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SUBLINEAR QUASICONFORMALITY AND THE LARGE-SCALE

GEOMETRY OF HEINTZE GROUPS

GABRIEL PALLIER

Abstract. This article analyzes sublinearly quasisymmetric homeomorphisms
(generalized quasisymmetric mappings), and draws applications to the sublin-
ear large-scale geometry of negatively curved groups and spaces. It is proven
that those homeomorphisms lack analytical properties but preserve a confor-
mal dimension and appropriate function spaces, distinguishing certain (non-
symmetric) Riemannian negatively curved homogeneous spaces, and Fuchsian
buildings, up to sublinearly biLipschitz equivalence (generalized quasiisome-
try).

An embedding f between metric spaces is quasisymmetric if there is an increasing
homeomorphism η : [0,+∞) → [0,+∞) such that for any x, y, z in the source space
and positive real t,

(0.1) d(x, y) 6 td(x, z) =⇒ d(f(x), f(y)) 6 η(t)d(f(x), f(z)).

The properties of sufficiently well-behaved compact metric spaces that are invariant
under quasisymmetric homeomorphisms are known to be counterparts of the coarse
(or quasiisometrically invariant) properties of proper geodesic Gromov-hyperbolic
spaces, the two categories being related by the Gromov boundary and hyper-
bolic cone functors ([BS00], [Roe03, 2.5]). Instances are the conformal dimension
[Pan89c] and the ℓp or Lp cohomology [BP03].

This paper is part of our aim to transpose this equivalence by replacing quasi-
isometries with sublinearly biLipschitz equivalences, which originated from the work
of Cornulier on the asymptotic cones of connected Lie groups1 [Cor08]. Here the
sublinear feature is described by an asymptotic class O(u), where u is a strictly sub-
linear nondecreasing positive function on the half line such that lim supr u(2r)/u(r) <
+∞, e.g. u(r) = log r (we call such a function admissible).

In previous work the Gromov-boundary behavior of sublinearly biLipschitz equiv-
alences between Gromov-hyperbolic spaces was characterized [Pal18, Theorem 1]. It
differs from that of quasisymmetric homeomorphisms sublinearly in a certain sense;
we shall indicate how in 1.2. The purpose of the present paper is to push further the
analysis of those boundary mappings and identify the structure preserved on the
boundary. A numerical invariant is derived. It is denoted by CdimO(u); Pansu’s
conformal dimension introduced in [Pan89c, 3] and usually denoted Cdim corre-
sponds to CdimO(1). We compute this invariant and prove that it equals Cdim
on the examples originally studied by Pansu and Bourdon (that we recall below).

Date: January 24, 2020.
2010 Mathematics Subject Classification. Primary 20F67, 30L10; Secondary 20F69, 53C23,

53C30, 22E25.
1Beware that we use the terminology of [Cor17].
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Certain function spaces of locally bounded p-variation, that are carried by sublin-
early quasisymmetric mappings up to shifts in parameters, are also constructed.
These functions are invariant along foliations in the boundary; the dependence of
this invariance with respect to p provides further invariants. This latter approach
is inspired from Bourdon [Bou07, p.248], Bourdon-Kleiner [BK13, Section 10] and
Carrasco Piaggio [CP17, p.465] (with different functional spaces). Functions of
bounded p-variation were also used in Xie’s work [Xie14] on a problem close to ours
that we will mention below.

A purely real Heintze group is a simply connected solvable group which splits
as an extension of R by its nilradical N , associated to ρ : R → Aut(Lie(N))
with positive real roots. From such a group S one can make another one, denoted
S∞, by forgetting the unipotent part of ρ. Since the nilradical of S is uniformly
exponentially distorted, following Cornulier one can prove that this does not alter
the logarithmic sublinear large-scale structure (see [Cor11, Th 1.2] recalled here in
3.1.1). We prove a partial converse.

Theorem. Let S and S′ be purely real Heintze groups with abelian nilradicals. Let
u be any sublinear, admissible function. If S and S′ are O(u)-sublinearly biLipschitz
equivalent then S∞ and S′

∞ are isomorphic.

This answers positively to Cornulier [Cor17, 1.16(1)] who raised the question
for dimS = 3. For comparison, it is known that two purely real Heintze groups
with abelian nilradicals are quasiisometric if and only if they are isomorphic by the
work of Xie [Xie14] (also obtained by Carrasco Piaggio [CP17, 1.10]). In the vein
of conjecture [Cor18, 6C2], we ask:

Question. Let S and S′ be purely real Heintze group. Assume that S and S′ are
sublinearly biLipschitz equivalent. Are S∞ and S′

∞ isomorphic?

A positive answer would imply the previous theorem as well as [Pal18, Theorem
2]. The classification problem can be motivated beyond Lie groups by the fact that
the purely real Heintze groups are known to parametrize other objects:

• The commability2 classes of compactly generated locally compact groups
that are hyperbolic with a topological sphere at infinity [Cor15, 5.16].

• Together with orbits of scalar products, the connected Riemannian nega-
tively curved homogeneous spaces [Hei74] [GW88, Corollary 5.3].

Unlike Heintze groups, hyperbolic buildings become rare in large dimension [GP01].
The two-dimensional case displays a vast subfamily with local finiteness properties,
that of Fuchsian buildings, for which the dimension at infinity Cdim ∂∞ is known:
it was computed by Bourdon in 1997 [Bou97] for some of them and 2000 in full
generality [Bou00]. We check that CdimO(u) ∂∞ equals the former in this case,
distinguishing pairs of Fuchsian buildings up to sublinear biLipschitz equivalence.
Here is the statement for the Bourdon buildings.

Proposition (Strengthening of [Bou97, Théorème 1.1]). Let p, q ∈ Z with p > 5
and q > 2. Let Ipq be a Bourdon building (that is, a right-angled Fuchsian building

2Namely, to such a group G one can associate the purely real core of the unique focal-universal
group commable to G. Commability is a variant of weak commensurability adapted to the locally
compact setting, see [Cor15]. For the definition of a hyperbolic locally compact group we refer
the reader to [CC+15].
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with constant thickness q). For all strictly sublinear admissible u,

(0.2) CdimO(u) ∂∞Ipq = CdimO(1) ∂∞Ipq = 1+
log(q − 1)

argch((p− 2)/2)
.

Conventions, notation. Through all the paper, u : R>0 → R>1 is a nondecreasing,
strictly sublinear, doubling function, i.e. u(r) ≪ r as r → +∞ and supr u(2r)/u(r) <
+∞. Examples are: u(r) = sup(1, rγ) with 0 6 γ < 1 and u(r) = sup(1, log(r)).

Acknowledgement. This work is part of the author’s PhD thesis. The author thanks
his advisor Pierre Pansu for his long-time support and patience, Yves Cornulier
for raising questions and pointing out [DS07], John Mackay for his interest and
providing references, Pierre Boutaud, Arnaud Durand, and Anthony Genevois for
useful discussions, Peter Häıssinsky for numerous remarks and corrections on the
text.

1. Sublinear quasiconformality

1.1. O(u)-quasisymmetric structures. The notion of a quasisymmetric struc-
ture is a reformulation of that of a space with a quasidistance, where the emphasis
is made on balls, their inclusion relations and relative sizes, rather than on a given
quasidistance function. Related notions are: b-metric topological spaces [Mar91,
IV.1], Margulis structures [GP91, p.62].

1.1.1. Definition.

Definition 1.1 (Compare3 [Pan89c, 1.1 and 2.7] for u = 1). Let Z be a set. A
O(u)-quasisymmetric structure on Z is a set β of abstract balls4 together with

a realization map β → P(Z) \ {∅}, b 7→ b̂, a map δ : β → Z and a shift map
Z>0 × β → β, (k, b) 7→ k.b such that

(SC0) The shift is an action and δ is equivariant with respect to the shift: ∀k, k′ ∈
Z>0, k

′.k.b = (k′ + k).b and ∀k ∈ Z, ∀b ∈ β, δ(k.b) = δ(b)− k.
(SC1) ∀k ∈ Z>0, ∀b, b

′ ∈ β,

(i) k̂.b ⊇ b̂

(ii) if b̂ ⊆ b̂′ then k̂.b ⊆ k̂.b′

(iii) if δ(b) < δ(b′) then b̂ * b̂′.
(SC2) There exists n0 ∈ Z>0 and a function q : Z>n0

→ Z>0, q = O(u) and such
that

∀b, b′ ∈ β,
(
n0 6 δ(b) 6 δ(b′), b̂ ∩ b̂′ 6= ∅

)
=⇒ ̂q(δ(b)).b ⊃ b̂′.

(SC3) ∀x ∈ Z, ∀y ∈ Z \ {x}, ∀n ∈ Z, ∃b ∈ β : δ(b) > n, x ∈ b̂, y /∈ b̂.

Example 1.2 (Space with a quasidistance). Recall that a quasidistance on a set
Z is a kernel ̺ : Z ×Z → R with the axioms of a distance, the triangle inequality
being replaced by

(△K) ∀(x, y, z) ∈ Z3, ̺(x, z) 6 K (̺(x, y) ∨ ̺(y, z))

3In [Pan89c, 1.1 and 2.7] they are called “bonnes structures quasiconformes”. The “bonne”
axiom is a disguised form of the quasi-triangle inequality, here (SC2).

4This formalism is here to avoid referring directly to centers and radii, which are preferable to
diameters, but may not be uniquely defined. The notion of a constituent (see [Edg01, Definition
2]) circumvents the problem of radii, but it still makes use of centers.
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where K ∈ R>1 is a constant and ∨ denotes the binary function “max”. Given a
dense5 subspace (to be thought of as a set of centers) X ⊆ Z, a quasidistance gives
to Z a O(1)-quasisymmetric structure in which β = X × Z and for b = (x, n) in

β and k ∈ Z, δ(b) = n, k.b = (x, n − k) and b̂ = {z ∈ Z : ̺(x, z) 6 e−n}. (△K) is
responsible for (SC2) with q = K2, the separation axiom for (SC3).

Example 1.3. Z = R and β is R×Z; for b = (x, n), δ(b) = −n. For all b = (s, n)

in β, b̂ = s+ e−n[0, 1] (One can replace [0, 1] by any bounded closed interval). One

can take q = 3/2 in (SC2). The shift is such that k̂.b = ek b̂.

It turns out that once Z is endowed with a sublinear quasisymmetric structure,
Z is also equipped with the structure (and especially the topology) of a uniform
space, that is a weakening of a metric structure in a sense that we recall in the
statement below.

Proposition 1.4. Let (Z, β, q, δ) be a O(u)-quasisymmetric structure. For all n ∈
Z, define

En =
⋃

b∈β:δ(b)>n

b̂ × b̂.

Then En forms a fundamental system of entourages, endowing Z with a uniform
structure, i.e. (denoting ∆ the diagonal in Z × Z):

(U’I) ∩nEn = ∆
(U’II) for every n,m there is p such that Ep ⊂ En ∩ Em

(U’III) for every n there is m such that

(E2
m ⊂ En) ∀x, y, z ∈ Z, {(x, y)} ∪ {(y, z)} ⊂ Em =⇒ (x, z) ∈ En.

(See [Wei37, p.8] for the original set of axioms (U’) and equivalent ones; we use
a slight simplification of (U’III) in view of the fact that the En are stable under
(x, y) 7→ (y, x).)

Proof. (U’I) follows from (SC3) and (U’II) from the definition, setting p = n ∨m.
To check (U’III), letting n ∈ Z one needs to find m ∈ Z such that (E2

m ⊂ En) holds.
This can be rephrased as follows: for any pair of distinct x, y ∈ Z, set

̺(x, y) = exp (− inf {δ(b) : b ∈ β, {x} ∪ {y} ⊂ b})

and ̺(x, x) = 0. Especially (x, y) ∈ En ⇐⇒ − log ̺(x, y) > n. Then for all
x, y, z ∈ Z3

(△O(u)) ̺(x, z) 6 ev(inf{− log ̺(x,y),− log ̺(y,z)}) [̺(x, y) ∨ ̺(y, z)]

where v = O(u) (one may take v(n) = q(n) at least for n > n0). Set m0 = 2n ∨

2 sup
{
m′ ∈ Z>0 : v(m′) > m′

2

}
. Then for every m > m0, m− v(m) > m−m/2 =

m/2 > n. (E2
m ⊂ En) is achieved. �

If (Z, β) is as above, the topology is defined on Z by declaring Ω ⊂ Z open if for
every x ∈ Ω there is n ∈ Z such that for all y ∈ Z, (x, y) ∈ En implies y ∈ Ω.

