z × R n-1 , ξ(0, z, y) = ξ 0 (z, y) on T z × R n-1 , (38) 
in the class of L-periodic functions with respect to the variable z and with mean value zero along z . The introduction of the operator ∂ -1 z defined similarly to ∂ -1 τ in Eq. ( 18) allows us to consider instead of Eq. ( 11) the following equivalent equation

∂ τ ξ + (γ + 1)c 4ρ 0 ∂ z [(ξ) 2 ] - ν 2ρ 0 ∂ 2 z ξ + c 2 ∂ -1 z ∆ y ξ = 0 on R + × T z × R n-1 .
This time, in comparison with the KZK equation, we use the bijection between this two models (see [START_REF] Dekkers | Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropicsystems[END_REF]). We also update our notation for

Ω 1 = T z × R n-1 y
and take s > n 2 + 1 . Suppose that

ξ 0 ∈ H s+2 (T z × R n-1 y
) and Tz ξ 0 (z, y) dz = 0.

Consequently there exists a constant r > 0 such that if ξ 0 H s+2 (Tz ×R n-1 y ) < r , then, by [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]Thms. 1.1,1.2], there exists a unique solution

ξ ∈ C([0, ∞[; H s+2 (T z × R n-1 y ))
of the NPE Cauchy problem [START_REF] Mcdonald | A tutorial on the nonlinear progressive wave equation (NPE)-part 1[END_REF] satisfying Tz ξ(τ, z, y) dz = 0 for any τ ≥ 0, y ∈ R n-1 .

We define ∂ x 1 u(t, x 1 , x ′ ) := -c ρ 0 ξ(τ, z, y) with the change of variable [START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part II[END_REF] and

u(t, x 1 , x ′ ) = - c ρ 0 ∂ -1 z ξ(τ, z, y) = - c ρ 0 z 0 ξ(τ, s, y)ds + L 0 s L ξ(τ, s, y)ds .
We take

u 1 (x 1 , x ′ ) := ∂ t u(0, x 1 , x ′ ) and u 0 (x 1 , x ′ ) := -c ρ 0 ∂ -1 z ξ 0 (z, y) , which implies u 0 ∈ H s+2 (T x 1 × R n-1 x ′ ) and u 1 ∈ H s (T x 1 × R n-1 x ′ ).
Thus for these initial data there exists

u ∈ C([0, ∞[; H s+1 (T x 1 × R n-1 x ′ )) ∩ C 1 ([0, ∞[; H s (T x 1 × R n-1 x ′ )), the unique solution on T x 1 × R n-1 x ′
of the approximated Kuznetsov system

       u tt -c 2 ∆u -νε∆u t -αεu t u tt -βε∇u∇u t = ε 2 R Kuz-N P E , u(0) = u 0 ∈ H s+2 (T x 1 × R n-1 x ′ ), u t (0) = u 1 ∈ H s+1 (T x 1 × R n-1 x ′ ) (39) 
with R Kuz-N P E defined in Eq. ( 36). If we consider the Cauchy problem

       ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u , u(0) = u 0 , u t (0) = u 1 , (40) 
for the Kuznetsov equation on

T x 1 × R n-1 x ′
with u 0 and u 1 derived from ξ 0 , we have

u 0 H s+2 (Tx 1 ×R n-1 x ′ ) + u 1 H s (Tx 1 ×R n-1 x ′ ) ≤ C ξ 0 H s+2 (Tz ×R n-1 y ) . Hence, if ξ 0 H s+2 (Tz ×R n-1 y
) is small enough [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF], we have a unique bounded in time solu-

tion u ∈ C([0, ∞[; H s+1 (Ω)) ∩ C 1 ([0, ∞[; H s (Ω))
of the Cauchy problem for the Kuznetsov equation [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF].

