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Abstract—Given a target prior information, our goal is to
propose a method for automatically separating targets of interests
from the background in hyperspectral imagery. More precisely,
we regard the given hyperspectral image (HSI) as being made
up of the sum of low-rank background HSI and a sparse target
HSI that contains the targets based on a pre-learned target
dictionary constructed from some online spectral libraries. Based
on the proposed method, two strategies are briefly outlined and
evaluated to realize the target detection on both synthetic and
real experiments.

Index Terms—Hyperspectral target detection, target separa-
tion, low rank background HSI, sparse target HSI.

I. INTRODUCTION

An airborne hyperspectral imaging sensor is capable of
simultaneously acquiring the same spatial scene in a contigu-
ous and multiple narrow (0.01 - 0.02µm) spectral wavelength
(color) bands [1], [2], [3], [4], [5]. When all the spectral bands
are stacked together, the result is a hyperspectral image (HSI)
whose cross-section is a function of the spatial coordinates and
its depth is a function of wavelength. Hence, an HSI is a three
dimensional data cube having two spatial and one spectral
dimensions. Each band of the HSI corresponds to an image of
the surface covered by the field of view of the hyperspectral
sensor; whereas each “pixel” in the HSI is a p-dimensional
vector, x ∈ Rp (p stands for the total number of spectral
bands), consisting of a spectrum characterizing the materials
within the pixel.
The HSI usually contains both pure and mixed pixels. A
pure pixel contains only one single material, whereas a
mixed pixel contains multiple materials, with its spectral
signature representing the aggregate of all the materials in
the corresponding spatial location. The latter situation often
arises because hyperspectral images are collected hundred to
thousands of meters away from an object, so that the object
becomes smaller than the size of a pixel. Other scenarios might
involve for example a military target hidden under foliage or
covered with camouflage material.
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Université Paris-Saclay, F-91190 Gif-sur-Yvette, France. E-mail:
ahmad.bitar@centralesupelec.fr.

L.-F. Cheong is with the Electrical and Computer Engineering Department,
National University of Singapore, Singapore. E-mail: eleclf@nus.edu.sg.

J.-P. Ovarlez is with ONERA, Université Paris-Saclay (DEMR/MATS,
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With the rich information afforded by the high spectral
dimensionality, hyperspectral imagery has found many appli-
cations in various fields such as agriculture [6], [7], mineralogy
[8], military [9], [10], [11], and in particular, target detection
[1], [2], [12], [13], [9], [14], [15], [16]. Usually, the detection
is built using a binary hypothesis test that chooses between the
following competing null and alternative hypothesis: target ab-
sent (H0), that is, the test pixel x consists only of background;
and target present (H1) where x may be either fully or partially
occupied by the target material.
It is well known that the signal model for hyperspectral test
pixels is fundamentally different from the additive model used
in radar and communications applications [13], [3]. We can
regard each test pixel x as being made up of x = α t +
(1−α)b, where 0 ≤ α ≤ 1 designates the target fill-fraction,
t is the spectrum of the target, and b the spectrum of the
background. In case when α = 1, the pixel x is fully occupied
by the target material and is usually referred as full or resolved
target pixel. When 0 < α < 1, the pixel x is partially occupied
by the target material, and is usually referred as subpixel or
unresolved target .

Different Gaussian-based target detectors (e.g. Matched Fil-
ter [17], [18], Normalized Matched Filter [19], Kelly detector
[20]) have been developed. In these classical detectors, the
target of interest to detect is known, that is, its spectral
signature is fully provided to the user. However, these detectors
present several limitations in real world hyperspectral imagery.
Firstly, they depend on the unknown covariance matrix (of the
background surrounding the test pixel) whose entries have to
be carefully estimated specially in large dimensions [21], [22],
[23] and to ensure success under different environment [24],
[25], [26]. Secondly, there is always an explicit assumption
(specifically, Gaussian) on the statistical distribution charac-
teristics of the observed data. For instance, most materials are
treated as Lambertian because their bidirectional reflectance
distribution function characterizations are usually not avail-
able, but the actual reflection is likely to have both a diffuse
and a specular component. This latter component would result
in gross corruption of the data. In addition, spectra from
multiple materials are usually assumed to interact according
to a linear mixing model; nonlinear mixing effects are not
represented and will contribute to another source of noise.
Lastly, the use of only a single reference spectrum for the
target of interest may be inadequate since in real world
hyperspectral imagery, various effects that produce variability
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to the material spectra (e.g. atmospheric conditions, sensor
noise, material composition, etc.) are inevitable. For instance,
target signatures are typically measured in laboratories or in
the field with hand-held spectrometers that are at most a few
inches from the target surface. Hyperspectral images, however,
are collected at huge distances away from the target and have
significant atmospheric effects present.

To more effectively separate these non-Gaussian noise from
signal, and to have a target detector that is invariant to
atmospheric effects, dictionaries of target and background have
been developed (denoted as At and Ab in this paper) and the
test signal is then modeled as a sparse linear combination of
the prototype signals taken from the dictionaries [27], [28],
[29]. This sparse representation approach can alleviate the
spectral variability caused by atmospheric effects, and can also
better deal with a greater range of noise phenomena. Our work
falls under this broad family of dictionary-based approach.
Although these dictionary-based-methods can in principle ad-
dress all the aforementioned limitations, the main drawback
is that they usually lack a sufficiently universal dictionary,
especially for the background Ab; some form of in-scene
adaptation would be desirable. Chen et al. [27], [28] have
demonstrated in their sparse representation approach, that
using an adaptive scheme (a local method) to construct Ab

usually yields better target detection results than with a global
dictionary generally constructed from some background mate-
rials (e.g. trees, grass, road, buildings, vegetation, etc.). This is
to be expected since the subspace spanned by the background
dictionary Ab becomes adaptive to the local statistics. Zhang
et al. [29] have used the same adaptive scheme in their sparse
representation based binary hypothesis (SRBBH) approach.