5A quasidistance induces a topology, see [PR18, 1.99].
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Remark 1.5. An open subspace Ω of a O(u)-quasisymmetric structure (Z, β) inher-
its a O(u)-quasisymmetric structure (Ω, β|Ω) where

β|Ω =
{
b ∈ β : ∀k ∈ Z>0, k̂.b ∩ Ω 6= ∅

}
,

the shift is restricted to β|Ω, and the realization is b̂|Ω = b̂ ∩ Ω.

1.1.2. Hyperbolic cones and sublinear large-scale geometry. The boundary of a Gromov-
hyperbolic space has a Margulis structure, see e.g. [GP91]; further, the boundary
construction can be reversed as suggested by M.Gromov [Gro87, 1.8.A(b)] and
elaborated by M. Bonk and O. Schramm ([BS00, § 7], see also [Pau96]), so that in
the current formalism any O(1)-quasisymmetric structure occurs at the boundary
of a Gromov-hyperbolic space6. It is a classical fact that quasiisometries between
Gromov hyperbolic groups extend to biHölder, quasisymmetric homeomorphism
between their boundaries, i.e. they do so in a way that preserves the features of the
O(1)-quasisymmetric structure. This paper is rather concerned with sublinearly
biLipschitz maps, for which we recall the definition:

Definition 1.6 (Cornulier, [Cor17]). Let (Y, o) and (Y ′, o′) be metric spaces. A
O(u)-sublinearly biLipschitz equivalence (SBE) is a map f : Y → Y ′ for which
there exists λ ∈ R>1 and v = O(u) such that

(1) ∀y1, y2 ∈ Y, 1
λd(y1, y2)− v(sup{d(o, y1), d(o, y2)}) 6 d(f(y1), f(y2))

(2) ∀y1, y2 ∈ Y, λd(y1, y2) + v(sup{d(o, y1), d(o, y2)}) > d(f(y1), f(y2))
(3) ∀y′ ∈ Y ′, ∃y ∈ Y, d(y′, f(y)) 6 v(d(y, o)).

Unlike quasiisometries (which are the O(u)-SBE with u = 1), SBEs are not
coarse equivalences in general. However they do preserve certain coarse sublinear
structures in the sense of Dranishnikov and Smith [DS07, 2], or large-scale sublinear
structures in the sense of Dydak and Hoffland [DH08, p.1014]. O(u)-quasisymmetric
structures are boundary analogs of the former, in a more specific way where u
is explicit. In all our applications Y and Y ′ will be Gromov-hyperbolic, proper
geodesic metric spaces. Boundary maps of sublinearly biLipschitz equivalences are
still homeomorphisms, however a notion more general than quasiconformality needs
to be defined.

1.2. O(u)-quasisymmetric homeomorphisms.

1.2.1. Definition and comparison with quasisymmetric mappings. Denote by O+(u)
the semigroup of germs of functions v valued in Z>0, defined on large enough
integers, such that v = O(u), with the composition law ∔ defined as

(1.1) (v1 ∔ v2)(n) = v2(n) + v1(n− v2(n))

for n ∈ Z large enough. The reason for this composition law is the requirement
that (Id−v1)◦ (Id−v2) = Id−(v1∔ v2). Z>0 embeds in O+(u) as the commutative
subsemigroup7 of constant functions. O+(u) acts on small enough abstract balls:

6Namely a certain quotient space of β, two abstract balls being close if close for δ and if their
realizations intersect, compare e.g. [Roe03, chapter 2]. Abstract, resp. concrete balls are turned
into geodesic segments, resp. their endpoints. The metric hyperbolicity is implied by (SC1) and
(SC2).

7The noncommutativity of ∔ should not be a concern; one can check that for some C > 1,
C−1(v1 + v2)(n) 6 (v1 ∔ v2)(n) 6 C(v1 + v2)(n) for n large enough.
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for every v in O+(u) there exists n0 ∈ Z such that Z>n0
lies in the domain of v

and if δ(b) > n0 then v.b is defined as v.b = v(δ(b)).b.

Definition 1.7 (round sets and rings, compare [Tys98, 3.4]). Let β → P(Z) be a
O(u)-quasisymmetric structure. Given k ∈ O+(u) and n ∈ Z, a subset a ∈ P(X) is
a (k, n)-round set (or simply a k-round set) if there exists b ∈ β such that δ(b) > n

and b̂ ⊆ a ⊆ k̂.b. A couple of subsets (a−, a+) ∈ P(X)2 is a (k, n)-ring if there exists

b ∈ β such that δ(b) > n and b̂ ⊆ a− ⊆ a+ ⊆ k̂.b. Denote by Bk
n(β) resp. Rk

n(β) the
collection of (k, n)-round sets, resp. of (k, n)-rings, and Bk(β) resp. Rk(β) their
union over n ∈ domain(k).

Definition 1.8 (outer rings). Let β → P(Z) be a O(u)-quasisymmetric structure.
Given j ∈ O+(u), a pair of subsets (a−, a+) ∈ P(X)2 is a (j, n)-outer ring if there

exists n ∈ Z and b ∈ β such that a− ⊆ b̂ ⊆ ĵ.b ⊆ a+ and δ(b) > n. Denote by
Oj;n(β) the collection of (j, n) outer rings.

The reader may think of k as a parameter of asphericity8 (akin to log t in (0.1))
that depends on the scale. Whereas quasisymmetric mappings preserve bounded
asphericities, O(u)-quasisymmetric homeomorphisms will be asked to preserve as-
phericities within the O(u) class. We define them in two steps.

Definition 1.9 (Equivalent O(u)-quasisymmetric structures). Let β and β′ be
two O(u)-quasisymmetric structures on a set Z. β′ is finer than β if there exists
λ ∈ R>0 and n0 ∈ Z such that

(1.2) ∀k ∈ O+(u), ∃k′ ∈ O+(u) : ∀n ∈ Z>n0
, R

k
n(β) ⊆ R

k′

⌊λn⌋(β
′)

(1.3) ∀j′ ∈ O+(u), ∃j ∈ O+(u) : ∀n ∈ Z>n0
, Oj;n(β) ⊆ Oj′ ;⌊λn⌋(β

′)

β and β′ are said equivalent if both finer than each other. Up to taking logarithms
k′ plays with respect to k in (1.2) the rôle of η(t) with respect to t in (0.1), so that
we will still denote η : O+(u) → O+(u) a map such that one may take k′ = η(k)
in (1.2). Similarly, denote η : O+(u) → O+(u) a map such that one may take
j = η(j′) in (1.3). λ is analogous to a Hölder exponent comparing snowflake-
equivalent metrics.

Definition 1.10 (O(u)-quasisymmetric homeomorphism). Let ϕ : Z → Z ′ be a
bijection between two sets endowed with O(u)-quasisymmetric structures β and β′.
One can pull-back β′ to Z by means of ϕ. The map ϕ is a O(u)-quasisymmetric
homeomorphism if β and ϕ∗β′ are O(u)-equivalent.

Two O(u)-equivalent structures on Z define the same uniform structure on Z
so that O(u)-conformal homeomorphisms are uniform homeomorphisms. This can
be made more quantitative: they are biHölder continuous when this makes sense
[Pal18, 4.4]. Not every quasi-symmetric homeomorphism is O(1)-quasisymmetric,

8We borrow the term “asphericity” from the survey [GP91, p.88]. Another choice is “modulus”

adopted in [Pal18] but it would be misleading here since for our purposes in section 2, moduli
are global rather than infinitesimal conformal invariants. Still another term is “eccentricity”. We
prefer not to define asphericity for subsets since we would face the same issues as with radii and
centers.
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but every power-quasisymmetric homeomorphisms9 is. Note that a consequence of
Definition 1.10 is that

∀k ∈ O+(u), ∃k′ ∈ O+(u),Bk(β) ⊆ B
k′

(ϕ∗β′)

since k-round sets may be identified with the k-annuli (a−, a+) for which there is
equality a− = a+. This does not suffice for all our needs, nevertheless it is simpler
and we shall use it when possible.

Remark 1.11. A reformulation of (1.2) and (1.3) is

∀K ∈ [1,+∞), ∃K ′ ∈ [1,+∞), R
⌈Ku⌉
n (β) ⊆ R

⌊K′u⌋
⌊λn⌋ (β′).

∀J ′ ∈ [1,+∞), ∃J ∈ [1,+∞), O
⌊Ju⌋
n (β) ⊆ O

⌈J′u⌉
⌊λn⌋ (β′).

Remark 1.12. The requirement (1.3) will be needed only when we deal with pack-
ings.

1.2.2. O(u)-quasisymmetric homeomorphisms as boundary mappings. If Y is a proper
geodesic Gromov-hyperbolic space, we call visual kernel on the Gromov boundary
Z = ∂∞Y a function ρ : Z×Z → R>0 such that ρ(ξ, η) = exp−(ξ, η)o for ξ, η ∈ Z,
where (ξ, η)o denotes the Gromov product of ξ and η seen from o ∈ Y (this is
sup lim inf i,j(ξi, ηj)o for over all sequences ξi → ξ, ηj → η).

Theorem 1.13. Let Y and Y ′ be Gromov-hyperbolic, geodesic, proper metric spaces
with uniformly perfect Gromov boundaries Z and Z ′. Let f : Y → Y ′ be a O(u)-
sublinearly biLipschitz equivalence (Definition 1.6). Let β and β′ be the O(u)-
quasisymmetric structures on the Gromov boundaries of Z and Z ′ associated to
visual kernels. Then f induces a map ∂∞f : Z → Z ′ between Gromov boundaries
is a O(u)-quasisymmetric homeomorphism.

Since the original statement is not this one, we give details on how to deduce it
from [Pal18].

How to deduce Theorem 1.13 from [Pal18]. Fix visual kernels d on Z and Z ′, start
assuming for simplicity that every metric sphere of positive radius in Z and Z ′ has
at least one point, denote ϕ = ∂∞f ; then ϕ and ϕ−1 are biHölder [Cor17]; up to
snowflaking Z or Z ′ let γ ∈ (0, 1) be a Hölder exponent for both. By10 [Pal18,
Proposition 4.9] sufficiently small rings of inner radius r and asphericity log(R/r)
are sent by ϕ to rings with asphericity logR/r+O(u(− log r)) and inner radii greater
than r1/γ ; this implies (1.2) translating− log r into n, logR/r into k and noting that
u(γn) = O(u(n)) since u is doubling. Let us prove (1.3). Fix ℓ′ ∈ O(u) a positive
function. We need ℓ such that if A contains a ℓ′-outer ring then f(A) will contain
a ℓ-outer ring. Fix ζ ∈ Z and r > 0. Let r′ = sup {d(ϕ(ζ), ϕ(ξ)) : d(ζ, ξ) 6 r}.
Let ξ0 ∈ Z be such that d(ϕ(ξ0), ϕ(ζ)) = r′. Let ξ1 ∈ Z be such that ϕ(ξ1) ∈

9A power quasisymmetric embedding is an embedding for which one can take η(t) =

sup{tα, t1/α} for some α ∈ (0,+∞) in (0.1); this is not restrictive between uniformly perfect
metric spaces (called “homogeneously dense” by Tukia and Väisälä) [TV80, 3.12] [Hei01, 11.3].

10Beware that one must translate “annulus” into “ring” and “modulus” into “asphericity” to
conform to our current terminology.
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1

e−1

e−2

∼ s

∼ s| log s|

B(s)

B(1)

s

Figure 1. Concentric balls of a quasidistance on R2 that is in-
variant under translation and dilation by exp(tα′) with unipotent,
non identity α′, and coincides with the ℓ∞ distance for pairs of
points at distance 1. For comparison, dashed ℓ∞ spheres of equal
radii. Compare Figure 3.

B(ϕ(ζ), r′ exp(ℓ′(− log r′)). By quasiMöbiusness of ϕ−1, there exists λ ∈ R>0 and
v ∈ O(u) a positive function such that

log+
d(ζ, ξ1)

d(ζ, ξ0)
> λ log+

d(ϕ(ζ), ϕ(ξ1))

d(ϕ(ζ), ϕ(ξ0))

− v(− log inf {d(|ϕ(ζ), ϕ(ξ0)), d(|ϕ(ζ), ϕ(ξ1))})

> ℓ′(⌊− log r′⌋)− v(− log r′).