Theorem 3 For ν ≥ 0 let u and u be the defined above solutions of the exact Cauchy problem [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] and of the approximated Cauchy problem [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] for the Kuznetsov equation on

Ω = T x 1 × R n-1 x ′
respectively. Then for ν > 0 there exist K , C , C 1 , C 2 > 0 such that for all t < C ε estimate ( 31) is valid and in addition it holds Point 3 of Theorem 2. Moreover, if for n ≤ 3 , and ξ 0 ∈ H s (T x 1 × R n-1 ) with s ≥ 4 , then the approximated solution satisfies

u(t, x 1 , x ′ ) ∈ C([0, +∞[; H 4 (Ω)), ∂ t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H 2 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ C([0, +∞[; L 2 (Ω)). If for n ≥ 4 ξ 0 ∈ H s (T x 1 × R n-1 ) with s n 2 + 2 , then the approximated solution satisfies u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s (Ω)), ∂ t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s-2 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s-4 (Ω)). Under these conditions for n ≥ 1 R Kuz-N P E ∈ C([0, +∞[; L 2 (T x 1 × R n-1 )).
For ν = 0 all previous results stay true on a finite time interval [0, T ] .

Proof : For ν > 0 the global existence of u and of u has already been shown. The proof of the approximation estimate follows exactly the proof given for Theorem 2 and thus is omitted. The case ν = 0 implies the same approximation result except that u and u are only locally well posed on an interval [0, T ] .

We can see for n = 2 or 3 , using the previous arguments that the minimum regularity of the initial data (see Table 1) to have the remainder terms

R Kuz-N P E ∈ C([0, +∞[; L 2 (T x 1 × R n-1 )) corresponds to ξ 0 ∈ H s (T x 1 × R n-1 ) with s ≥ 4 , since then for 0 ≤ k ≤ 2 ξ(τ, z, y) ∈ C k ([0, +∞[}; H s-2k (T z × R n-2 )), which finally implies with formula u = -c ρ 0 ∂ -1 z ξ that u(t, x 1 , x ′ ) ∈ C([0, +∞[; H 4 (Ω)), ∂ t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H 2 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ C([0, +∞[; L 2 (Ω)
). In the same way for n ≥ 4 we find the minimal regularity for ξ 0 ∈ H s (Ω) with s > n 2 + 2 as it implies

u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s (Ω)), ∂ t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s-2 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s-4 (Ω)
). The optimality of the previously chosen s also comes from the fact that in Eq. ( 36) the least regular term in R Kuz-N P E is ∂ τ Ψ∂ 2 τ Ψ presenting for both viscous and inviscid cases. Let u be a solution of the Kuznetsov equation ( 9). Similarly as in Ref. [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF] we set

Π = u + 1 2c 2 ε∂ t [u 2 ] (41) 
and obtain

∂ 2 t Π -c 2 ∆Π = ε∂ t ν ρ 0 ∆u + γ + 1 2c 2 (∂ t u) 2 + 1 c 2 u(∂ 2 t -c 2 ∆u) .
By definition (41) of Π we have

∂ 2 t Π -c 2 ∆Π = ε∂ t ν ρ 0 ∆Π + γ + 1 2c 2 (∂ t Π) 2 + ε 2 R Kuz-W es , (42) 
where

ε 2 R Kuz-W es =ε 2 ∂ t - 1 2c 2 ν ρ 0 ∆(u∂ t u) - γ + 1 2c 4 ∂ t u∂ 2 t (u 2 ) + 1 c 2 u∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u + ε 3 ∂ t - γ + 1 8c 6 [∂ 2 t (u 2 )] 2 . ( 43 
)
We recognize the Westervelt equation ( 8) obtained up to remainder terms of order ε 2 .

Approximation of the solutions of the Kuznetsov equation by the solutions of the Westervelt equation

The well-posedness of the Westervelt equation follows directly from [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]. For a solution of the Cauchy problem [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] for the Kuznetsov equation u we define as in Subsection 4.1 Π by Eq. ( 41). Hence Π is the solution of the approximated Cauchy problem for the Westervelt equation ( 42) with the initial data

Π(0) = Π 0 , ∂ t Π(0) = Π 1 , (44) 
defined by

Π 0 =u 0 + 1 c 2 εu 0 u 1 , (45) 
Π 1 =u 1 + 1 c 2 εu 2 1 + 1 c 2 εu 0 ∂ 2 t u(0) (46) 
=u 1 + 1 c 2 εu 2 1 + 1 c 2 εu 0 1 1 -γ-1 c 2 εu 1 c 2 ∆u 0 + ν ρ 0 ε∆u 1 + 2ε∇u 0 ∇u 1
with u 0 and u 1 initial data of the Cauchy problem [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] for the Kuznetsov equation. For s > n 2 and ν > 0 , if we take u 0 ∈ H s+3 (R n ) and u 1 ∈ H s+3 (R 3 ) , we have