In fact, the construction of a locally adaptive Ab is a very
challenging problem since a contamination of it by the target
pixels can potentially affect the target detection performance.
Usually, the adaptive scheme is based on a dual concentric
window centered on the test pixel (Figure 1), with an inner
window region (IWR) centered within an outer window region
(OWR), and only the pixels in the OWR will constitute the
samples for Ab. In other words, if the size of OWR is m×m
and the size of IWR is l×l, where l < m, then the total number
of pixels in the OWR that will form Ab is m2−l2. Clearly, the
dimension of IWR is very important and has a strong impact
on the target detection performance since it aims to enclose
the targets of interests to be detected. It should be set larger
than or equal to the size of all the desired targets of interests in
the corresponding HSI, so as to exclude the target pixels from
erroneously appearing in Ab. However, information about the
target size in the image is usually not at our disposal. It is also
very unwieldy to set this size parameter when the target could
be of irregular shape (e.g. searching for lost plane parts of a
missing aircraft). Another tricky situation is when there are
multiple targets in close proximity in the image (e.g. military
vehicles in long convoy formation).

In this paper, we handle the aforementioned challenges in
constructing Ab by providing a method capable of removing
the targets from the background, and hence, avoiding the use of
an IWR to construct Ab as well as dealing with a larger range
of target size, shape, number, and placement in the image.

Fig. 1. The sliding dual concentric window across the HSI

Based on a modification of the recently developed Robust
Principal Component Analysis (RPCA) [30], our method de-
composes an input HSI into a background HSI (denoted by
L) and a sparse target HSI (denoted by E) that contains the
targets of interests.
While we do not need to make assumptions about the size,
shape, or number of the targets, our method is subject to
certain generic constraints that make less specific assumption
on the background or target. These constraints are similar to
those used in RPCA [30], [31], including: 1) the background
is not too heavily cluttered with many different materials with
multiple spectra, so that the background signals should span a
low-dimensional subspace, a property that can be expressed
as the low rank condition of a suitably formulated matrix
[32], [33], [34], [35], [36], [37]; 2) the total image area of
all the target(s) should be small relative to the whole image
(i.e. spatially sparse), e.g., several hundred pixels in a million
pixel image, though there is no restriction on target shape or
the proximity between targets.

Our method also assumes that the target spectra is avail-
able to the user and that the atmospheric influence can be
accounted for by the target dictionary At. This pre-learned
target dictionary At is used to cast the general RPCA into
a more specific form, specifically, we further factorize the
sparse component E from RPCA into the product of At and a
sparse activation matrix C [38]. This modification is essential
to disambiguate the true targets from other small objects, as the
following discussion will show. In our application, there are
often other small, heterogeneous, high contrast regions that
are non-targets. These would have been deemed as outliers
(targets) under the general RPCA framework. Compounding
the decomposition is also the often uniform material present
in most targets, which means that they would contribute only
a small increase in the rank of the background HSI L if they
were to be grouped in the background HSI. Indeed, some other
heterogeneous non-target objects or specular highlights may
contribute a larger increase in rank and thus they are more
liable to be treated as outliers (targets) in the decomposition
under general RPCA. In other words, there is a substantial
overlap between the L and E for the general RPCA to be
well-posed or work well.

Let us take an example in Figure 2 that uses the RPCA
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GroundTruth

Fig. 2. Columns from left to right: the original HSI (mean power in db), the ground truth image for the target of interest, the low rank background HSI L
(mean power in db), and the sparse target HSI E, the sparse target HSI E after some thresholding (mean power in db).

model solved via Stable Principal Component Pursuit [39] on
four real hyperspectral images. As can be seen, despite the
effort to individually tune the parameters for best separation
for each of the four images, it is not possible to obtain a clean
separation. And even with a lot of false alarms in the sparse
target image, the background is still not completely cleansed
of the target.

1) The first HSI [40], [33] (Cri HSI) is acquired by the
Nuance Cri hyperspectral sensor. It covers an area of
400× 400 pixels with 46 spectral bands in wavelengths
ranging from 650 to 1100nm. It contains ten rocks
targets in a simple background and thus poses no
problem for the general RPCA. However, the other
images represent more complex background.

2) The second HSI (Pavia HSI) is a selected small zone
from Pavia Center City. It is a 100 × 126 image and
consists of 102 spectral bands in wavelengths ranging
from 430 to 860nm. The main background materials
are bridge and water. There are some vehicles on the
bridge and bare soil near the bridge pier and hence
they are considered as targets to be detected. We can
obviously observe that both the vehicles, bare soil and
the bridge pier are being deposited in the sparse image.

3) The third HSI [41] (Data HSI) which is a 201 × 200
image and consisting of 167 spectral bands, depicts

a scrubby terrain with small heterogeneous regions
comprised of trees and one vehicle, the latter is being
the target of interest in this case. We observe that both
the vehicle and trees are being deposited in the sparse
target image.