Setting ℓ(n) = ℓ′(n/γ) + v(n/γ) this proves (1.3) for the quasisymmetric structure
β and the pullback ϕ∗β′ on Z. Finally, uniform perfectness of Z and Z ′ allows to
carry the proof up to bounded approximations should certain points not exist. �

Example 1.14 (The plane and the twisted plane). Let Y = R2 ⋊α R and Y ′ =
R2 ⋊α′ R where

α =

(
1 0
0 1

)
and α′ =

(
1 1
0 1

)

and the semi-direct products are formed with t ∈ R acting on R2 as etα and etα
′

re-
spectively. Equip Y and Y ′ with left invariant metrics; they are Gromov-hyperbolic
and −t is a Busemann function. Identify both Gromov boundaries ∂∗∞Y = ∂∞Y \
[−t] and ∂∗∞Y

′ = ∂∞Y
′\[−t] to R2, and equip them with the quasisymmetric struc-

tures associated to quasidistances ρ and ρ′ such that ρ(etαξ1, e
tαξ2) = etρ(ξ1, ξ2)

for all ξ1, ξ2 ∈ ∂∞Y . The map ι : Y → Y ′ which is the identity in coordinates is a
O(log)-sublinearly biLipschitz equivalence [Cor11]. On ∂∞Y and ∂∞Y The identity
map ∂∗∞ι of R

2 is a O(log)-quasisymmetric homeomorphism, as Figure 1.

1.3. Covering and measures.

1.3.1. Covering lemma: extracting disjoint balls. Let (Z, β) be aO(u)-quasisymmetric
structure (Definition 1.1) and let A ∈ P(Z) be a subset. Say that a countable col-
lection of abstract balls B is a covering of A if the realizations of the members of
B cover A. We adapt a classical covering lemma for metric spaces [Fed69, 2.8.4 –
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2.8.8], [Mat95, p.24]11 to O(u)-quasisymmetric structures; (SC2) may be considered
the case with 2 balls. The lemma says that out of any covering B one can extract
a disjoint subcovering C such that q.C = {q.b : b ∈ B} is still a covering, where q
is a positive function in the O(u)-class; for metric spaces it is known as the “ 5r
covering lemma ” since one can take 5 as an exponential analog of q.

Lemma 1.15. Let (Z, β, q, δ) be a O(u)-quasisymmetric structure (Definition 1.1).
Let A ∈ P(Z) be a subset and let B ⊆ β be a countable covering of A; assume that
infB δ > −∞. There exists C ⊂ B such that q.C covers A and for every b, b′ ∈ C,

b̂ ∩ b̂′ = ∅ unless b = b′.

Proof. Set n0 = infb∈B δ(b). For every n ∈ Z, let Bn = {b ∈ B : δ(b) = n}. By
induction on n ∈ Z>n0

, choose for each n (by Zorn’s lemma or Hausdorff’s maxi-
mality principle, see [Kel55, 0.24]) a maximal subfamily Cn ⊂ Fn whose realizations
are pairwise disjoint and do not intersect the previously chosen balls, that is:

• ∀(b, b′) ∈ Cn × Cn, b̂ ∩ b̂′ 6= ∅ =⇒ b = b′.

• ∀b ∈ Cn, ∀m ∈ {n0, . . . n− 1} , ∀b′ ∈ Cm, b̂ ∩ b̂′ = ∅.

• ∀b ∈ Bn \ Cn, ∃b′ ∈ Cn : b̂ ∩ b̂′ 6= ∅.

By construction, the realizations of members of C = ∪nCn are disjoint. Let x ∈ A;

since B covers A there is b′ ∈ B such that b̂′ ∋ x. Either b′ ∈ C or, setting n = δ(b),

b′ ∈ Bn and there is b ∈ Cm such that b̂ ∩ b̂′ 6= ∅ with m 6 n. By (SC2), q̂.b ⊇ b̂′ so

that q̂.b ∋ x. �

It follows from the lemma that as soon as a O(u)-quasisymmetric structure has
a countable covering, then it also has a countable packing C ⊂ β such that q.C
covers. This holds for instance, if the quasisymmetric structure comes from a
separable metric space.

1.3.2. Gauges. Let (Z, β) be a O(u)-quasisymmetric structure. We call any func-
tion φ : P(Z) → [0,+∞) a gauge on (Z, β), and we denote by G(Z) the set of

gauges. For every ℓ ∈ O+(u), define a shifted gauge φ̃ℓ : P(Z) → [0,∞) by

φ̃ℓ(a) = sup{φ(ã) : (a, ã) ∈ R
ℓ(β)}.

We take the convention that φ̃ℓ(a) = 0 if the set on the right-hand side is empty.

Note that if ℓ > k and a is a k-round set, then φ̃ℓ(a) > φ(a), for (a, a) is a ℓ-ring.
It is important that no restriction is made on φ.

1.3.3. Carathéodory measures. Let (Z, β) be a O(u)-quasisymmetric structure. For
all k, ℓ ∈ O+(u), for all A ∈ P(Z), define

Φp,(k,n)(A) = inf

{∑

b∈F

φ(b)p : F ⊂ B
k
n(β), |F | 6 ℵ0, F coversA

}
(1.4)

Φ̃ℓ
p,(k,n)(A) = inf

{∑

b∈F

φ̃ℓ(b)p : F ⊂ B
k
n(β), |F | 6 ℵ0, F coversA

}
(1.5)

and Φp;k(A) = limn→+∞ Φp,(k,n)(A), Φ̃
ℓ
p;k(A) = limn→+∞ Φ̃ℓ

p,(k,n)(A). The O(u)-

quasisymmetric structure β is not specified, however if β and β′ are two equivalent

11We cite both since Federer’s statement is more general, but the filtration of balls according
to the logarithms of their radii is noticeable in Mattila’s proof.
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O(u)-quasisymmetric structures on Z and if λ, η, η′ are such that any (ℓ, n)-ring
for β (resp. for β′) is a (η(ℓ), ⌊λn⌋)-ring for β′ (resp. for β), then denoting Φ and
Φ′ the measures that correspond to φ for β and β′ then

(1.6) (Φ′)p;η(k) 6 Φp;k and
(
Φ̃′
)ℓ
p;η(k)

6 Φ̃
η′(ℓ)
p;k

since any covering by (k, n) round sets with respect to β is a covering by (η(k), ⌊λn⌋)
round sets with respect to β′, and any ℓ-ring with respect to β′ is a η′(ℓ)-ring with
respect to β (note that η or η′ appears on superscript when on the right of 6 and
on subscript when on the left).

Lemma 1.16 (Comparisons with Hausdorff measures). Assume that the quasisym-
metric structure β is that of a metric space as in Example 1.2. Let s ∈ R>0 and
φ(a) = diam(a)s. Then for every p ∈ (0,+∞), k ∈ O+(u) and ε ∈ (0, sp),

(1.7) Hsp+ε ≪ Φp;k ≪ Hsp−ε.

Moreover, for all ℓ ∈ O+(u)

(1.8) Φ̃ℓ
p;k ≪ Hsp−ε.

Proof. Since balls are (k, n)-round sets and diameters of (k, n)-round sets are bounded
by e−n/2 for large enough n, Hsp 6 Φp;k 6 Ssp, where H and S denote the (non-
normalized) Hausdorff and spherical Hausdorff measures. As Ssp 6 2spHsp, the

comparisons (1.7) follow. As for (1.8), note that if a is a ball then log φ̃ℓ(a) 6

s(log diam(a) + ℓ(⌈− log diam(a)⌉)), especially as ℓ is sublinear, for every ε > 0,

for small enough balls a, φ̃ℓ(a) 6 diam(a)s−ε/(2p), and then Φ̃ℓ
p;k 6 Sp−ε/2 ≪

Hsp−ε. �

1.3.4. Packing Pre-measure. Let (Z, β) be a quasisymmetric structure and let A ∈
P(Z) be a subset. Let P be a countable collection of (k, n)-outer rings; say that P

is a (k, n)-packing centered on A, denoted P ∈ Packingsk,n(A) if inner sets meet
A and outer sets are disjoint; formally

• For every a = (a−, a+) in P, a− ∩A 6= ∅.
• For every a0, a1 in P, a+0 ∩ a+1 6= ∅ =⇒ a0 = a1.

Similarly to the shifted packing measure Φ̃, define a shifted packing pre-measure

(1.9) PΦ̃ℓ
p;k(A) = lim

n→+∞
sup

{∑

a∈P

φ̃ℓ(a−)p : P ∈ Packingsk,n(A)

}

or 0 if there exists no packing indexing the sums.

Remark 1.17. Let φ = λ · 0φ + 1φ with λ ∈ R>0 and iφ ∈ G(Z) for i ∈ {0, 1}.

Associate i P Φ̃ℓ
p;k to iφ by (1.9). Then by the Minkowski inequality

(1.10)
(
P Φ̃ℓ

p;k

)1/p
6 λ ·

(
0 P Φ̃ℓ

p;k

)1/p
+
(
1 P Φ̃ℓ

p;k

)1/p
.

Remark 1.18. When changing O(u)-quasisymmetric structure from β to β′, the
analogs of the comparisons (1.6) are

(1.11) (PΦ̃′)
η(ℓ)
p;k > PΦ̃ℓ

p;η(k).
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Indeed (1.3) implies that Packingsη(k′),n(β) ⊂ Packingsk′,⌊λn⌋(β
′) whereas, every

ℓ-ring for β being a η(ℓ)-rings with respect to β′, the supremum in (1.9) is taken
over larger sums.

Remark 1.19. Pansu uses a notion of packing with bounded multiplicity [Pan18].
However it is not convenient here because even on doubling spaces, if b ∈ β is such

that δ(b) = n then ℓ̂.b cannot be covered by a uniformly bounded number (that is,

a number independent of n) of concrete balls of the form b̂′ with δ(b′) = n.

2. Conformal invariants

By conformal invariants we mean real numbers attached to O(u)-quasisymmetric
structures, possibly parametrized (for instance by asphericities) and respecting in-
variance under conformal equivalence. This invariance should not be understood
too strictly: the vanishing, or infinitude, for some choice of parameters is considered
an invariant, though those parameters may vary.

2.1. Combinatorial moduli and functions of bounded p-variation.

2.1.1. Carathéodory and packing combinatorial moduli. The modulus is obtained

by minimizing Φ̃ under a normalization constraint on the gauge functions, compare
Pansu [Pan89c, 2.4] and Tyson [Tys98, 3.23]: all members of Γ should have measure
(to be thought of as a length12) greater than 1.

Definition 2.1. Let Γ be a family of subsets in a conformal structure (Z, β),
p ∈ (0,+∞), k, ℓ and m in O+(u). Define

modℓ,mp;k (Γ, β) = inf
{
Φ̃ℓ

p;k(Z) : φ ∈ Gm(Γ, β)
}

and

pmodℓ,mp;k (Γ, β) = inf
{
PΦ̃ℓ

p;k(Z) : φ ∈ Gm(Γ, β)
}
,

where Gm(Γ, β) = {φ ∈ G(β) : ∀γ ∈ Γ,Φ1;m(γ) > 1} is called a set of admissible
gauges for Γ.

Remark 2.2. The notation for moduli is the standard one (cf. [Pan89c] and [Tys98]),
up to the position of upper/lower indices. This is in order to emphasize the mono-

tonicity with respect to the parameters: modℓ,mp;k increases with ℓ and m but de-
creases with p and k. We shall observe the same convention with other forthcoming
quantities.

When changing conformal structure, the moduli change in the following way:

Lemma 2.3 (compare [Pan89c, 2.6]). Let β and β′ be two O(u)-equivalent O(u)-
quasisymmetric structures on Z. Let Γ ⊂ P(Z). Set η, η′ and η so that Rk(β) ⊂

Rη(k)(β′), Rk(β′) ⊂ Rη′(k)(β) and Oη(j′)(β) ⊂ Oj′ (β
′) for every k, j′ ∈ O+(u).

Then for every k, ℓ,m ∈ O+(u),

modℓ,mp;η′(k) (Γ, β) 6 mod
η(ℓ),η(m)
p;k (Γ, β′) and(2.1)

pmodℓ,m
p;η(k) (Γ, β) 6 pmod

η(ℓ),η(m)
p;k (Γ, β′).(2.2)

12This is similar in spirit to requiring a Riemannian metric in a given conformal class to confer
sufficient length to any curve in a family as in the definition of the classical moduli.
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Proof. Let us first concentrate on the change of admissible gauges. Recall that if a
is a round set, then (a, a) is a ring; hence, by assumption, m-round sets for β′ are
η(m)-round sets for β′. In view of (1.4), for all γ in Γ, Φ1;m(γ) > (Φ′)1;η(m) (γ) (the

infimum being computed on more coverings, is smaller), especially (Φ′)1;η(m) (γ) > 1

implies Φ1;m(γ) > 1 so that

(2.3) Gη(m)(β
′) ⊆ Gm(β).

