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Summary

• Objective: Automatically evaluate the customer satisfaction from
conversation logs.

• Data: Contact center chat conversations and the customers’ satis-
faction surveys.

• Method: Comparison of different classification schemes: 3-labels,
2 × 2-labels or 2-labels multitask classification. Definition of the
Serious Error Rate metric to focus on problematic confusions.

• Results: Considering the classification of extreme opinions as two
distinct tasks greatly improves the results on the neutral class.

Task and Motivations
Task: Evaluate the customer satisfaction from the logs of a human-

human conversation.

Possible evaluations: Direct supervision using surveys filled by the cus-
tomers themselves and indirect supervision by experts.

Problem: Customer surveys are not mandatory and experts can’t eval-
uate every conversation.

Question: Can we retrieve directly from conversation logs such subjec-
tive opinions as the Net Promoter Score ?

Orange conversation corpus
Chat data description:

• Technical and commercial assistance;

• 79,000 conversations with completed surveys;

• 140,000 unique tokens;

• Word Error Rate of 4.3% overall (10.1% for the Customers, 1.6%
for the Agents)

Customer surveys

How likely would you be to recommend us 
to your family and friends ?
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Following Customer Relationship Management conventions, apprecia-
tions are grouped into 3 categories: detractor, passive and promoter.
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Only used with neural networks classifiers

Goal: Avoid confusions between detractors and promoters.

Classifiers
Different classification methods that consider dialogues differently:

• Support-Vector Machine (SVM);

• Convolutional Neural Network (CNN);

• Long-Short Term Memory network with attention (RNN).

Evaluation metrics
Use of 3 different metrics:

• Accuracy: #correct predictions
#samples ;

• F1-score: F1(l) = 2×Precision(l)×Recall(l)
Precision(l)+Recall(l) ;

• Serious Error Rate: Percentage of confusion between the De-
tractor and the Promoter classes.

Results
Model Accuracy Serious Error Rate

3-labels classification scheme
majority class 42.7 30.9
SVM 56.9 14.7
CNN 57.5 15.5
RNN 57.5 15.8

2-labels+reject classification scheme
SVM 2x2 labels 52.7 6.2
CNN 2x2 labels 55.2 7.7
CNN 2 labels multitask 55.0 7.6
RNN 2x2 labels 53.5 6.5
RNN 2 labels multitask 53.5 6.5
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2-labels schemes greatly improve the prediction of the passive class and
greatly reduce confusions between extreme classes.

Contrastive experiment
Reducing the lexicon size to evaluate domain robustness:
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Lexicon size

Lexicon reduced by selecting words occuring at least 10K to 100K times.
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