Π 0 ∈ H s+3 (R n ) ⊂ H s+2 (R n ) and Π 1 ∈ H s+1 (R n ) with Π 0 H s+2 (R n ) + Π 1 H s+1 (R n ) ≤ C( u 0 H s+3 (R n ) + u 1 H s+3 (R n ) ).
In the inviscid case when ν = 0 , for s > n 2 if we still take

u 0 ∈ H s+3 (R n ) , but u 1 ∈ H s+2 (R 3 ) , we have Π 0 ∈ H s+2 (R n ) and Π 1 ∈ H s+1 (R n ) with the estimate Π 0 H s+2 (R n ) + Π 1 H s+1 (R n ) ≤ C( u 0 H s+3 (R n ) + u 1 H s+2 (R n ) ).
Then, similarly to our previous work [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF], we obtain the following result.

Theorem 4 Let n ≥ 1 and s > n 2 . 1. If ν > 0 , u 0 ∈ H s+3 (R n ) and u 1 ∈ H s+3 (R n ) , then there exists a constant k 2 > 0 such that for u 0 H s+4 (R n ) + u 1 H s+3 (R n ) < k 2 , (47) 
the exact Cauchy problem for the Westervelt equation

       ∂ 2 t Π -c 2 ∆Π = ε∂ t ν ρ 0 ∆Π + γ+1 2c 2 (∂ t Π) 2 , Π(0) = Π 0 , ∂ t Π(0) = Π 1 (48) 
with Π 0 and Π 1 defined by Eqs. ( 45) and [START_REF] Sideris | The lifespan of 3 D compressible flow[END_REF], has a unique global in time solution

Π ∈ H 2 (]0, +∞[, H s (R n )) ∩ H 1 (]0, +∞[, H s+2 (R n )) (49) and if s ≥ 1 Π ∈ C([0, +∞[, H s+2 (R n )) ∩ C 1 ([0, +∞[, H s+1 (R n )) ∩ C 2 ([0, +∞[, H s-1 (R n )) (50) 
Moreover, Π , obtained from the solution u of the Kuznetsov equation with Eq. ( 41), is the unique global in time solution of the approximated Cauchy problem [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and nonviscous thermo-elastic media[END_REF], [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF] with the same regularity as Π .

Let

ν = 0 , u 0 ∈ H s+3 (R n ) and u 1 ∈ H s+2 (R n ) . Then there exists a constant k 2 > 0 such that if u 0 H s+3 (R n ) + u 1 H s+2 (R n ) < k 2 , (51) 
then the Cauchy problem [START_REF] Sukhinin | On the solvability of the nonlinear stationary transport equation[END_REF] for the Westervelt equation with Π 0 and Π 1 , defined by Eqs. ( 45) and [START_REF] Sideris | The lifespan of 3 D compressible flow[END_REF], has a unique solution on all finite time interval [0, T ]

Π ∈ C([0, T ], H s+2 (R n )) ∩ C 1 ([0, T ], H s+1 (R n )) ∩ C 2 ([0, T ], H s (R n )). (52) 
Moreover, Π , defined by Eq. ( 41), is the unique local in time solution of the approximated Cauchy problem [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and nonviscous thermo-elastic media[END_REF], [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF] with the same regularity as Π .

For Π , solution of the Cauchy problem for the Westervelt equation ( 48), we set u such that

Π = u + ε c 2 u∂ t u (53) 
and we obtain

∂ 2 t u -c 2 ∆u -ε ν ρ 0 ∆∂ t u -ε γ -1 c 2 ∂ t u∂ 2 t u -2ε∇u.∇∂ t u +ε 1 c 2 ∂ t u∂ 2 t u -∂ t u∆u + 1 c 2 u∂ 3 t u -u∆∂ t u = ε 2 R 1,W es-Kuz with R 1,W es-Kuz = ν ρ 0 c 2 (2∂ t u∆∂ t u + 2(∇∂ t u) 2 + ∂ 2 t u∆u + u∆∂ 2 t + 2∇u.∇∂ 2 t u) + γ + 1 c 4 ((∂ t u) 2 + u∂ 2 t u)∂ 2 t u + γ + 1 c 4 (3∂ t u∂ 2 t u + u∂ 3 t u)∂ t u +ε γ + 1 c 6 ((∂ t u) 2 + u∂ 2 t u)(3∂ t u∂ 2 t u + u∂ 3 t u).