Now, by (1.6), for all φ ∈ G(Z),
(
Φ̃′
)η(ℓ)
p;k

> Φ̃ℓ
p;η′(k). Hence, on the left-hand side

of (2.1), the infimum in Definition 2.1 is taken over more gauges, while common
admissible gauges contribute to lower values, than on the right-hand side.

The proof of (2.2) follows the same lines starting from (2.3), but uses (1.11) to
compare the shifted packing measures instead of (1.6). �

2.1.2. Functions of locally bounded p-variation. We investigate here function spaces
that are carried by O(u)-quasisymmetric homeomorphisms with a shift in an as-
phericity parameter. The notion of p-variation we use here is inspired by Pansu’s
[Pan89c, 6.1] (Beware that Pansu calls it “energy”) but it is actually more closely
related to Kleiner and Xie’s Q-variation ([Xie12, Definition 3.2], [Xie14, 4]). For
quasimetric spaces Z and u = 1, the p-variation we define is Kleiner and Xie’s Q-
variation, and the reader familiar with Q-variation may translate Vℓ

p;k(f)(−) into

VQ,K(f|−) with ℓ = 0, p = Q and k = logK.
Let β be a O(u)-quasisymmetric structure on a set Z, and let f : Z → C be a

continuous function. Given p ∈ [1,+∞) and k, ℓ ∈ O+(u) one can associate to f a

pre-measure on Z by Vℓ
p;k(f) = PΦ̃ℓ

p;k using the gauge

φ(a) = diam f(a) =: osc(f, a).

Fix k, ℓ ∈ O+(u). Say that a continuous function f has bounded (p; k, ℓ)-variation
if Vℓ

p;k(f) is locally finite. If Ω ⊂ Z is an open subset, denote the space of functions
of bounded p-variation by

W
p;k
ℓ;loc.(Ω) =

{
f ∈ C

0(Ω) : ∀K ∈ P(Ω),K ⋐ Ω =⇒ Vℓ
p;k(f)(K) < +∞

}
.

For all K compact in Ω, k ∈ O+(u), ℓ ∈ O+(u) and p ∈ [1,+∞) define

(2.4) ‖f‖K;ℓ
p;k := ‖f‖C0(K) +Vℓ

p;k(f)(K)1/p.

Lemma 2.4. Let Ω be an open subset of a O(u)-quasisymmetric structure β. For

every p ∈ [1,+∞) and ℓ, k ∈ O+(u), V
p;k
ℓ;loc.(Ω) is an algebra for pointwise multi-

plication and for every K ⋐ Ω, f 7→ ‖f‖K;ℓ
p;k defines a multiplicative seminorm on

V
p;k
ℓ;loc.(Ω).

Proof. By (1.10) and the triangle inequality in R, for any f, g ∈ C (Ω) and λ ∈ C

one has Vℓ
p;k(λf + g) 6 |λ|Vℓ

p;k(f) +Vℓ
p;k(g)), so that V

p;k
ℓ;loc.(Ω) is a vector space.

Further, for every A ⊆ Ω,

(2.5) osc(fg, a) 6 sup
A

|f | osc(g, a) + sup
A

|g| osc(f, a),

while, by definition

(2.6) Vℓ
p;k(fg)(K) = lim

n→+∞
sup

P∈Packingsk,n(K)

∑

a∈P

sup
(a−,A)∈Rℓ(β)

osc(fg,A)p.
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At this point, note that sinceK has been assumed compact, since the topology asso-
ciated to β is uniform, since f is continuous and since lim supn ∪a∈Pn

sup(a−,A)∈Rℓ(β)A ⊆
K for every sequence of (k;n) packings Pn,

lim
n→+∞

sup
P∈Packingsk,n(K)

sup
a∈P

sup
(a−,A)∈Rℓ(β)

sup
A

|f | 6 ‖f‖C0(K)

and the same inequality holds for g so that inserting (2.5) in (2.6) and letting
n→ +∞ using this estimate and the Minkowski inequality yields

(2.7) Vℓ
p;k(fg)(K)1/p 6 ‖f‖C0(K)V

ℓ
p;k(g)

1/p + ‖g‖C0(K)V
ℓ
p;k(f)

1/p.

From there (recall that ‖ − ‖K;ℓ
p;k was defined in (2.4)),

‖fg‖K;ℓ
p;k = ‖fg‖C0(K) +Vℓ

p;k(fg)(K)1/p

(2.7)

6 ‖f‖C0(K)‖g‖C0(K) + ‖f‖C0(K)V
ℓ
p;k(g)

1/p + ‖g‖C0(K)V
ℓ
p;k(f)

1/p

6
(
‖f‖C0(K) +Vℓ

p;k(f)(K)1/p
)(

‖g‖C0(K) +Vℓ
p;k(g)(K)1/p

)

= ‖f‖K;ℓ
p;k ‖g‖

K;ℓ
p;k . �

In order to add structure to V
p;k
ℓ;loc.(Ω), we will need to assume more on the

topology associated with β.

Definition 2.5 (hemicompactness). Let X be a Hausdorff topological space. An
admissible exhaustion ofX is an increasing sequence of compact subspaces (Kn)n>0

of X such that for every compact K of X there exists n such that K ⊂ Kn. A
space is hemicompact if it has an admissible exhaustion.

If Z is a locally compact, second countable topological space, then any open
subset of Z is hemicompact. Indeed by Lindelöf’s lemma in a second countable
space, every open subset is a Lindelöf space (meaning that any open cover of it
has a countable subcover) [Kel55, Chapter 1, Theorem 15], and a locally compact
Lindelöf space is hemicompact.

Lemma 2.6. Let (Z, β) be a O(u)-quasisymmetric structure with locally compact,

secound countable topology. For all non-empty open Ω ⊂ Z, V
p;k
ℓ;loc.(Ω) defines a

unital commutative algebra with a topology defined by a countable family of semi-
norms. Further, if ϕ : (Z ′, β′) → (Z, β) is a O(u)-quasisymmetric homeomorphism
then for every open Ω′ ⊂ Z ′, letting Ω = ϕ(Ω′) the identity map defines linear
continuous algebra homomorphisms

(2.8) V
p;k
η◦η′(ℓ);loc.(Ω

′) →֒ ϕ∗
V

p;η(k)
η′(ℓ);loc.(Ω) →֒ V

p;η′◦η(k)
ℓ;loc. (Ω′).

Proof. By the observation above each open subset Ω being hemicompact, has an ad-

missible exhaustion (Kn). The
(
‖ − ‖Kn,k

ℓ

)
for an exhaustionKn define a countable

family of seminorms on V
p;k
loc. ; the hemicompactness ensures that the topology does

not depend on the choice of the sequence (Kn). To prove the part about O(u)-
quasisymmetric homeomorphisms we can assume that β′ is an O(u)-equivalent
structure on the same set Z. Denote V, resp. V′ the variations computed with
respect to β, resp. β′. By (1.11),

∀k, ℓ ∈ O+(u),E
η′(ℓ)
p;k (f) > (V′)ℓp;η′(k)(f)
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(this may be compared to Xie [Xie12, Lemma 3.1]) so that V
p;k
loc. (Ω, β|Ω) continuously

embeds in V
p;η′(k)
loc. (Ω | β′

|Ω). (2.8) is obtained by applying this twice and reversing

the rôles of β and β′. �

2.1.3. Condensers and capacities. For p ∈ [1,+∞), k, ℓ ∈ O+(u) and Ω an open

subset in a O(u)-quasisymmetric structure, denote by V
p;k
ℓ;loc.(Ω,R) the R-subspace

of V
p;k
ℓ;loc.(Ω) of R-valued functions.

Definition 2.7 (Condenser, capacity). Let Z be a O(u)-quasisymmetric struc-
ture and let Ω be an open subspace. A condenser in Ω is a triple of subspaces
(C, ∂0C, ∂1C) such that C is relatively compact, ∂0C and ∂1C are closed disjoint,
and contained in C \C. Its capacity is

capℓp;k(C) = inf
{
Vℓ

p;k(f)(C) : f ∈ V
p;k
ℓ;loc.(Ω,R), f|∂0C 6 0, f|∂1C > 1

}
.

Lemma 2.8. Let (C, ∂0C, ∂1C) be a condenser in Ω, open subset of a O(u)-
quasisymmetric structure β. For all k, ℓ,m ∈ O+(u), if Γ is any family of curves
joining ∂0C and ∂1C in C then

(2.9) pmodℓ,mp;k (Γ) 6 capℓp;k(C).

Proof. Let ε > 0. Let f ∈ V
p;k
ℓ;loc.(Ω,R) be such that f|∂0C 6 0, f|∂1C > 1. Let us

prove that the gauge φ : a 7→ diamf(a) is in Gm(Γ, β); the conclusion will follow
by applying the definition of capacites and p-variations. By the intermediate value
theorem, for every γ in Γ, f(γ) contains [0, 1]. Consequently, whenever F is a
covering of γ by m-round sets, by countable subadditivity of the outer measure H1

on R
∑

a∈F

φ(a) =
∑

a∈F

diam f(a) =
∑

a∈F

H1 Conv(f(a)) >
∑

a∈F

H1f(a)

> H1

( ⋃

a∈F

f(a)

)
> 1. �

2.2. Diffusivity. The following is a central result in conformal dimension theory
[MT10, 4.1.3]. The guiding principle is a length-volume estimate for a Riemannian
parallelotope [Pan89c, 2.2]; in order to transpose this to the combinatorial moduli,
one has to retain a diffusivity condition expressing that a family of curves is suffi-
ciently spread out in the space, (D(p, r)) below. We give two variants: the first is
Pansu’s original; the second one is a packing variant.

2.2.1. Carathéodory variant.

Proposition 2.9. Let (Z, β, δ, q) be a O(u)-quasisymmetric structure. Let Γ be
a collection of subsets in Z, endowed with a positive measure dγ such that for

any b ∈ β, {γ ∈ Γ : γ ∩ b̂ 6= ∅} is measurable. For each γ ∈ Γ, let mγ be a
probability Borel measure on γ. Let p ∈ (1,+∞). Assume that there exists a
constant τ ∈ (0,+∞) and r ∈ O+(u) such that

(D(p, r)) lim sup
n→+∞

sup
b∈β:δ(b)>n

∫

Γ

mγ(γ ∩ r̂.b)1−p1γ∩b̂6=∅dγ 6 τ.
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Then for every k,m ∈ O+(u),

(2.10) modℓ,mp;k (Γ) >
1

τ

∫

Γ

dγ,

where13 ℓ = q ∔ r ∔ k (We recall that the operation ∔ was defined in 1.2.1).

Proof. Up to the formalism, the proof is due to Pansu [Pan89c, 2.9] and we do not
depart from it. Inequality (2.10) will actually be obtained through a stronger one:
for any 0-admissible gauge φ,

(2.11) Φ̃ℓ
p;k(Γ) > τ−1

∫

Γ

Φ1;0(γ)
pdγ.

(To see why (2.11) implies (2.10) with m = 0 note that since p > 1 and φ is

admissible the right-hand side is greater than
∫
Γ dγ; finally modℓ,mp;k increases with

m). Set an admissible gauge φ. Define, for all n,

τn := sup
b∈β:δ(b)>n

∫

Γ

mγ(γ ∩ r̂.b)1−p1γ∩b̂6=∅dγ.

Fix n ∈ Z. Let k ∈ O+(u). Let F be a countable covering of Z by (k, n)-round
sets of β; taking inner ball b ∈ β for each round set b ∈ F gives a countable B ⊂ β
such that k.B covers Z. For γ ∈ Γ define Bγ = {b ∈ B : b ∩ γ 6= ∅}. For every γ,
k.Bγ is a covering of γ, since every x ∈ γ is contained in a b ∈ F such that b has
been selected in Bγ . All the more, r.k.Bγ is a covering of γ and by Lemma 1.15 one
can extract Cγ from Bγ such that q.r.k.Cγ covers γ and have disjoint realizations.

Note that (̂b, q̂.r.k.b) ∈ Rq∔r∔k(β) (as δ(q.r.k.b) = δ(b)− (q ∔ r ∔ k)(δ(b))), hence

φ(q̂.r.k.b) 6 sup
{
φ(̃b) : (b, b̃) ∈ R

ℓ(β)
}
= φ̃ℓ(b).