4) The fourth HSI [42], [43] (Cuprite HSI) is a region of
the Cuprite mining district area, of size 250×291 pixels
and consisting of 186 spectral bands in wavelengths
ranging from 0.4046 to 2.4573µm. In this small zone
area, three buddingtonite outcrops (spectrally dominated
by buddingtonite) are considered as targets, and their
locations are shown in the groundtruth1. It has been
noted by Gregg et. al. in [42] that the ammonia in
buddingtonite has a distinct N-H combination absorption
at 2.12µm, a position similar to that of the cellulose
absorption in dried vegetation, from which it can be
distinguished based on its narrower band width and
asymmetry. Hence, the buddingtonite 2.12µm combina-
tion absorption is unique in wavelength location relative
to those of most other minerals in the image (that is, it is
easily recognized based on its unique 2.12µm absorption
band). This might be a reason of why the general
RPCA is able to find those buddingtonite outcrops in
addition to the small heterogeneous and high contrast

1Note that there may also be smaller buddingtonite outcrops in the NE
quadrant of the eastern alteration center, but they are spectrally dominated by
alunite’s absorption.
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regions which are also deposited in the sparse target
image. In addition, one can imagine that the lignin
N-H absorption in vegetation would look somewhat
like the N-H combination absorption in buddingtonite,
but that using more spectral bands better differentiates
buddingtonite from lignin in plants. Both are relatively
broad absorptions isolated in wavelength space from
other absorptions. However, there is actually vegetation
at Cuprite – probably between 10 to 15% ground cover,
though the buddingtonite areas in this image zone are
relatively vegetation free. Thus, the three buddingtonite
outcrops in this image zone can be considered to be
homogeneous surrounded by areas with more vegetation
on the western side of the eastern alteration center.
Note that in the experiments later, only the fourth HSI is
evaluated since for the first three hyperspectral images,
there are no available samples for the targets in the
online spectral libraries.

In this regard, the incorporation of the target dictionary prior
can, we feel, greatly help in identifying the true targets and
separate them from the background. From the proposed model,
we aim to use the background HSI L for a more accurate
construction of Ab, following which various dictionary-based-
methods can be used to carry out a more elaborate binary
hypothesis test. Via the background HSI L, a locally adaptive
Ab can be constructed without the need of using an IWR, and
also avoiding contamination by the target pixels.
An alternative strategy would be to directly use the target HSI
(the product of At and the sparse activation matrix C) as a
detector. That is, we detect the non-zero entries of the sparse
target image, and targets are deemed to be present at these
non-zero support.

This paper is structured along the following lines. First
comes an overview of some related works in section II.
In Section III, the proposed decomposition model as well
as the two strategies that realize the target detection are
briefly outlined. Section IV presents both synthetic and real
experiments to gauge the effectiveness of the two outlined
strategies. The paper ends with a summary of the work and
some directions for future work.

Summary of Main Notations: Throughout this paper, we
depict vectors in lowercase boldface letters and matrices
in uppercase boldface letters. The notation (.)T and Tr(.)
stand for the transpose and trace of a matrix, respectively.
In addition, rank(.) is for the rank of a matrix. A variety
of norms on matrices will be used. For instance, M is
a matrix, [M]:,j is the j-th column. The matrix l2,0, l2,1
norms are defined by ‖M‖2,0 = #

{
j :

∥∥∥[M]:,j

∥∥∥
2
6= 0

}
,

‖M‖2,1 =
∑
j

∥∥∥[M]:,j

∥∥∥
2
, respectively. The Frobenius norm

and the nuclear norm (the sum of singular values of a
matrix) are denoted by ‖M‖F and ‖M‖∗ = Tr

(√
MT M

)
,

respectively.

II. RELATED WORKS

Besides the generic RPCA and its variants discussed in
the preceding section, there have been other modifications of

RPCA. For example, the generalized model of RPCA, named
as the Low-Rank Representation (LRR) [44], allows the use of
a subspace basis as dictionary or just uses self-representation
to obtain the low rank representation. The major drawback in
LRR is that the incorporated dictionary has to be constructed
from the background and be pure from the target samples.
This challenge is similar to our background dictionary Ab

construction problem. If we use the self-representation form of
LRR, the presence of target in the input image may only bring
about a small increase in rank (as discussed in the preceding
section) and thus be retained in the background.

In the earliest models using low rank matrix to represent
background [30], [31], [39], no prior knowledge on the
target was considered. In some applications such as Speech
enhancement and hyperspectral imagery, we may expect some
prior information about the target of interest and which can
be provided to the user. Thus, incorporating this information
about the target into the separation scheme in the general
RPCA model should allow us to potentially improve the
target extraction performance. For example, in [45], [46], the
authors proposed a Speech enhancement system by exploiting
the knowledge about the likely form of the targeted speech.
This was accomplished by factorizing the sparse component
from RPCA into the product of a dictionary of target speech
templates and a sparse activation matrix. The proposed
methods in [45] and [46] typically differ on how the fixed
target dictionary of speech spectral templates is constructed.
Our model separation in section III is very related to [45],
[46]. In real world hyperspectral imagery, the prior target
information may not be only related to its spatial properties
(e.g. size, shape, texture) and which is usually not at our
disposal, but to its spectral shape signature. The latter usually
hinges on the nature of the given HSI where the spectra of
the targets of interests present have been already measured
by some laboratories or with some hand-held spectrometers.
In addition, by using physical models and the MORTRAN
atmospheric modeling program [47], a number of samples for
a specific target can be generated under various atmospheric
conditions.