And as

∂ 2 t u -c 2 ∆u = O(ε), by inserting this in the term 1 c 2 ∂ t u∂ 2 t u -∂ t u∆u + 1 c 2 u∂ 3 t u -εu∆∂ t u we obtain ∂ 2 t u -c 2 ∆u -ε ν ρ 0 ∆∂ t u -ε γ -1 c 2 ∂ t u∂ 2 t u -2ε∇u.∇∂ t u = ε 2 R W es-Kuz (54) 
with

ε 2 R W es-Kuz = ε 2 R 1,W es-Kuz -ε 1 c 2 ∂ t u∂ 2 t u -∂ t u∆u + 1 c 2 u∂ 3 t u -u∆∂ t u .
Now we can write the following result for the approximation of the Kuznetsov equation by the Westervelt equation.

Theorem 5 Let n ≥ 2 , s > n 2 with s ≥ 1 and ν ≥ 0 . Let u 0 ∈ H s+3 (R n ) and u 1 ∈ H s+3 (R n ) if ν > 0 and let u 1 ∈ H s+2 (R n ) if ν =
0 be small enough in the sense of the existence of Π the solution of the Cauchy problem for the Westervelt equation ( 48) with Π 0 and Π 1 defined by Eqs. [START_REF] Sideris | The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF] and [START_REF] Sideris | The lifespan of 3 D compressible flow[END_REF]. Let u be defined by (53).

Consequently u is a solution of the approximated Kuznetsov equation (54) with u(0) = u 0 , ∂ t u(0) = u 1 . If the initial data for u , the solution of the Cauchy problem (40) for the Kuznetsov equation, and for u satisfy (32), there exist K , C , C 1 , C 2 > 0 , all independent of ε , such that for all t ≤ C ε it holds estimate [START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF]. Proof : The existence of u and u has already been shown in [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF] and given in Theorem 4. The proof of the approximation estimate follows exactly the proof of Theorem 2 and hence it is omitted. The regularity on u 0 and u 1 (see expressions of u 0 and u 1 in Table 1) is minimal to ensure that R W es-Kuz (see Eq. ( 54)) is in C([0, +∞[; L 2 (R n )) . Indeed, with Π 0 and Π 1 defined by Eqs. [START_REF] Sideris | The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF] and [START_REF] Sideris | The lifespan of 3 D compressible flow[END_REF] it is necessary to impose these regularities in order to have the well-posedness of Π with the same regularity as in Theorem 4.

Lemma 1 Let n ∈ N * and s ≥ 0 . There exists a unique solution of the periodic in time boundary value problem for the linear strongly damped wave equation ( 56)

u ∈ X = u ∈ H 2 (T t ; H s (Ω)) ∩ H 1 (T t ; H s+2 (Ω))| Tt u(s, x) ds = 0 ∀x ∈ Ω (59)
if and only if f and g satisfy

f ∈ L 2 (T t ; H s (Ω)) and g ∈ F T = H 7 4 (T t ; H s (∂Ω)) ∩ H 1 (T t ; H s+ 3 2 (∂Ω)) (60) 
along with (58). Moreover the following stability estimate holds

u X ≤ C( f L 2 (Tt;H s (Ω)) + g F T ).
Here H 2 (T t ; H s (Ω)) ∩ H 1 (T t ; H s+2 (Ω)) is endowed with its usual norm denoted here and in the sequel by . X .

To prove the global well-posedness of the periodic in time boundary value problem ( 21) for the Kuznetsov equation we use its boundary condition as the initial condition of the corresponding Cauchy problem in R n and we combine the maximal regularity result for system (56) with [48, 1.5 Cor., p. 368] (see also [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]Thm. 4.2]) applying the same method as previously done for the Cauchy problem associated with the Kuznetsov equation [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF].

Theorem 7 Let ν > 0 , n ∈ N * and s > n 2 .
Let X be defined by ( 59 ) and the boundary condition g ∈ F T be defined by (60) and in addition, let g be of mean value zero (see Eq. ( 58)).