Recall that q.r.k.Bγ covers γ. Thus

(2.12) Φ1,(0,n−ℓ(n))(γ) 6
∑

b∈Cγ

φ
(
q̂.r.k.b

)
6
∑

b∈Cγ

φ̃ℓ(b).

Next, apply Hölder’s inequality to α, ζ : Cγ → R defined by

α(b) = φ̃ℓ(̂b)mγ(r̂.k.b ∩ γ)
(1−p)/p and ζ(b) = mγ(r̂.k.b ∩ γ)

(p−1)/p

so that

Φ1,(0,n−ℓ(n))(γ)
p 6

(2.12)


∑

b∈Cγ

α(b)p




∑

b∈Cγ

ζ(b)p/(p−1)




p−1

6


∑

b∈Cγ

φ̃ℓ(b)pmγ(r̂.k.b ∩ γ)
1−p




∑

b∈Cγ

mγ(r̂.k.b ∩ γ)




p−1

6


∑

b∈Cγ

φ̃ℓ(b)pmγ(r̂.k.b ∩ γ)
1−p


 (mγ(γ))

p−1
.(2.13)

13The conclusion of the lemma (as the assumption (D(p, r)) is all the more weaker that r is
large. In subsection 3.1 we can arrange the quasisymmetric structure so that r can be assumed
1, however in subsection 3.3 it is really necessary.
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The last inequality comes from the fact that the r̂.k.b for b ∈ Cγ are disjoint by
construction, hence their intersections with γ are disjoint, and mγ is subadditive.
Further, since mγ is a probability measure, (2.13) rewrites

Φ1,(0,n−ℓ(n))(γ)
p 6

∑

b∈Cγ

φ̃ℓ(b)pmγ(r̂.k.b ∩ γ)
1−p.

Integrating over Γ yields
∫

Γ

Φ1,(0,n−ℓ(n))(γ)
pdγ 6

∫

Γ

∑

b∈Cγ

φ̃ℓ(b)pmγ(r̂.k.b ∩ γ)
1−pdγ

6
∑

b∈F

φ̃ℓ(b)p
∫

Γ

1b∈Cγ
mγ(r̂.k.b ∩ γ)

1−pdγ 6 τn
∑

b∈F

φ̃ℓ(b)p.

Infimizing over every countable F ⊂ Bk
n(β) that covers X one obtains:

(2.14) Φ̃p,(k,ℓ;n−ℓ(n))(X) > τ−1
n

∫

Γ

Φ1,(0,n−ℓ(n))(γ)
pdγ.

By monotone convergence, if φ ∈ Gm(β) then

lim
n→+∞

∫

Γ

Φ1,(0,n−ℓ(n))(γ)
pdγ =

∫

Γ

Φ1,(0,n−ℓ(n))(γ)
p >

∫

Γ

dγ > 0.

Since ℓ is sublinear, n− ℓ(n) goes to +∞ as n→ +∞. Especially, Φ̃ℓ
p;(k,n)(X) is

bounded below by (D(p, r)). The conclusion is reached by applying the Definition
2.1 of the modulus. �

2.2.2. Packing variant.

Proposition 2.10. Same assumptions as in Proposition 2.9. Assume in addition
that the quasisymmetric structure is that of a separable quasimetric space. For
every k,m ∈ O+(u), setting ℓ = q ∔ r ∔ k,

(2.15) pmodℓ,mp;k (Γ) >
1

τ

∫

Γ

dγ.

Proof. Fix n, pick a countable (k∔r, n) packing P of Z with the following condition:

for every a ∈ P write a = (a−, a+), enclosing (̂b, k̂.r.b) in a the q.r.k.b cover.
Such packings exist by 1.15. This gives a countable B ⊂ β (the collection of b)

such that the realizations of k.r.B are disjoint. Define Qγ =
{
b ∈ B : ℓ̂.b ∩ γ 6= ∅

}
.

The realization of ℓ.Qγ will cover γ if ℓ > q ∔ r ∔ k and then, by definition of

the Carathéodory measure, Φ
n−ℓ(n)
1;0 (γ) 6

∑
b∈Qγ

φ̃ℓ(b). This gives an inequality

equivalent to (2.12) with Qγ instead of Cγ . The rest of the proof follows the same
lines as for Proposition 2.9 but instead of (2.14) one obtains:

(2.16) τnPΦ̃
ℓ
p,(k,n−ℓ(n))(X) > τn

∑

b∈∪γQγ

φ̃ℓ(b)p >

∫

Γ

Φ1,(0,n−ℓ(n)(γ)
pdγ,

before infimizing over every admissible gauge, which gives a lower bound on pmodℓ,0
p;k

and then on pmodℓ,m
p;k for every m. �
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2.3. Conformal dimensions.

Definition 2.11. Let (Z, β) be a O(u)-quasisymmetric structure, and let Γ be a
family of subsets in Z. The O(u)-conformal dimension of β with respect to Γ is

CdimΓ
O(u)(β) = sup

{
p ∈ R>0 : ∀k ∈ O+(u), ∃ℓ ∈ O+(u)

∃m ∈ O+(u), modℓ,mp;k (Γ, β) = +∞
}

or 0 if this set is empty. Similarly, define

PCdimΓ
O(u)(β) = sup

{
p ∈ R>0 : ∀k ∈ O+(u), ∃ℓ ∈ O+(u)

∃m ∈ O+(u), pmodℓ,mp;k (Γ, β) = +∞
}

or 0 if this set is empty.

Remark 2.12. Given that moduli decrease with respect to p, the conformal dimen-
sion CdimΓ

O(u)(β) can be bounded above by

inf
{
p ∈ R>0 : ∃k ∈ O+(u), ∀ℓ,m ∈ O+(u), modℓ,mp;k (Γ, β) < +∞

}

or +∞ if this set is empty, and similarly, PCdimΓ
O(u)(β) by

inf
{
p ∈ R>0 : ∃k ∈ O+(u), ∀ℓ,m ∈ O+(u), pmodℓ,mp;k (Γ, β) < +∞

}
.

Proposition 2.13 (Conformal invariance of the conformal dimensions). Let ϕ :
(Z, β) → (Z ′, β′) be a O(u)-quasisymmetric homeomorphism and let Γ, resp. Γ′ be
a family of subsets in Z, resp. Z ′, such that Γ′ = {ϕ(γ) : γ ∈ Γ}. Then

CdimΓ
O(u)(β) = CdimΓ′

O(u)(β
′)(2.17)

PCdimΓ
O(u)(β) = PCdimΓ′

O(u)(β
′).(2.18)

Proof. One can assume Z = Z ′, Γ = Γ′ and that ϕ is the identity map. Let us
start with (2.17). By symmetry we need only prove CdimΓ

O(u)(β) 6 CdimΓ
O(u)(β

′)

and PCdimΓ;N
O(u)(β) 6 PCdimΓ;N

O(u)(β
′). The conformal dimension CdimΓ

O(u)(β) can

be rewritten

CdimΓ
O(u)(β) = sup

{
p ∈ R>0 : ∃L,M : O+(u) → O+(u)

∀k ∈ O+(u), mod
L(k),M(k)
p;k (Γ, β) = +∞

}
.

Now assume that a real number p is in the set defined on the right and let L and
M be the corresponding maps from O+(u) to itself. Define L′ = η ◦ L ◦ η′ and
M ′ = η ◦M ◦ η′. By Lemma 2.3, for every k and m in O+(u),

0 < mod
L(η′(k)),M(η′(k))
p;η′(k) (Γ, β) 6 mod

L′(k),M ′(k)
p;k (Γ, β′).

and the left-hand side is infinite, thus CdimΓ
O(u)(β

′) > p, finishing the proof. (2.18)
is obtained in the same way. �

In the following, we may omit Γ in CdimΓ
O(u) and write CdimO(u); this means

that Γ must be considered the family of nonconstant curves in Z. Note that home-
omorphisms preserve nonconstant curves.
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2.4. Upper bound on CdimO(u).

Lemma 2.14 (Conformal dimension is less or equal than Hausdorff dimension). Let
Z be a metric space with Hausdorff dimension q. Let Γ be the family of nonconstant
curves in Z. Then CdimΓ

O(u) Z 6 q.

Proof. In view of remark 2.12 this will be proved if we can show that for every
ε ∈ (0, q),

(2.19) ∃k ∈ O+(u), ∀ℓ,m ∈ O+(u),modℓ,m
q+ε;k(Γ) = 0.

For s ∈ (0, 1) consider φs ∈ G(β) such that φ(̂b) = e−sδ(b) on concrete balls. By
comparison with the Hausdorff measures (1.7), Φ1;m ≫ H1. The nonconstant
curves have positive H1 measure by the triangle inequality, so φs ∈ Gm(Γ) for all

s. On the other hand, by (1.8), (Φ̃s)
ℓ
q+ε;k ≪ Hqs+εs−ε′ for every small ε′. For

s sufficiently close to 1 and ε′ sufficiently small, qs + εs − ε′ > q, so (2.19) is
attained. �

3. Applications to large-scale geometry

Here two metric spaces Y and Y ′ are said sublinearly biLipschitz equivalent if
there exists a sublinearly biLipschitz equivalence f : Y → Y ′ (Definition 1.6).

3.1. Heintze groups.

3.1.1. Definition.

Definition 3.1. A connected solvable group S is a purely real Heintze group if its
Lie algebra sits in a split extension

(3.1) 1 → n → s → a → 1

where n is the nilradical of s, dim a = 1 and the roots associated to a → Der(n) are
real and positive multiples of each other. In addition, we say it is of diagonalizable
type if ada is R-diagonalizable.

It is convenient to encode a purely real Heintze group type as a pair (N,α) where
N is a nilpotent Lie group and α is a derivation of its Lie algebra with real spectrum
and lowest eigenvalue 1, realizing a → Der(n) once an infinitesimal generator ∂t ∈ a

has been fixed. Such an α being nonsingular, N is the derived subgroup and (N,α)
is metabelian if and only if N is abelian. Every Heintze group admits left-invariant
negatively curved Riemannian metrics.

The nilradical of a connected solvable group contains an other characteristic
subgroup Exprad(S), defined as the set of exponentially distorted elements (which
does not depend on the choice of a left-invariant proper metric) together with 1.
For purely real Heintze groups both are equal14.

Theorem 3.2 (Implied by Cornulier, [Cor11, Th 1.2]). Let H be a purely real
Heintze group with data (N,α). Decompose α = σ + ν where σ is semisimple and
ν is a nilpotent derivation of n such that [σ, ν] = 0. Denote by H∞ the purely
real Heintze group of diagonalizable type with data (N, σ). Then H and H∞ are
O(log)-SBE.

14One reason for this is that α is nonsingular, compare Peng [Pen11, 2.1] keeping in mind that
the Cartan subgroup has rank one here.
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3.1.2. Punctured boundary. From now on, thanks to Theorem 3.2 we work with
a purely real Heintze group of diagonalizable type S with data (N,α), that is
S = N ⋊ R where, denoting by t the R coordinate, t.x = etα(x) for x ∈ N and
we recall that α is diagonalisable with real positive eigenvalues. It is known that
this eases the computation of conformal dimension: the latter is attained, indeed
by an Ahlfors regular metric, whereas for the twisted plane of Example 1.14 it is
not [BK05, 6] (also, one can prove that no distance has this scaling [DN19, 5.4]).

The vertical geodesics with tangent vector ∂t all end at time +∞ at a distin-
guished point ω, that we will call the focal point, and at time −∞ on the punc-
tured boundary ∂∗∞S so that we can identify the punctured boundary with N ;
through this identification the one-parameter subgroup generated by α is the di-
lation subgroup of ∂∗∞S. Note that if ρ and ρ′ are any two proper left-invariant
continuous real-valued kernels on ∂∗∞S such that ρ(ξ, η) = 0 ⇐⇒ ξ = η and
ρ(etαξ, etαη) = etρ(ξ, η) for all t, ξ, η and similarly for ρ′, then ρ and ρ′ will only dif-
fer by multiplicative constants15. There are several ways to construct such kernels;
one is the Euclid-Cygan kernel of Paulin and Hersonsky [HP97, appendix] which
depends on a negatively curved metric on S. Another one is Hamenstädt’s [Ham89,
p.456] (see Dymarz-Peng for its use on boundaries of Heintze groups [DP11, 2]).
Given the formalism developed in 1.1 we will rather use O(1)-quasisymmetric struc-
tures on the punctured boundary of the form below, which may vary according to
our needs.

Definition 3.3. Let B be a compact subset of N containing 1N in its interior.
We say that a O(1)-quasisymmetric structure β∗ is generated by B if β∗ = N × Z

and for all b = (x, n) ∈ β in this product decomposition, b̂ = xe−αn(B) (note that

k̂.b = xeαkx−1b̂).