Now we provide an overview of the SRBBH detector
that will be used for evaluation throughout the experiments
later:

A. An overview of the SRBBH detector [29]

The SRBBH detector is defined as follows:

DSRBBH(x) =
∥∥∥x−Ab θ̂

∥∥∥
2
− ‖x−A γ̂‖2 , (1)

with

θ̂ = argmin
θ
‖x−Ab θ‖2 s.t. ‖θ‖0 ≤ k0 ,

γ̂ = argmin
γ
‖x−Aγ‖2 s.t. ‖γ‖0 ≤ k′0 .

where Ab ∈ Rp×Nb , A = [Ab At] ∈ Rp×(Nb+Nt). Both
θ ∈ RNb and γ ∈ RNb+Nt tend to be a sparse vectors.
Actually, k0 and k′0 are a given upper bound on the sparsity
level [48]. For simplicity, and as in [29], k0 and k′0 are
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set equally to each other. In the experiments later, we set
k0 = k′0 = 8.
In this paper, we solve each of θ and γ using the Orthogonal
Matching Pursuit [49] greedy algorithm. If DSRBBH(x) > η
with η being a prescribed threshold value, then x is declared
as target; otherwise, x will be labeled as background.
In fact, the SRBBH detector was developed very recently to
combine the idea of binary hypothesis and sparse represen-
tation, obtaining a more complete and realistic model than
[27]. More precisely, if the test pixel belongs to H0, it will be
modeled by the background dictionary Ab only; otherwise, it
will be modeled by the union of Ab and At. This in fact yields
a competition between the two hypothesis corresponding to the
different pixel class label.

III. MAIN CONTRIBUTION

A. Problem formulation

Suppose an HSI of size h×w × p, where h and w are the
height and width of the image scene, respectively, and p is the
number of spectral bands. Let us consider that the given HSI
contains q target pixels, {xi}i∈[1, q], xi = αi ti + (1− αi)bi

with 0 < αi ≤ 1, where ti represents the known target that
replaces a fraction αi of the background bi (i.e. at the same
spatial location). The remaining (e − q) pixels in the given
HSI, with e = h × w, are thus only background (α = 0).
By assuming that all {ti}i∈[1, q] consist of similar materials,
thus they should be represented by a linear combination of
Nt common target samples

{
atj
}
j∈[1, Nt]

, where atj ∈ Rp

(the superscript t is for target), but weighted with different
set of coefficients {βi,j}j∈[1,Nt]

. Thus, each of the q targets
is represented as:

xi = αi

Nt∑
j=1

(
βi,j a

t
j

)
+ (1− αi)bi i ∈ [1, q] . (2)

We rearrange the given HSI into a two-dimensional matrix
D ∈ Re×p, with e = h×w (by lexicographically ordering the
columns). This matrix D, can be decomposed into a low rank
matrix L0 representing the pure background, a sparse matrix
capturing any spatially small signals residing in the known
target subspace, and a noise matrix N0. More precisely, the
model used is

D = L0 + (At C0)
T
+N0 , (3)

where (At C0)
T is the sparse target matrix, ideally with q non-

zero rows representing
{
αi t

T
i

}
i∈[1,q] , with target dictionary

At ∈ Rp×Nt having columns representing target samples
{atj}j∈[1,Nt], and coefficient matrix C0 ∈ RNt×e that should
be a sparse column matrix, again ideally containing q non-zero
columns each representing αi [βi,1, · · · , βi,Nt

]
T , i ∈ [1, q].

N0 is assumed to be independent and identically distributed
Gaussian noise with zero mean and unknown standard devia-
tion.
After reshaping L0, (At C0)

T and N0 back to a cube of size
h × w × p, we call these entities the “low rank background
HSI”, “sparse target HSI”, and “noise HSI”, respectively.
In order to recover the low rank matrix L0 and sparse target

matrix (At C0)
T , we consider the following minimization

problem:

min
L,C

{
τ rank (L) + λ ‖C‖2,0 +

∥∥∥D− L− (At C)
T
∥∥∥2
F

}
,

(4)
where τ controls the rank of L, and λ the sparsity level in C.

B. Recovering low rank background matrix and sparse target
matrix by convex optimization

Problem (4) is NP-hard due to the presence of the rank
term and the ‖.‖2,0 term. We relax these terms to their convex
proxies, specifically, using nuclear norm ‖L‖∗ as a surrogate
for the rank(L) term, and the l2,1 norm for the l2,0 norm. We
now need to solve the following convex minimization problem:

min
L,C

{
τ ‖L‖∗ + λ ‖C‖2,1 +

∥∥∥D− L− (At C)
T
∥∥∥2
F

}
. (5)

Problem (5) is solved via an alternating minimization of two
sub-problems. Specifically, at each iteration k:

L(k) = argmin
L

{∥∥∥∥L− (D− (At C
(k−1)

)T)∥∥∥∥2
F

+ τ ‖L‖∗

}
,

(6a)

C(k) = argmin
C

{∥∥∥∥(D− L(k)
)T
−At C

∥∥∥∥2
F

+ λ ‖C‖2,1

}
. (6b)

The minimization sub-problems (6a) and (6b) are convex and
each can be solved optimally. (6a) is solved via the Singular
Value Thresholding operator [50]. (6b) refers to the Lasso
problem (if we reshape the matrix C into a vector) which
can be solved by various methods, among which we adopt the
Alternating Direction Multiplier Method. More precisely, we
introduce an auxiliary variable F into sub-problem (6b) and
recast it into the following form:(
C(k),F(k)

)
= argmin

C,F

{∥∥∥∥(D− L(k)
)T
−At C

∥∥∥∥2
F

+ λ ‖F‖2,1

}
s.t. C = F .