Then there exist r * = O(1) and C 1 = O(1) such that for all r ∈ [0, r * [ , if g F T ≤

√ νε C 1 r, there exists a unique solution u ∈ X of the periodic problem [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] for the Kuznetsov equation such that u X ≤ 2r .

Proof : For g ∈ F T defined in (60) and satisfying (58), let us denote by u * ∈ X the unique solution of the linear problem (56) with f = 0 and g ∈ F T . In addition, according to Theorem 1, we take X defined in (59), this time for s > n

2

(we need this regularity to control the non-linear terms), and introduce the Banach spaces

X 0 := {u ∈ X| u| ∂Ω = 0 on T t × ∂Ω} (61) 
and

Y = f ∈ L 2 (T t ; H s (Ω))| Tt f (s, x) ds = 0 ∀x ∈ Ω .
Then by Lemma 1, the linear operator

L : X 0 → Y, u ∈ X 0 → L(u) := u tt -c 2 ∆u -νε∆u t ∈ Y,
is a bi-continuous isomorphism.

Let us now notice that if v is the unique solution of the non-linear Dirichlet problem

               v tt -c 2 ∆v -νε∆v t = αε(v + u * ) t (v + u * ) tt on T t × Ω, +βε∇(v + u * ).∇(v + u * ) t v = 0 on T t × ∂Ω, (62) 
then u = v + u * is the unique solution of the periodic problem [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF]. Let us prove the existence of a such v , using [48, 1.5 Cor., p. 368]. We suppose that u * X ≤ r and define for v ∈ X 0

Φ(v) := αε(v + u * ) t (v + u * ) tt + βε∇(v + u * ).∇(v + u * ) t .
For w and z in X 0 such that w X ≤ r and z X ≤ r , we estimate the norm Φ(w) -Φ(z) Y . By applying the triangular inequality we have

Φ(w) -Φ(z) Y ≤ αε u * t (w -z) tt Y + (w -z) t u * tt Y + w t (w -z) tt Y + (w -z) t z tt Y + βε ∇u * ∇(w -z) t Y + ∇(w -z)∇u * t Y + ∇w∇(w -z) t Y + ∇(w -z)∇z t Y .
Now, for all a and b in X with s ≥ s 0 > n 2 it holds

a t b tt Y ≤ a t L ∞ (Tt×Ω) b tt Y ≤C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) a t H 1 (Tt;H s 0 (Ω)) b X ≤C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) a X b X ,
where C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) is the embedding constant of H 1 (T t ; H s 0 (Ω)) in L ∞ (T t × Ω) , independent of s , but depending only on the dimension n . In the same way, for all a and b in X it holds

∇a∇b t Y ≤ C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) a X b X .
Taking a and b equal to u * , w , z or w -z , as u * X ≤ r , w X ≤ r and z X ≤ r , we obtain Φ(w) -Φ(z) Y ≤ 4(α + β)C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) εr w -z X .

By the fact that L is a bi-continuous isomorphism, there exists a minimal constant C ε = O 1 εν > 0 , coming from the inequality

C 0 εν u 2 X ≤ f Y u X
for u , a solution of the linear problem (56) with homogeneous boundary data (for a maximal constant C 0 = O(1) > 0 ) such that

u X ≤ C ε Lu Y ∀u ∈ X 0 .
Hence, for all f ∈ Y P LU X 0 (f )

≤ C ε P U Y (f ) = C ε f Y .
Then we find for w and z in X 0 , such that w X ≤ r , z X ≤ r , and also for u * X ≤ r , that with the notation Θ(r) := 4C ε (α + β)C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) εr it holds P LU X 0 (Φ(w) -Φ(z)) ≤ Θ(r) w -z X .

Thus we apply [48, 1.5 Cor., p. 368] with f (x) = L(x) -Φ(x) and x 0 = 0 . Therefore, knowing that C ε = C 0 εν , we have, that for all r ∈ [0, r * [ with r * = ν 4C 0 (α + β)C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω)

= O(1),

for all y ∈ Φ(0) + w(r)LU X 0 ⊂ Y with

w(r) = r -2 C 0 ν C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) (α + β)r 2 ,
there exists a unique v ∈ 0 + rU X 0 such that L(v) -Φ(v) = y . Since we are seeking v , which solves the non-linear problem (62), we need to impose y = 0 , i.e. that v be the solution of the non-linear problem (62), then we need to impose y = 0 and thus, to ensure that 0 ∈ Φ(0) + w(r)LU X 0 .