We do not fix B, nevertheless the resulting structures for B, B′ are equivalent
since one can find t > 0 such that e−tα(B′) ⊆ B ⊆ eαt(B′). We denote by β∗ such
a structure on ∂∗∞S.

Lemma 3.4. Let Ω be a relatively compact subset of ∂∗∞S. Let β be the quasisym-
metric structure on ∂∞S associated with a visual kernel with basepoint o ∈ S (as
in Example 1.2). Then β|Ω and β∗

|Ω are equivalent.

Proof. See Figure 2. The Euclid-Cygan kernel of ξ, η ∈ Ω with reference horo-
sphere H centered at ω is, up to a bounded additive error (only depending on the
hyperbolicity constant), the distance between a geodesic segment (ξη) and the cloud
⊤Ω ⊂ H casting its geodesic shadow from ω over Ω. Now since Ω has been assumed
relatively compact in ∂∗∞S, ⊤Ω is bounded, so that by the triangle inequality

(ξ, η)o = d((ξη), o) +O(1) = d((ξη),⊤Ω) +O(1).

Finally, the Euclid-Cygan kernel induces the structure β∗. �

Eigencurves. For any nonzero eigenvector v of α, let Γv denote the collection of
smooth curves in N everywhere tangent to the eigenspace generated by v. A curve
γ ∈ Γv can be parametrized by γ(s) = γ(0)esv, and thus Γv is the space of left cosets

15This follows from the same compactness argument which proves that all norm topologies on
a finite-dimensional vector space are uniformly equivalent.
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ω

Ω

⊤Ω

ξ

η

d((ξη),⊤Ω) = − log ρ(ξ, η) +O(1)

Figure 2. Quasisymmetric structures on a relatively compact
open subset of the punctured boundary.

N/{evt}. The homogeneous space Γv has a N -invariant, α-equivariant measure ωv

[Wei40, § 9]: for any λ and nonzero v ∈ ker(α− λ), for any Borel subset A of Γv,

(3.2) ωv(e
αtA) = etr(α)−λωv(A).

3.1.3. Moduli of families of eigencurves and conformal dimension. Let S be a
purely real Heintze group of diagonalizable type with data (N,α). If Ω is
an open subset of ∂∗∞S and v is an eigenvector of α, denote by Γv(Ω) the set
{γ ∩Ω : γ ∈ Γv, γ ∩Ω 6= ∅}; let us abusively denote ωv the measure on Γv(Ω). The
following Lemma corresponds to [Pan89c, 2.10 Exemple].

Lemma 3.5 (Lower bound). Let λ ∈ R>0. Let v ∈ ker(α−λ) be nonzero. LetW be
a α-invariant subspace such thatW⊕Rv = n. Let β∗

v,W be the O(1)-quasisymmetric

structure generated by B0 = {expP exp sv}s∈[0,1], where P ⊂ W is a compact

convex subset. Let Ω ⊂ ∂∗∞ be an open subset and let Ω− be an open subset of Ω

such that Ω− is a concrete ball of β∗
v,W . For every ε > 0, for every k ∈ O+(u),

there exists ℓ ∈ O+(u) such that for every m ∈ O+(u),

(3.3) modℓ,m(tr(α)/λ)−ε;k(Γv(Ω
−), β∗

v,W |Ω) = +∞,

and

(3.4) pmodℓ,m(tr(α)/λ)−ε;k(Γv(Ω
−), β∗

v,W |Ω) = +∞.

Especially CdimO(u)(β
∗
|Ω) > tr(α)/λ.

Proof. Set p = (tr(α)/λ) − ε. For every γ ∈ Γv(Ω
−) let mγ be the Lebesgue

measure supported on γ with total mass 1 (the existence is provided by the fact
that Ω− is relatively compact). For every b ∈ β∗

v,W |Ω, letting n = δ(b), by (3.2),

ωv

{
γ ∈ Γv(Ω

−) : γ ∩ b̂ 6= ∅
}

6 exp{−n(trα− λ)} while for every γ ∈ Γv(Ω
−),
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mγ(γ ∩ 1̂.b) > const.e−λn if γ ∩ b̂ 6= ∅. Consequently,

log

∫

Γv

mγ(γ ∩ b̂)1−p1
γ∩1̂.b6=∅

dγ 6 −n(trα− λ) − (1− p)λn

= −ελn.

Thus (D(p, r)) is fullfilled for r = 1 and for every τ ∈ (0,+∞); Propositions 2.9
and 2.10 then yield (3.3) and (3.4) respectively. The lower bound on the conformal
dimension follows from the definition, viewing Γv(Ω

−) as a subcollection of the full
collection of nonconstant curves in Ω. �

Proposition 3.6. Let S be a purely real Heintze group of diagonalizable type with
data (N,α); assume that the lowest eigenvalue of α is 1. Let β∗ denote a quasisym-
metric structure as provided by Definition 3.3. Let Ω be any open subset of ∂∗∞S.
Then

CdimO(u)(β
∗
|Ω) = tr(α).

Proof. Under the given assumption that α is diagonalizable, by a theorem of Le
Donne and Nicolussi Golo, there exists a true distance on N inducing the quasisym-
metric structure β∗ on ∂∗∞S [DN19, Theorem D] , and scaling as d(etαξ, etαη) =
etd(ξ, η) while Jac(etα) = et·tr(α), so Hdim(d) 6 tr(α). By the previous Lemma 3.5
and Lemma 2.14 bounding above conformal dimension with Hausdorff dimension,
CdimO(u)(β

∗
|Ω) = tr(α). �

Lemma 3.7 (after [Cor18, 6D1]). Let S and S′ be Heintze groups with focal points
ω, ω′. If there exists a sublinear biLipschitz equivalence f0 : S → S′, then there
exists a sublinear biLipschitz equivalence f : S → S′ such that ∂∞f(ω) = ω′.

We recall that ∂∞f extends f to ∂∞S; its existence is given by Theorem 1.13.

Proof. Let f̂0 : S′ → S be a coarse inverse of f0, that is, d(f̂0f0x, x) = o(d(1S , x))

for all x ∈ S (See [Cor17, Section 2]). Note that ∂∞(f̂0)∂∞f0 = id∂∞S . Denote
by SBE(Y ) the group of self-sublinear biLipschitz equivalences of Y ; then S has a
homomorphism to SBE(S) given by s 7→ Ls, where Ls is the left translation by s.
The image of S acts transitively on ∂∞S \{ω}, so the action of SBE(S) on ∂∞S has
i orbits, with i ∈ {1, 2}. Since f0 conjugates the former action to that of SBE(S′)
on ∂∞S

′, the latter also has i orbits. If i = 1 then there is h ∈ SBE(S′) such that
h(∂∞f0(ω)) = ω′; set f = h ◦ f0. Else, if i = 2, then finite orbits are sent to finite
orbits by f0, and ∂∞S

′ \ {ω′} being infinite, f0(ω) = ω′. �

Proposition 3.8 (Generalization of [Pal18, Prop 5.9]). Let S and S′ be purely real
Heintze groups, write S = N ⋊α R and S′ = N ⋊α′ R with normalized α and α′.
If S and S′ are sublinearly biLipschitz equivalent then tr(α) = tr(α′).

Proof. By the previously stated theorem 3.2 of Cornulier we may assume that S and
S′ are of diagonalizable type. Let ϕ : ∂∗∞S → ∂∗∞S

′ be the boundary mapping of
the sublinear biLipschitz equivalence f preserving focal points provided by Lemma
3.7. Let Ω be a relatively compact subset of ∂∗∞S. Then by Lemma 2.13, Theorem
1.13 and Lemma 3.6, letting β∗ and β′∗ be the quasisymmetric structures on ∂∗∞S
and ∂∞S

′ respectively,

tr(α) = CdimΓ
O(u)(β

∗
|Ω) = CdimΓ′

O(u)(β|Ω)

= CdimΓ′

O(u)(β
′
|Ω) = CdimΓ′

O(u)(β
′∗
|Ω) = tr(α′). �
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1

e−1

e−2

∼ s

∼ s1/µ

B(s)

B(1)

s

Figure 3. Concentric balls of a quasidistance on R2 that is in-
variant under translation and dilation by exp(t diag(1, 4/3))t∈R,
and coincides with the ℓ∞ distance for pairs of points at distance
1. Compare Figure 1.

3.1.4. Proof of the main theorem. Let u be an admissible sublinear function.

Lemma 3.9 (Compare [Pan89c, 6.1] for u = 1). Let S be a Heintze group of
diagonalizable type with data (N,α). Let Ω be an open supspace of ∂∗∞S identified
with N and equipped with a quasisymmetric stucture (β, δ, q). Let k ∈ O+(u). For

every p ∈ [1,+∞), if f ∈ V
p;k
ℓ;loc.(Ω) with ℓ > q ∔ k then f is locally invariant along

the left cosets of H, where

(3.5) h = Liespan

{
ker(α− µ) : µ <

tr(α)

p

}
.

Proof. Let µ ∈ (0, tr(α)/p) and let v ∈ ker(α − µ); up to pre-composing f with
dilations and translations assume by contradiction that f(exp(εv)) 6= f(1) for ar-
bitrarily small ε and that 1 ∈ Ω. Up to post-composing f by translations and
dilations of R one can further assume f(1) = 0 and f(exp(εv)) > 1. Construct
a condenser (C, ∂0C, ∂1C) in Ω as follows: W is a supplementary α-invariant sub-
space of v in n, F is a Borel subset of expW , C = {wesv : s ∈ (0, ε), w ∈ F} and

∂iC = {weiǫv}. By Lemma 2.8, for every ℓ ∈ O+(u), pmodℓ,0p;k(Γ) 6 capℓp;k(C),
where Γ is the family of curves between ∂0C and ∂1C, which includes Γv. By

Lemma 3.5, pmodℓ,0
p;k(Γv) = +∞ if ℓ > q ∔ k, and then Vℓ

p;k(f)(C) = +∞, a con-

tradiction. So f was indeed 〈v〉-invariant, and then locally invariant on the left
cosets of H . Finally, allow f to take complex values. �

We assume from now on that N is abelian, identify it (as well as n) with Rd and

decompose Rd =
⊕r

i=1 ker(α − µi) =
⊕r

i=1〈e
1
i . . . e

di

i 〉. Let f j
i ∈ (Rd)∨ denote the

dual basis of linear forms.

Lemma 3.10. Let β be the quasisymmetric structure on Rd generated by B =
[−1/2, 1/2]d. For all i ∈ {1, . . . r}, for all j ∈ {1, . . . di}, for all k, ℓ ∈ O+(u),

f j
i ∈ V

p;k
ℓ;loc.(β,R) for p > tr(α)/µi.

Proof. Let ν be a Haar measure on N , normalized so that ν(B) = 1. Set p =

(1 + ǫ) tr(α)/µi with ǫ > 0. We need prove that Vℓ
p;k(f

j
i ) is locally finite for every



SUBLINEAR QUASICONFORMALITY AND LARGE-SCALE GEOMETRY 23

ǫ and ℓ ∈ O+(u). We may as well prove that Vℓ
p;k(f

j
i )(B) < +∞. Let n ∈ Z>0.

Recall that by definition Vℓ
p;k(f

j
i )(B) is P Φ̃ℓ

p;k(B) for φ(b) = osc(f|b), so that

φ(e−αnB)p = (e−µin)p = e− tr(α)(1+ǫ)n and φ increases with respect to inclusion.

If P ∈ Packingsk,n(B), enclose into each (a−, a+) of P a pair (̂b, k̂.b) and note

that the b̂ are disjoint (indeed, even the k̂.b) are); for n large enough they are also

contained in [−1, 1]d (since the b̂ all intersect B) so

∑

a∈P

ν (̂b) = ν

( ⋃

a∈P

k̂.b

)
6 ν([−1, 1]d) = 2d.

From there, and using that ν (̂b) = e− tr(α)δ(b) for every b ∈ β, and that ℓ is sublinear,
for n large enough

(3.6)
∑

a∈P

φ̃ℓ(a−)p 6 epℓ(n)
∑

a∈P

φ(̂b)p 6
∑

a∈P

ν (̂b) 6 2d.

This is a uniform bound for all packings so Vℓ
p;k(f

j
i )(B) < +∞. �

Remark 3.11. Actually, the p-variation of coordinates (or even Lipschitz) functions
in the corresponding directions is zero, as can be obtained by replacing ν with Hd

with d slightly greater than tr(α) in the previous proof. To get functions with
nonzero yet finite p-variation one should form linear combinations of the examples
constructed in appendix A composed with coordinates.