(7)

Problem (7) can then be solved via the Augmented Lagrangian
Multiplier method [51], [52] as follows:

C(k) = argmin
C

{∥∥∥∥(D− L(k)
)T
−At C

∥∥∥∥2
F

+
ρ(k−1)

2

∥∥∥∥C− F(k−1) +
1

ρ(k−1)
Z(k−1)

∥∥∥∥2
F

}
,

F(k) = argmin
F

{
ρ(k−1)

2

∥∥∥∥C(k) − F+
1

ρ(k−1)
Z(k−1)

∥∥∥∥2
F

+λ ‖F‖2,1

}
,

Z(k) = Z(k−1) + ρ(k−1)
(
C(k) − F(k)

)
,

where Z ∈ RNt×e is the Lagrangian multiplier
matrix, and ρ is a positive scalar. We initialize
L(0) = C(0) = F(0) = Z(0) = 0, ρ(0) = 10−4 and
update ρ(k) = 1.1 ρ(k−1). The criteria for convergence of
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Fig. 3. Plot of the six jarosite samples taken from the online
USGS spectral library (which will constitute the target dictio-
nary At), and the target of interest t consisting of the mean of
the six jarosite samples.

problem (7) is
∥∥C(k) − F(k)

∥∥2
F
≤ 10−6.

For Problem (5), we stop the iteration when the following
convergence criterion is satisfied:

‖L(k)−L(k−1)‖
F

‖D‖F
≤ ε and

∥∥∥(At C
(k))

T−(At C
(k−1))

T
∥∥∥
F

‖D‖F
≤ ε ,

where ε > 0 is a precision tolerance parameter. In the
experiments, we set ε = 10−4.

C. What after the target and background separation
Two strategies are available to us to realize the target

detection.
Strategy one: We use the background HSI L for a more

accurate construction of Ab. For each test pixel in the original
HSI, we create a concentric window of size m × m on the
background HSI L, and all the pixels within the window
(except the center pixel) will each contribute to one column in
Ab. Note that this concentric window amounts to an OWR of
size m×m with IWR of size 1×1. Next, we make use of the
SRBBH detector [29]2, but with the background dictionary
Ab constructed in the preceding manner. Note that for this
scheme to work, we do not need a clean separation (by clean
separation, we mean that all targets are present in (AtC)

T

with no false alarms); specifically, we require the entire target
fraction to be separated from the background and deposited in
the target image, but some of the background objects can also
be deposited in the target image. As long as enough signatures
of these background objects remain in the background HSI L,
the Ab constructed will be adequately representative of the
background.

It is important to mention that the edges of the HSI are
not processed and so the images are trimmed in function
of the window size. As a result, we shall call each of the
trimmed image as “the region tested”. In fact, by taking a large

2The reason why we choose the SRBBH detector instead of [27] is because
it combines the idea of binary hypothesis and sparse representation, obtaining
a more complete and realistic model than [27].

concentric window, a lot of pixels in the image (near the edges)
will not be tested. One can imagine how this can become
problematic if these excluded pixels from testing contain some
or all the targets of interests. In this regard, after removing
the targets from the background by our problem (5), a small
concentric window will be sufficient to construct an accurate
background dictionary Ab, and hence, almost the entire image
will be tested.

Note also that we could have constructed Ab directly from
all the pixels in the low rank background HSI L (except the
pixel that corresponds to the test pixel in the original HSI)
without the use of any sliding concentric window. This has
the advantage of testing the entire image for the detection
(that is, the region tested = the original image). However, we
choose not to do this as this would result in a substantially
larger Ab and therefore a much increased computational cost.

Strategy two: We use (At C)
T directly as a detector. Note

that for this scheme to work, we require as few false alarms as
possible to be deposited in the target image, but we do not need
the target fraction to be entirely removed from the background
(that is, a very weak target separation can suffice). As long as
enough of the target fractions are moved to the target image
such that non-zero support is detected at the corresponding
pixel location, it will be adequate for our detection scheme.
From this standpoint, we should choose a λ that is relatively
large, so that the target image is really sparse with zero or
little false alarms, and only signals that reside in the target
subspace specified by At will be deposited there.

IV. EXPERIMENTS AND ANALYSIS

In what follows, we perform both synthetic as well as real
experiments to gauge the target detection performances of the
two preceding strategies in Subsection III-C.
The evaluations are done on two small zones ac-
quired from a scene formed by a concatenation of
two sectors labeled as “f970619t01p02 r02 sc03.a.rf” and
“f970619t01p02 r02 sc04.a.rfl” in the online Cuprite HSI data
[53]. The Cuprite HSI is a mining district area which is well
understood mineralogically [42], [43]. It contains well exposed
zones of advanced argillic alteration, consisting principally
of kiolinite, alunite, and hydrothermal silica. It was acquired
by the Airborne Visible / Infrared Imaging Spectrometer
(AVIRIS) in 23 June 1995 at local noon, and under high
visibility conditions by a NASAER-2 aircraft flying at an
altitude of 20km. It consists of 224 spectral (color) bands
in contiguous (of about 0.01µm) wavelengths ranging exactly
from 0.4046 to 2.4573µm. Prior to some analysis of the
Cuprite HSI, the spectral bands 1-4, 104-113 and 148-167
are removed due to the water absorption in those bands. As a
result, a total of 186 bands are used.