Since -1 w(r) Φ(0) is an element of Y and LX 0 = Y , there exists a unique z ∈ X 0 such that Lz = -1 w(r) Φ(0).

Let us show that z X ≤ 1 , what will implies that 0 ∈ Φ(0) + w(r)LU X 0 . Noticing that is bounded and surjective by [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]Lem. 3.5]. For the compatibility condition, thanks to [START_REF] Blasio | Linear parabolic evolution equations in L p -spaces[END_REF]Lem. 11], we also know that the temporal trace T r t=0 : g → g| t=0 , considered as a map H 3/4 (R + ; H s (∂Ω)) ∩ L 2 (R + ; H s+3/2 (∂Ω)) → H s+1/2 (∂Ω),

Φ(0) Y ≤ αε v t v tt Y + βε ∇v∇v t Y ≤ (α + β)εC
is well defined and bounded. Moreover, the spatial trace

H s+1/2 (Ω) → H s (∂Ω) (71) 
is bounded by [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]Thm. 1.5.1.1].

To obtain uniqueness, let w be a solution to (68) with g = 0 . Since w t solves the heat problem with homogeneous data, we obtain w t = 0 and therefore also w = 0 by the initial condition w(0) = 0 . The stability estimate follows from the closed graph theorem.

Let us prove Lemma 2: Proof : We obtain the uniqueness of the solution of the boundary value problem for the linear strongly damped equation (66) from the fact that in the case g = 0 we can consider -∆ as a self-adjoint and non negative operator with homogeneous Dirichlet boundary conditions and we can use [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF].

To verify the necessity of the conditions on the data, we suppose that u ∈ E (see Eq. ( 65) for the definition of E ) is a solution of (66). Then u, u t ∈ H 1 (R + ; H s (Ω)) ∩ L 2 (R + ; H s+2 (Ω)) and thus f ∈ L 2 (R + ; H s (Ω)).

Taking as in the previous proof the spatial trace T r ∂Ω as in Eq. (69) we have g, g t ∈ H 3/4 (R + ; H s (∂Ω)) ∩ L 2 (R + ; H s+3/2 (∂Ω)), which implies g ∈ F R + .

By the Sobolev embedding H 1 (R + ; H s+2 (Ω)) ֒→ C(R + ; H s+2 (Ω)) , it follows that u 0 ∈ H s+2 (Ω) and we also have the temporal trace u → u| t=0 : H 1 (R + ; H s (Ω)) ∩ L 2 (R + ; H s+2 (Ω)) → H s+1 (Ω) by [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]Lem. 3.7]. Following the proof of Lemma 3, we use Eqs. ( 70) and (71) to obtain the compatibility conditions.

It remains to prove the sufficiency of the conditions. We extend u 0 , u 1 and f in odd functions among x 1 on R n so that we have

ũ0 ∈ H s+2 (R n ), ũ1 ∈ H s+1 (R n ) and f ∈ L 2 (R + ; H s (R n )).

Considering the non homogeneous linear Cauchy problem

       ũtt -c 2 ∆ũ -νε∆ũ t = f in R + × R n , ũ(0) = ũ0 , ũt (0) = ũ0 in R n ,
by [START_REF] Dekkers | Cauchy problem for the Kuznetsov equation[END_REF]Thm. 4.1] we obtain the existence of its unique solution ũ ∈ H 2 (R + ; H s (R n )) ∩ H 1 (R + ; H s+2 (R n )).
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 12 Tt;H s 0 (Ω))→L ∞ (Tt×Ω) v (α + β)εC H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) r 2and using (64) we findz X ≤ C ε Lz Y = C ε Φ(0) Y w(r) ≤ C ε C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) (α + β)εr (1 -2C ε C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) (α + β)εr) < 1 2 ,
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A Well posedness of the Kuznetsov equation in the half space.

We establish here the well posedness results for the Kuznetsov equation in the framework of the KZK-approximation considered in Subsection 2.2. For two type of approximations we need two different well posedness results.

A.1 Periodic boundary problem.