Remark 3.12. The lower bound on variations obtained in the proof of Lemma 3.9,
resp. the upper bound given by Lemma 3.10 can be compared to Xie’s [Xie14,
Lemma 4.2] resp. [Xie14, Lemma 4.5]. Xie’s technique for the lower bound is
essentially different.

Let S and S′ be two purely real Heintze groups and let ϕ : ∂∗∞S → ∂∗∞S
′

be the extension of a sublinearly biLipschitz equivalence f : S → S′ preserving
the focal points; equip ∂∗∞S with its abelian Lie group structure and split it into
E1 = spanµ<tr(α)/p {ker(α− µ)} and a complementary subspace E2, and similarly

decompose ∂∗∞S
′ = E′

1 ⊕ E′
2. For z ∈ ∂∗∞S, denote by z1 and z2 the projections

onto E1 and E2. Write ϕ(z1, z2) = (ϕ1(z1, z2), ϕ2(z1, z2)) where ϕi : E1 ×E2 → E′
i

for i ∈ {1, 2}. For every (z1, z2) ∈ ∂∗∞S, introduce

C(z) = {y1 ∈ E1 : ϕ2(y1, z2) = ϕ2(z1, z2)}

and note that C(z) is nonempty (as it contains {z1}) and closed.

Lemma 3.13. For all z ∈ ∂∗∞S, C(z) (as defined above) is open in E1.

Proof. As C(z) = C(y1, z2) for every y1 ∈ C(z), it suffices to prove that C(z) is a
neighborhood of z1. Let Ω be a relatively compact open set containing z. Denote
Ω′ = ϕ(Ω). Denote by β and β′ respectively the quasisymmetric structures on Ω
and Ω′ constructed from a Gromov kernel based at 1 ∈ S, S′ and denote by β∗ and
β′∗ quasisymmetric structures on Ω and Ω′ associated with Definition 3.3. Since Ω
and Ω′ have been assumed relatively compact, β and β∗ are equivalent by Lemma
3.4 and there is a sequence of O(u)-quasisymmetric homeomorphisms

(Ω, β∗)
id
−→ (Ω, β)

ϕ
−→ (Ω′, β′)

id
−→ (Ω′, β′∗)



24 GABRIEL PALLIER

Let η, η′, η, η′ be associated to the O(u)-quasisymmetric homeomorphism ϕ−1 :
(Ω′, β′∗) → (Ω, β∗) as in 1.2. Introduce the following sets: F = (z + E1) ∩ Ω,
F ′ = (ϕ(z)+E′

1)∩Ω′, and let F0, resp. F
′
0 be the connected component of F , resp.

F ′ containing z, resp. ϕ(z). F is defined inside Ω by the vanishing of coordinate
functions g1, . . . gs with s = dimE2. Define g′1, . . . g

′
s as g′i = ϕ∗gi ; ϕ(F ) is defined

in Ω′ by the vanishing of g′1, . . . g
′
s. Let q be such that axiom (SC2) holds for β∗.

Fix k, ℓ ∈ O+(u) such that ℓ > q ∔ η′ ◦ η(k). Using the second embedding in the

sequence (2.8) applied to ϕ−1, and the fact that gi ∈ V
p;η(k)
η′(ℓ);loc. for all i ∈ {1, . . . , s}

by Lemma 3.10, one has that g′i ∈ V
p;η′◦η(k)
ℓ;loc. (Ω, β∗) for all i ∈ {1, . . . , s}. By Lemma

3.9, g′i is locally constant on F ′, hence zero on its connected component containing
ϕ(z). This proves that ϕ(F0) ⊆ F ′

0 and the lemma as F0 is open in z + E1. �

By connectedness of E1, Lemma 3.13 implies that C(z) = E1 for all z, ϕ2 only
depends on the second coordinate z2 and the foliation of ∂∗∞S by subspaces parallel
to E1 is preserved. As ϕ2 is necessarily injective, s = dimE2 6 dimE′

2. By
symmetry, dimE2 = dimE′

2. From there one deduces that

(3.7) ∀p ∈ [1,+∞),
∑

µ>tr(α)/p

dim ker(α − µ) =
∑

µ>tr(α′)/p

dim ker(α′ − µ)

which implies that α and α′ have the same characteristic polynomial. Since they
have been assumed diagonalizable with all eigenvalues real and greater or equal
than 1, they are conjugated and the groups S, S′ are isomorphic.

3.2. Comparisons and comments.

3.2.1. ℓp-equivalence relation. There are other algebras on the boundary of hyper-
bolic spaces, the extensions (modulo R) of representatives of ℓpH1(X) to ∂∞X .
Bourdon and Kleiner have studied the corresponding equivalence relations, called
the ℓp-equivalence relations see e.g. [BK13, 10]. For Heintze groups of diagonal-
izable type, comparing our result with that provided by Carrasco Piaggio [CP17],

the ℓp-equivalence relations coincides with those we obtain for V
p;k
ℓ;loc. algebras for

adequate k and ℓ, except perhaps at the critical degrees.

3.2.2. Quasiisometric classification of diagonalizable Heintze groups. The result,
subsumed by Xie’s work [Xie14], that two quasiisometric purely real metabelian
Heintze groups of diagonalisable type are isomorphic is due to Pansu. Sequeira re-
cently recovered it using relative Lp-cohomology [Seq19, Theorem 1.5]. The quasi-
isometry invariance of the characteristic polynomial of α holds in general [CPS17].

3.3. Fuchsian buildings. The point here is to show that CdimO(u) equals Cdim
in this case, following Bourdon’s proof; we provide a few details of this proof.

3.3.1. Fuchsian buildings. We recall below a definition according to Bourdon [Bou00,
2]. Let r > 3 be an integer, let R be a polygon in H2 with r vertices labeled by
Z/rZ and angles π/mi where mi > 2 for every i ∈ Z/rZ. R is the fundamental
domain for a cocompact Fuchsian representation of the Coxeter group

W = 〈si | s
2
i , (sisi+1)

mi〉,

where 〈si〉 stabilizes the edge between vertices i and i + 1. For every i ∈ Z/rZ,
let qi > 2 be an integer. Let m,q : Z/rZ → Z>0 be the corresponding data. A
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cell 2-complex ∆ is the geometric realization of a Fuchsian building (we will not
distinguish between them) if

(FB1) Each 2-cell is isomorphic to the labelled R, and each 1-cell with label i lies
in exactly (1 + qi) 2-cells, those are called chambers.

(FB2) Each pair of distinct 2-chambers is contained in a subcomplex isomorphic
(as a labelled cell complex) to the Coxeter complex of (W, {si}), those are
called apartments.

(FB3) Given two apartments A and A′ with at least one common 2-cell C, the
identity map of C extends to an isomorphism of labelled complexes A→ A′.

The Bourdon buildings are those for which m = 2 (they are called right-angled)
and qi are constants. A building of such type always exists provided p > 5, and is
uniquely defined16; it is usually denoted by Ipq, where the thickness q designates
the constant17 qi+1 and p designates r. Once the chambers are equipped with the
hyperbolic metric, Fuchsian building are CAT(−1) spaces in view of the description
of their links and Ballmann’s criterion, we refer to [Bou00] and reference therein
for these facts as well as many examples.

3.3.2. Weighted combinatorial distance. Starting from a Fuchsian building ∆ one
can associate to it a dual graph G (∆) whose vertices are the chambers of ∆,
edges record adjacency, and they are assigned length log q for edges of type q.
Choosing any embedding of the Cayley graph of W with respect to the {si}
as a subgraph of G (∆) yields a distance on W; for w ∈ W, |w|q denotes the
length of w for this distance. The growth rate of W with respect to q is T :=
lim supn

1
n log ♯ {w ∈ W : |w|q 6 n}; this can be made more explicit [Bou00, 3.1.1]

(for the Bourdon building the growth rate with no weight is argch((p − 2)/2)) so
that T = argch((p−2)/2)/ log(q−1) for Ipq). The distance between two chambers
d, d′ in ∆ is denoted by |d− d′|q, this is |w|q for w such that d = w.d′ in any com-
mon apartment. The distance | · − · |q on G (∆) is quasiisometric to the CAT(−1)
metric on ∆, especially it is Gromov-hyperbolic.

3.3.3. Measure on marked apartments. Given a chamber c in ∆, let Fc denote the
space of embeddings of the Coxeter complex marked at c into ∆. There is a unique
probability measure ν on Fc such that for any chamber d, ν[π ∈ Fc : π ∋ d] =
e−|d−c|q [Bou00, 2.2.4].

3.3.4. Geodesic metric on the boundary. The Gromov product on ∂∞∆ associated
to | · |q is denoted by (ξ, η) 7→ {ξ, η}c. For ξ, η in ∂∞∆, ̺(ξ, η) = exp (−T {ξ, η}c)
and then δ(ξ, η) = inf

∑
̺(ξi, ξi+1) over chains ξ = ξ0 . . . ξs = η in ∂∞∆. Bourdon

proves that δ and ̺ are comparable (this is the most involved part of the proof;
the details for this point are given in [Bou97, p.362]), and that Hdim(∂∞∆) equals
1 + 1/T [Bou00, 2.2.7]. Once this is proven, δ induces the same quasisymmetric
structure on the boundary, and by Lemma 2.14, CdimO(u) ∂∞∆ 6 1 + 1/T .

16In general a building of type (r,m,q) may or may not exist, and may or may not be unique
up to isomorphism of labelled complexes.

17The shift between q and qi is here to conform with the building of SL(3,Qℓ) where links are
incidence graphs of the projective planes over the residue field so that edges are incident to 1 + ℓ

cells.
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γ

(
er(δ(b)) − 1

)
e−δ(b)

b̂

r̂.b

Figure 4. Inequality (3.8).

3.3.5. Diffusivity condition and lower bound.

Lemma 3.14 (After Bourdon [Bou00, 2.2.2]). Let (Z, d) be an Ahlfors-regular
metric space. Let β be the associated quasisymmetric structure. Let Γ be a family
of rectifiable curves in Z whose lengths are nonzero and bounded above by a uniform
constant. Let dγ be a measure on Γ. Let p′ be greater than 1. If there exists η < +∞
such that

(D′(p′)) ∀b ∈ β, log

∫

Γ

1γ∩b̂6=∅dγ − (1− p′)δ(b) 6 η,

then CdimΓ
O(u)(β) > p′.

Let us check that (D′(p′)) implies (D(p, r)) provided p > p′ and r ∈ O+(u) is
nonzero. Since γ ∈ Γ has been assumed rectifiable, they bear normalized arclength
measures mγ of total mass 1. By the reverse triangle inequality, for every γ ∈ Γ
(see Figure 4),

(3.8) mγ(γ ∩ r̂.b) > 1
γ*r̂.b

· 1γ∩b̂6=∅

(
er(δ(b)) − 1

)
e−δ(b) length(γ)−1,

hence if δ(b) is large enough to ensure that γ * r̂.b, one has:

mγ

(
γ ∩ r̂.b

)1−p

1γ∩b̂6=∅ 6
(
er(δ(b)) − 1

)1−p

e(p−1)δ(b)length(γ)p−1

6 C (1 − 1/e)1−p exp ((p− 1)(δ(b)− r(δ(b))))

where C = supγ∈Γ length(γ)
p−1 is finite by hypothesis. Now, using (D′(p′)) with

p′ < p, ∫

Γ

mγ(γ ∩ r̂.b)1−p1γ∩b̂6=∅dγ 6 C eηe(p
′−p)δ(b)+r(δ(b)).

The right-hand side goes to 0 because r is sublinear, so (D(p, r)) holds for every
τ ∈ R>0.

Going back to Fuchsian buildings it remains to specify Γ, dγ and p′. Following
Bourdon, given a reference chamber in ∆, Γ is the collection of boundaries of
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apartments containing the reference chamber c :

Γ = {∂∞im(π) : π ∈ Fc} ,

dγ is the measure on Γ corresponding to ν on Fc. The fact that the γ ∈ Γ are
rectifiable follows from [Bou00, 2.2.6(ii)]. The condition (D′(p′)) for p′ = 1 + 1/T
is checked by Bourdon [Bou00, 2.3.8]. By Lemma 2.9, CdimO(u)(∂∞∆) > 1 +
1/T − ε for every positive real ε arbitrarily small. This finishes the proof that
CdimO(u) ∂∞∆ = 1 + 1/T . Formula (0.2) folows for the Bourdon buildings.