A. General discussion about the parameters τ and λ

In this section, we discuss the main difficulties that face
our problem (5) in accurately choosing the values of τ and λ
for both Strategy one and Strategy two. Currently, τ and λ are
set manually (to achieve the best target detection performance)
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D = L + (At C)
T + N

Fig. 4. Visual separation of the 7 target blocks for α = 0.1: We exhibit the mean power in dB over the 186 bands. Columns from left to right: the original
HSI containing the 7 target blocks, low rank background HSI L, sparse target HSI (AtC)T , noise HSI.

for both strategies. However, this manual selection depends on
the HSI used, the spatial and spectral dimensions of the given
HSI, on the targets present, and even on how accurate the target
dictionary At is. All these challenges strongly encourage us
to alleviate the manual selection problem of τ and λ by an
automatic method in the future.

How can we play now with τ and λ ?

We found that a useful way to set τ and λ would be to decide
on the ratio of τ and λ, respectively for both strategies, and
then set the relative values of the weights between the first
two terms and the third term in (5).

For Strategy two, we found that the ratio of τ to λ must
be equal to 5

2 in both synthetic and real experiments. For
Strategy one, we found that the ratios of τ to λ should be
high to make sure that all of the targets are removed to the
target image. We set this ratio to approximately 6 for the
synthetic experiments and 10 for the real experiments. The
ratio for the latter case must be higher because for the real
experiments, we do not really have a comprehensive enough
target dictionary to represent the target well and thus we need
extra incentive for the target fractions to go to the target image.

The different requirements imposed by the two strategies
that can lead to our particular choice setting of the τ to λ
ratio also dictate how we should set the relative values of the
weights between the first two terms and the third term in (5):

1) A lower penalty associated with the third term (that
is, by raising the absolute levels of τ and λ) would
tolerate more deviation and thus encourage more noise
or image clutters (by image clutters we mean the small
heterogeneous objects and specular highlights) to be
absorbed by this term. This is particularly important for
Strategy two when there are a lot of image clutters that
do not exactly conform to a low rank background model:
since these clutters do not satisfy the low rank property,
they have a propensity to show up in the second term
if we do not sufficiently lower the penalty for the third
term, and thus, contribute to a lot of false alarms for
Strategy two.

2) On the other hand, such a low-penalty setting for the
third term may not be a good idea for Strategy one as
the third term absorbs too much of the image clutters that
actually form the background, causing the background
dictionary Ab so constructed to lose representative

power.

In summary, for Strategy two, we set τ and λ at 0.05 and
0.02 in the synthetic experiments, whereas at 0.5 and 0.2 in
the real experiments. For Strategy one, we set τ and λ at 0.8
and 0.133 in the synthetic experiments, whereas at 3 and 0.3
in the real experiments.

B. Synthetic Experiments

The experiments are done on a 101 × 101 zone (pixels
in rows 389 to 489 and columns 379 to 479) from the
acquired Cuprite scene. We incorporate in this zone, 7 target
blocks (each of size 6 × 3) with α ∈ [0.01, 1] (all have the
same α), placed in long convoy formation all formed by
the same synthetic (perfect) target t consisting of a sulfate
mineral type known as “jarosite”. We make sure by referring
to Figure 5a in [42] that the small zone we consider does
not already contain any jarosite patches. The target t that
we created actually consists of the mean of the first six
jarosite mineral samples taken from the online United States
Geological Survey (USGS - Reston) spectral Library [54]
(see Figure 3). The target t replaces a fraction α ∈ [0.01, 1]
from the background; specifically, the following values of α
are considered: 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.8, and 1. As
for the target dictionary At, it is constructed from the six
acquired jarosite samples3.

1) Using Strategy one for detection: We first provide in
Figure 4 a visual evaluation of the separation of the 7 target
example above for low α = 0.1. We can observe that
our problem (5) successfully discriminates these perceptually
invisible targets from the background in D and separate them.
The 7 darker blocks that appear in L correspond to the dimmer
fraction of the background that remains after the targets have
been removed at the corresponding spatial locations.

Having qualitatively inspect the separation, we now aim to
qualitatively and quantitatively evaluate the target detection
performances of the SRBBH detector [29] when Ab is con-
structed using a small concentric window of size 5×5. That is,
Ab ∈ Rp×24 (after excluding the center pixel) and the region
tested consists of an image of size 97× 97.
In what follows, we shall use Db to represent the HSI that does

3Note that both the HSI and the jarosite target samples are normalized to
values between 0 and 1.
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Fig. 5. Visual detection results and ROC curves (with their Area Under Curves (AUC) values) for different α values of the SRBBH detector when Ab is
constructed from Db, D and L. Note that to have a fair comparison between the SRBBH outputs (to have the same color scales), we have normalized each
of them to values between 0 and 1.
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α = 1 α = 0.8 α = 0.5 α = 0.3

α = 0.1 α = 0.05 α = 0.02 α = 0.01

Fig. 6. Visual detections (mean power in dB over the 186 bands) of (AtC)T for the 7 target blocks for different α values. From the top left to the bottom
right for the values of α: 1, 0.8, 0.5, 0.3, 0.1, 0.05, 0.02, 0.01.
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Fig. 7. Detection comparisons between Strategy one and Strategy two.

not contain the 7 target blocks (that is, the pure background
image), and D to represent the HSI after incorporating the 7
target blocks (that is, it contains the targets) for α ∈ [0.01, 1].
We now consider three scenarios to form the columns in Ab:

• For each test pixel in D, we create the concentric window
on Db. This represents the ideal case since Ab is free
from the targets.