Let us consider the following periodic in time problem for the Kuznetsov equation in the half space Ω = R + × R n-1 with periodic in time Dirichlet boundary conditions given by [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF], where g is an L -periodic in time and of mean value zero function. To show the well-posedness of problem [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] we study the maximal regularity of the associated linear operator and then use an equivalent to the fixed point theorem. Using [9, Lem. 3.5 p. 13],

we directly obtain the following result of maximal regularity:

of the following periodic boundary value problem

if and only if the functions f and g satisfy

and are of mean value zero:

Moreover, the following stability estimate holds

.

Proof : On one hand, if f and g satisfy (57)-(58), the necessity of the conditions is shown in Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF]. On the other hand, the conditions (57)-( 58) are sufficient by a direct application of the trace theorems recalled in Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF] pp. 6-7 and proved in Ref. [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF] Section 3 for example. The results of Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF] allow to see that Theorem 6 does not depend on n , moreover if we look at the case p = 2 the linearity of the operator ∂ 2 t -c 2 ∆ -ν∆∂ t from Eq. ( 56) implies that we can work with H s (Ω) instead of L 2 (Ω) : as soon as r < r * .

Consequently, z ∈ U X 0 and Φ(0) + w(r)Lz = 0 . Then we conclude that for all r ∈ [0, r * [ , if u * X ≤ r , there exists a unique v ∈ rU X 0 such that L(v) -Φ(v) = 0 , i.e. v is the solution of the non-linear problem (62). Thanks to the maximal regularity and a priori estimate following from Theorem 1 with f = 0 , there exists a constant

Thus, for all r ∈ [0, r * [ and g F T ≤

√ νε C 1 r , the function u = u * + v ∈ X is the unique solution of the time periodic problem for the Kuznetsov equation and u X ≤ 2r .

A.2 Initial boundary value problem.

We still work on Ω = R + × R n-1 and we study the initial boundary value problem for the Kuznetsov equation on this space, i.e. the perturbation of an imposed initial condition by a source on the boundary, which in Subsection 2.2.2 was determined by the solution of the KZK equation. Lemma 2 Let s ≥ 0 , n ∈ N . There exists a unique solution

of the linear problem

if and only if the data satisfy the following conditions

• for the boundary condition

• u 0 ∈ H s+2 (Ω) and u 1 ∈ H s+1 (Ω) ,

• g(0) = u 0 and g t (0) = u 1 on ∂Ω in the trace sense.

In addition, the solution satisfies the stability estimate

In order to prove this result we will use the following lemma to remove the inhomogeneity g .

Lemma 3

Let s ≥ 0 , n ∈ N and E defined in (65). There exists a unique solution w ∈ E of the following linear problem

if and only if g ∈ F R + (the space F R + is defined in (67)) and it holds the following compatibility conditions:

for all x ∈ ∂Ω , g(0) = 0 and g t (0) = 0 . Moreover, the solution w satisfies the stability estimate

Proof : First we prove the sufficiency. By assumption (67), we have

Thanks to § 3 in Ref. [32, p. 288], we obtain a unique solution

of the parabolic problem

Next we define for t ∈ R + and x ∈ Ω the function

We have w(0) = 0 and w t (0) = 0 . Moreover, it satisfies

as g(0) = 0 . Therefore, w is a solution of problem (68). The necessity follows from the spatial trace theorem ensuring that the trace operator T r ∂Ω : u → u| ∂Ω , considering as a map

Let u ∈ E , denote the restriction of ũ to Ω and let g := g -u| ∂Ω . By the spatial trace theorem u| ∂Ω ∈ F R + , and hence g ∈ F R + . Then the solution u of the non homogeneous linear problem (66) is given by u = v + u , where v solves problem (66) with f = u 0 = u 1 = 0 and g = g . >From Lemma 3 we have a unique solution v ∈ E u of problem (68) with g = g . Then the function w := v -v solves the following system

which thanks to [15, Thm. 2.6] has a unique solution w ∈ E defined in (65). The function u := w + v + u is the desired solution of system (66) and the stability estimate follows from the closed graph theorem. This concludes the proof of Lemma 2.

The next theorem follows from the maximal regularity result of Lemma 2 and of [48, 1.5. Cor., p. 368]. Its proof is similar to the proof of Theorem 7 and hence is omitted.