Appendix A. Examples and non-properties of O(u)-quasisymmetric
homeomorphisms

We construct and examine here certain O(u)-quasisymmetric homeomorphisms
of the Euclidean plane. The construction uses the observation that products of
biLipschitz homeomorphisms are quasisymmetric homeomorphisms. We observe
that the homeomorphisms constructed do not possess the ACL property.

The first step of the construction is to build a homeomorphism of the circle with
controlled (almost Lipschitz in a precise sense) modulus of continuity. Let T be a
rooted infinite binary tree, whose set of vertices V is identified with the set of finite
words over the alphabet {0, 1}. Let (ǫj) ∈ (0, 1/2)N be a decreasing sequence with
limit 0. To every η ∈ {−1, 1}V we associate a homeomorphism Φη of the circle as
follows:

(1) for each v of length |v| one associates a real number τv with the binary

expansion v : τv =
∑|v|

i=1 vi2
−i.

(2) Let Mη(v) be the uniform measure on [0, 2−|v|] with total mass

‖Mη(v)‖ =
∏

w∈Pref(v)\{v}

(
1

2
+ η(w)ǫ|w|

)
,

where Pref(v) denotes the set of prefixes of v (including the empty one).
(3) For any nonnegative integer ℓ, M t

η :=
∑

v∈V :|v|=t τ
v
∗Mη(v), where τ

v
∗ is the

pushforward by the translation x 7→ x+ τv.
(4) Let Φt

η be the repartition function ofM t
η; then Φt

η(τv) is constant for t > |v|,

so ‖Φt
η − Φt+1

η ‖∞ 6 supv:|v|=t ‖Mη(v)‖ 6 (2/3)t for t large enough. By

normal convergence, there exists a uniform limit Φη ∈ Homeo+([0, 1]) of
the Φt

η as t → +∞. Realizing S1 as [0, 1]/ ∼ where 0 ∼ 1 and considering
η a random variable one may view Φη as a random homeomorphism of the
circle.

Proposition A.1. If ǫj /∈ ℓ1(N) then Φη is not absolutely continuous.

Proof. Let λ be the Haar measure on S1, and for t ∈ N>1, let Φ
t
η be the approx-

imation of Φη at time t given by (Φt)′ = M t. Note that whenever k is an integer
with 0 6 k 6 2t, one has Φ(2−tk) = Φt(2−tk). To every x ∈ S1 one can associate
a geodesic γx ⊂ T representing its base 2 expansion (the finite one for dyadic x).
Fix ρ ∈ (0, 1). Define Aη(ρ) = {x ∈ [0, 1] : ∀t ∈ N, 2t‖Mη(γx(t))‖ > ρ}. This is the
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complementary set in [0, 1] of

Bη(ρ) =
{
x ∈ [0, 1] : ∃t ∈ N, 2t‖Mη(γx(t))‖ 6 ρ

}

=
⋃

v∈V :‖Mη(v)‖62−|v|ρ

[
τv, τv + 2−|v|

]

=
⊔

v∈V :∀w∈Pref(v)(‖Mη(w)‖62−|w|ρ =⇒ w=v)

[
τv, τv + 2−|v|

]

where we used that
[
τw , τw + 2−|w|

]
⊇
[
τv, τv + 2−|v|

]
if and only if w ∈ Pref(v),

with equality if and only if v = w. For any v ∈ V in the set indexing the unions
above, 2|v|‖Mη(v)‖ 6 ρ. Now by definition

2|v|‖Mη(v)‖ =
λ
(
Φ|v|[τv , τv + 2−|v|]

)

λ
(
[τv, τv + 2−|v|]

)

so that (omitting the indexation)
∑

v λ
(
Φ|v|[τv, τv + 2−|v|]

)
6 ρ

∑
v λ
(
[τv, τv + 2−|v|

)
.

It follows that the λ-measure of Φη(B(ρ)) is smaller than ρ for all ρ:

λ(Φ(Bη(ρ))) =
∑

v∈V :∀w∈Pref(v)(‖Mη(w)‖62−|w|ρ =⇒ w=v)

λ
(
Φ|v|

[
τv , τv + 2−|v|

])

6
∑

v∈V :∀w∈Pref(v)(‖Mη(w)‖62−|w|ρ =⇒ w=v)

2−|v|ρ 6 ρ,

where we used that the intervals
[
τv, τv + 2−|v|

]
under consideration are disjoint

so that the sum of their measures is 6 1. On the other hand, if ǫj /∈ ℓ1(N) then

λ(Bη(ρ)) = 1− λ (Aη(ρ)) = 1− 0 = 1,

since for almost every x, the sequence (2t‖Mη(γx(t))‖) is not bounded away from
0 : up to a null set (the dyadics) one may identify ([0, 1], λ) with the shift space of
geodesics rays in T and consider Aη(ρ) as an event of probability zero. Especially

λ
(⋂

ρ↓0Bω(ρ)
)
= 1, whereas the image of this set by Φ has λ-measure 0. �

From now on assume that ǫj /∈ ℓ1(N) but decays sufficiently fast so that the
partial sums remain controlled by u :

(A.1)
∑

j6t

ǫj = O(u(t)),

where we recall that u is strictly sublinear. For instance if ǫj = (3 + j)−α with
α ∈ (0, 1) one may take u(t) = t1−α.

Proposition A.2. Assume that ǫj decays sufficiently fast so that (A.1) holds. Then
there exists v ∈ O(u) such that for all η ∈ {0, 1}V

(A.2) log l(Φη, s) 6 log s+ v(− log s)

and

(A.3) log s− v(− log s) 6 logL(Φη, s)

where l(Φη, s) = sup {|Φη(x)− Φη(y)| : |x− y| 6 s} and
L(Φη, s) = inf {|Φη(x) − Φη(y)| : |x− y| > s}.
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Proof. Define t = −⌈log2 s⌉. If |x − y| 6 s, then [x, y] is contained in the union
of two adjacent dyadic intervals of length 2−t. Let γ and γ′ be the corresponding
geodesic segments in T . Then

|Φη(x)− Φη(y)| 6 ‖Mη(γ(t))‖ + ‖Mη(γ
′(t))‖ 6 2

t−1∏

j=0

(
1

2
+ ǫj

)
,

Hence log |Φη(x)− Φη(y)| 6 (1 − t) log 2 +
∑t−1

j=0 log(1 + 2ǫj) 6 log s + v(− log s)

where v = O(u). Similarly, if |x − y| > s then [x, y] contains a dyadic interval of
length 2−1−t with associated geodesic segment γ so that

|Φη(x)− Φη(y)| > ‖Mη(γ)‖ >

t−1∏

j=0

(
1

2
− ǫj

)
,

providing (A.2). �

Remark A.3. The aim of Proposition A.2 is only to give a modulus of continuity
(and a reverse modulus of continuity) for Φη. However we expect the deviation of
log |Φη(x) − Φη(y)| from log |x−y| to be typically much lower because of Lindeberg’s
version of the central limit theorem [Lin22, Satz II].

Remark A.4. Mη is homogeneously multifractal in the sense of Buczolich and Seuret
[BS15], and its multifractal spectrum is concentrated at {1}. Especially Proposition
A.2 provides examples for [BS15, Proposition 9].

We can now produce homeomorphisms of R in the following way: for every

k ∈ Z, choose ηk ∈ {−1, 1}V , produce a measure Mηk
on [0, 1], and then set

µ =
∑

k∈Z k∗µηk
. Finally ψ : R2 → R2 is such that ψ(s) =

∫ s

0
dµ. This may be

considered a random process if ηk are considered random variables.

Proposition A.5. Let Ψ : R2 → R2 be defined by Ψ(x1, x2) = (ψ1(x1), ψ2(x2))
where ψ1 and ψ2 are as above. Then Ψ is a O(u)-quasisymmetric18 homeomor-
phism.

Proof. Equip R2 with the sup norm. Rephrasing Definitions 1.9 and 1.10 we need
to prove that for every K ∈ R>1 and k ∈ O(u) there exists L ∈ R>1 and ℓ ∈ O(u)
such that for any sequence (xn, yn, zn) of points in R2,





K−1n 6 − log ‖yn − xn‖

− log ‖yn − xn‖ 6 Kn∣∣∣log ‖yn−xn‖
‖zn−xn‖

∣∣∣ 6 k(n),

=⇒





L−1n 6 − log (‖Ψ(yn)−Ψ(xn)‖)

− log (‖Ψ(yn)−Ψ(xn)‖) 6 Ln∣∣∣log ‖Ψ(yn)−Ψ(xn)‖
‖Ψ(zn)−Ψ(xn)‖

∣∣∣ 6 ℓ(i).

Write xn = (xn1 , x
n
2 ), similarly for yn and zn. Let v ∈ O(u) be such that (A.3)

holds for every ψα, i.e.

(A.4) ∀α ∈ {1, 2}, |log |ψα(y)− ψα(x)| − log |y − x|| 6 v(− log |y − x|).

Split N into three index subsets:

Iy1 = {n ∈ N : − log |yn2 − xn2 | > − log |yn1 − xn1 |+ 2v(n)}

Iy2 = {n ∈ N : − log |yn2 − xn2 | < − log |yn1 − xn1 | − 2v(n)}

18The O(1)-quasisymmetric structure, and then the O(u)-quasisymmetric structure on R2,
will not depend on the norm, compare [Hei01, p.78].



30 GABRIEL PALLIER

Iy0 = {n ∈ N : |log |yn2 − xn2 | − log |yn1 − xn1 || 6 2v(n)} .

Also, define Izα and Jz
α in the same way for α ∈ {0, 1, 2}. Note that since u is

non-negative, if α 6= 0

(A.5) ∀n ∈ Iyα,

{
‖yn − xn‖ = |ynα − xnα|

‖Ψ(yn)−Ψ(xn)‖ = |ψα(y
n
α)− ψα(x

n
α)|

and similar equalities hold for n in Izα, whereas if n ∈ Iy0 , resp. n ∈ Iz0 then
log ‖yn−xn‖− log |ynα−x

n
α| 6 2v(Kn+2v(n)), resp. log ‖zn−xn‖− log |znα−xnα| 6

2v(Kn+ 2v(n)) for any α ∈ {1, 2}. By (A.5), if α, β ∈ {1, 2} then for n ∈ Iyα ∩ Izβ

‖yn − xn‖

‖zn − xn‖
=

|ynα − xnα|

|znβ − xnβ |
and

‖Ψ(yn)−Ψ(xn)‖

‖Ψ(zn)−Ψ(xn)‖
=

|ψα(y
n
α)− ψα(x

n
α)|

|ψβ(znβ )− ψβ(xnβ)|

so that, taking logarithms and by (A.5) and (A.4) and (A.5) again
∣∣∣∣log

‖Ψ(yn)−Ψ(xn)‖

‖Ψ(zn)−Ψ(xn)‖
:
‖yn − xn‖

‖zn − xn‖

∣∣∣∣ 6
∣∣∣∣∣log

‖Ψ(yn)−Ψ(xn)‖

‖Ψ(zn)−Ψ(xn)‖
− log

|ynα − xnα|

|znβ − xnβ |

∣∣∣∣∣
6 2v

(
− inf{log |ynα − xnα|, log |z

n
β − xnβ |}

)

6 2v (− inf {log ‖yn − xn‖, log ‖zn − xn‖})

6 2v(Kn+ k(n)).

It remains to treat the case n ∈ Iyα ∩ Izβ with inf{α, β} = 0; in this event define

γ = sup{1, α, β}. Then
∣∣∣∣log

‖Ψ(yn)−Ψ(xn)‖

‖Ψ(zn)−Ψ(xn)‖
:
‖yn − xn‖

‖zn − xn‖

∣∣∣∣ 6
∣∣∣∣log

‖Ψ(yn)−Ψ(xn)‖

‖Ψ(zn)−Ψ(xn)‖
− log

|ynγ − xnγ |

|znγ − xnγ |

∣∣∣∣
+ 4v(Kn+ 2v(n))

6 2v(Kn+ k(n)) + 2v(Kn+ 2v(n)).

Setting L = K and ℓ(n) = k(n) + v(Kn+ k(n)) + 4v(Kn+ 2v(n)) this finishes the
proof. �

Whereas quasiconformal mappings between open domains of19 R2 have the ACL
property (see Väisälä [Väi71, 32.4]; this is instrumental for Mostow rigidity in rank
one [Mos71, § 21]), Propositions A.1 and A.5 imply that it fails for general O(u)-
quasisymmetric homeomorphisms. This is why our main efforts in the article are
rather directed to global invariants.
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