• For each test pixel in D, we create the concentric window
on D.

• For each test pixel in D, we create the concentric window
on the low rank background HSI L.

The target detection performances are evaluated qualitatively
as well as quantitatively specifically by the Receiver Operating
Characteristics (ROC) curves which describe the probability
of detection (Pd) against the probability of false alarm (Pfa)
as we vary the threshold η between the minimal and maximal
values of each detector output. A good detector presents high
Pd values at low Pfa, i.e. , the curve is closer to the upper
left corner. More particularly, the Pd can be determined as

the ratio of the number of the target pixels determined as
target (that is the detector output at each pixel on the target
region exceeds the threshold value) and the total number of
true target pixels. Whereas the Pfa can be calculated by the
ratio of the number of false alarms (the detector output at
each pixel on the background region that is outside the target
region exceeds the threshold value) and the total number of
pixels in the region tested.
Figure 5 depicts both qualitative and quantitative detection
results. Clearly, increasing α should render the target detection
less challenging, and thus, better detection results are being
expected. However, this fact can not always be the case for
the SRBBH detector when Ab is constructed from D (blue
curves): It is true that the increase in α helps to improve
the detection, but at the same time leads to more target
contamination in Ab which in turn suppresses the detection
improvement that ought to be had. That is why the SRBBH
detector (blue curves) does not reap full benefits from the
increase in α, and thus, presents poor detection results even
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for large α values.
By constructing Ab from L, which only contains the
background with the targets removed after applying problem
(5), the SRBBH detector (dashed green curves) can better
detect the targets especially for α ≥ 0.1, and has competitive
detection results when compared to the ideal case when Ab

is constructed from Db. The detection performances start
to deteriorate progressively for very small α values and
degenerate to the SRBBH level (blue curve) for α ≤ 0.02.
To sum up, the obtained target detection results corroborate
our claim that we can handle targets with low fill-fraction
and in convoy formation.

2) Using Strategy two for detection: Figure 6 depicts the
detection results of (At C)

T for different α values. The plots
correspond to the mean power in dB over the 186 spectral
bands. As can be seen, Strategy two detects all the targets
with little false alarms until α ≤ 0.1 when a lot of false
alarms appear.

3) Further discussion on the obtained detection results
for both Strategy one and Strategy two: It is clear from the
results of 2) and the preceding experiment that the value of
the target fill-fraction impacts the performance substantially:
For Strategy two, this is due to the relaxation of the l2,0
norm to l2,1 norm for the (At C)

T term. Instead of counting
the number of non-zero terms in (AtC)

T , the magnitudes of
these non-zero terms play a role too in the relaxed version.
When the magnitudes of the target signals are small (for
small α), the penalty cost suffered is less. It follows that
there is room for non-target signals to appear or even take
over in the (At C)

T matrix, resulting in high false alarms
and high miss rates.
For Strategy one, this is not only due to the relaxation of
the l2,0 norm to l2,1 norm for the (At C)

T , but also could
be due to the approximation in solving the l0 problem of θ
and γ in the SRBBH detector in (1) (here the greedy method
was used). For example, in Figure 5 for α ≤ 0.1, the green
curve has a lower AUC value than that of the red curve (the
ideal one). This is mainly because of the l2,1 relaxation in
problem (5). But we can also notice how the detection of the
red curve starts to decrease when α ≤ 0.1 and degenerates to
the blue curve for very small α. This could be because of the
l0 approximation in solving θ and γ in the SRBBH detector
in (1).

4) Strategy one Vs Strategy two: detection comparison: The
detection comparisons between Strategy one and Strategy two
are done quantitatively via the ROC curves. In order to be able
to analyse the performances (that is, drawing the ROC curves)
of Strategy two, we have proposed the following detector to
be applied on each test pixel in (At C)

T :

D(At C)T (xs) =
tT xs

tT t

H1

≷
H0

η , (8)

where xs is being the test pixel in (AtC)
T , and η is the

decision threshold to yield the desired probability of false
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Fig. 8. Plot of the buddingtonite target samples taken from the online ASTER
spectral library.

alarm Pfa. We confirm that the visual detection results of the
detector D(AtC)T are totally the same as to those in Figure 6
for all values of α. This has encouraged us to use D(At C)T

to plot the ROC curves for Strategy two.
To plot the ROC curves for Strategy one, we have used
the same small concentric window of size 5 × 5 (that is,
Ab ∈ Rp×24).
Figure 7 depicts the detection comparison results of both
strategies. Obviously, Strategy two achieves better detection
results than to those of Strategy one especially for small values
of α.

C. Real Experiments

This subsection evaluates qualitatively the target detection
performances of the SRBBH detector, using a concentric
window of size 5 × 5 on a region of size 250 × 291 pixels
taken from the acquired Cuprite HSI. We consider this zone
specifically to detect the Tectosilicate mineral type target
pixels known as buddingtonite. The mean power in dB over the
186 spectral bands of this zone and the buddingtonite ground
truth are shown in the fourth row of Figure 2.
There are three buddingtonite samples available in the on-
line Advanced Spaceborne Thermal Emission and Reflection
(ASTER) spectral library - Version 2.0 [55] and they will form
our target dictionary At. The ASTER spectral library was
released on December 2008 to include data from the USGS
spectral library, the Johns Hopkins University spectral library,
and the Jet Propulsion Laboratory spectral library.
Both the HSI and the buddingtonite target samples are nor-
malized to values between 0 and 1. Figure 8 depicts the
buddingtonite target samples taken from the ASTER spectral
library.

1) Using Strategy one for detection: As a consequence
of the decomposition depicted in Figure 9, the subspace
overlap problem illustrated in Figure 2 (fourth row) is now
much relieved, as can be seen from Figure 10. Figure 10(a)
and 10(b) evaluate qualitatively the SRBBH detection results
when Ab is constructed from D and L, respectively, using a
concentric window of size 5×5. The effectiveness of problem
(5) in improving the target detection is evident.
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Fig. 9. Visual separation (we exhibit the mean power in dB over the 186 bands) of the buddingtonite targets using the target dictionary At constructed
from the ASTER spectral library. Columns from left to right: original HSI D, low rank background HSI L, sparse target HSI (At C)T , sparse target HSI
(At C)T after some thresholding.

(a) (b)

(c)
Fig. 10. 2D Visualization of the buddingtonite target pixels detection. (a):
SRBBH detector when Ab is constructed from D. (b) SRBBH detector when
Ab is constructed from L. (c) Detection in (At C)T for Strategy two (we
exhibit the mean power in dB over the 186 bands).

2) Using Strategy two for detection: Figure 10(c) depicts
the detection of the buddingtonite targets in (At C)

T . The
buddingtonite targets are detected with very little false alarms.

As can be seen from all the preceding experiments,
both strategies can deal with targets of any shapes or targets
that occur in close proximity. This is important in many
applications, for instance, in the Tectosilicate mineral example
above, where it is often not possible to fix the window size
required in SRBBH.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

A method based on a modification of RPCA is proposed
to separate known targets of interests from the background
in hyperspectral imagery. More precisely, we regard the given
hyperspectral image (HSI) as being made up of the sum of
low-rank background HSI L and a sparse target HSI E that
should contain the targets of interests. Based on a pre-learned
target dictionary At constructed from some online spectral
libraries, we customize the general RPCA by factorizing the
sparse component E into the product of At and a sparse

activation matrix C. This modification was essential to dis-
ambiguate the true targets from other small heterogeneous and
high contrast regions.

Following the decomposition, the first outlined strategy
(Strategy one) addresses the background dictionary contam-
ination problem suffered by dictionary-based methods such as
SRBBH. To do this, the low rank background HSI L was
exploited to construct Ab. More precisely, for each test pixel
in the original HSI, the Ab is constructed from L using a
small concentric window, and all the pixels within the window
(except the center pixel) will each contribute to one column
in Ab.
An alternative strategy (Strategy two) was to directly use the
component (AtC)

T as a detector. Only the signals that reside
in the target subspace specified by At are deposited at the non-
zero entries of (AtC)

T . Both strategies are evaluated on both
synthetic and real experiments, the results of which demon-
strate their effectiveness for hyperspectral target detection. In
particular, they can deal with targets of any shapes or targets
that occur in close proximity, and are resilient to most values
of target fill-fractions unless they are too small.

B. Some directions for future work

The paradigm in military applications of hyperspectral
imagery seem to center on finding the target but ignoring
all the rest. Sometimes that rest is important especially if
the target is well matched to the surroundings. As for future
enhancements, a likely first step would be to evaluate the
proposed modified RPCA model on that challenge in a
future study of Cuprite. Other promising avenues for further
research include:

1) We would like to mention that the selection of τ and
λ strongly depends on the HSI used, on the spatial
and spectral dimension of the given HSI, on the target
of interest to detect, on the location of the target in
the image scene, and on the target dictionary At. This
encourage us to work hard in the future to develop such
an automatic selection method for the parameters (i.e.
proposing a formula that can take the aforementioned
causes as input).

2) Obviously, we can observe that the τ to λ ratios as
well as the settings of τ and λ for Strategy two are not
similar to those for Strategy one. We highly expect that
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if one could use directly the l2,0 norm (that is, without
surrogating it towards the convex l2,1 norm), both
detection strategies might have the same parameters
settings.

3) Interestingly, what we have not also mentioned before
is that the selection of τ and λ depends on the target
fill-fraction α. During our work, we have done a lot
of experiments (omitted here) on the HSI zone used
in the synthetic experiments by replacing a fraction α
from the background pixel at location (34, 50) by the
target t corresponding to the mean of the six jarosite
target samples. We have observed that if one needs to
separate the αt from (1 − α)b using our problem in
(5) (that is, we need that αt to be deposited in the
sparse component, and the (1 − α)b in the low rank
component), the selection of λ will not be unique for
all α values. More precisely, the higher α is, the more
need to decrease λ. This is due to the fact that a higher
α value implies a more target fraction to separate from
the background. But we highly expect that if one could
use directly the l2,0 norm (that is, without surrogating
it towards the convex l2,1 norm), a unique value of λ
might be chosen for all α values.

In this regard, our future work will mainly focus on the use
of other proxies than the l2,1 norm (closer to the l2,0 norm)
which can help to alleviate the l2,1 artifact and probably the
manual selection problem of τ and λ.
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