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Abstract- In this paper, we present an original use of Reed­
Solomon (RS) codes as Space-Time Block Codes (STBCs) and 
compare them to orthogonal STBCs (OSTBCs). Due to their 
symbol structure, they can have a representation close to that of 
an STBC. RS codes are admittedly more complex to decode as 
they have no orthogonal properties. However, they offer much 
higher coding rates. In addition, a wide range of these codes 
can be easily generated. To decode them, we have developed a 
new algorithm using a sliding encoding-window (SEW), which is 
combined with the decoding-based Chase algorithm. We compare 
the RS(lS,7) code to the Alamouti one, both having an equivalent 
coding rate. Its performance compared to Alamouti gets better 
as the receive diversity increases. Moreover, RS codes do not 
require the channel to remain constant over the code duration. 
In fact, they offer better results if the channel changes rapidly, 
which can be obtained virtually by introducing interleaving. 

Index Terms-Multiple-Input Multiple-Output (MIMO), 
Space-Time Block Code (STBC), Reed-Solomon (RS) code, Chase 
algorithm, Sliding Encoding-Window 

I. INTRODUCTION 
In a Multiple-Input Multiple-Output (MIMO) transmission, 

orthogonal space-time block codes (OSTBCs) [l] are mainly
used because of their decoding simplicity thanks to their 
orthogonal structure. However, their spectral efficiencies are 
relatively poor compared to transmissions without space-time 
coding as the number of transmit antennas increases. 

To achieve higher spectral efficiency, we propose to use 
a Reed-Solomon (RS) code [2] as a space-time block code 
(STBC). By changing the parameters of these codes, we can 
achieve a wide range of coding rates. Moreover, they offer 
symbol protection and have a block representation close to 
that of an STBC. To evaluate their performance, we compare 
them to the well-known Alamouti scheme [3]. 

We found a similar approach in [4] for instance, where the 
decoding algorithm is based on a modified list-based sphere 
decoder [5]. Martin et al. choose an RS code such that one
modulation symbol corresponds to one symbol of the code, 
while we show in this paper that it is more efficient to choose 
an RS code such that the set of modulation symbols sent by 
the transmit antennas corresponds to one symbol of the code. 

We proposed also a new encoding-based algorithm to de­
code RS code, which easily produces a list of codewords and 
can be combined with a decoding-based algorithm such as 
Chase [6]. 

This paper is organized as follows. Part II presents OSTBCs
and RS codes and focuses on RS-STBC representation simili-

tude. Part III describes the MIMO transmission scheme used, 
while part IV deals with RS decoding, based on the Chase 
algorithm combined with encoding techniques. Part V presents 
simulation results in comparison with the Alamouti scheme 
and the importance of respecting the RS/STBC configuration 
to obtain better performance. Part VI concludes this paper by
summarizing major results and proposing future work. 

II. SPACE-TIME BLOCK CODE 
A. OSTBC 

We denote nt the number of transmit antennas and nr 
the number of receive antennas. According to [l] an OSTBC 
coding U M-ary modulation symbols S = { sdi<k<U must 
verify: 

u 
ccH 

= L lskl2 In, ( l )  
k=l 

where C = { Cij hsi:Sn,,l:SJ:SK is an OSTBC built over
nt transmit antennas, sent during K modulation symbols of
duration Ts and In represents the n x n identity matrix.
Each space-time coded symbol Cij is a combination of the
modulation symbols and their conjugates. 

We define the OSTBC coding rate R8 as the number of 
useful modulation symbols S over the number of space-time
coded symbols used in an OSTBC C. 

u 
Rs= -­nt K (2) 

We assume a flat fading channel with no attenuation be­
tween each transmit antenna and receive antenna and without 
inter-symbol interference. 

We use the same energy to transmit U useful modulation
symbols (average power P8) as ntK space-time coded sym­
bols (average power Pc). If an error correcting code with a
coding rate Re is used, then the average signal to noise ratio
(SNR) per receive antenna is given by: 

SNR Pr ntPc U Ps 
PN = PN =KPN 

Eb 
= bntRsRc­No 

(3) 

where Pr is the average signal power received per receive 
antenna, PN is the average complex additive white Gaussian 
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noise (AWGN) power, Eb is the energy per bit, N0 is the one­
side complex A WGN power spectral density and M = 2b is
the modulation order. 

Applying (2) to typical OSTBCs shows that these codes
offer a poor coding rate (e.g. Rs = 0.1875 for H4 defined
in [l]). To overcome this, we propose to use RS codes as 
STBCs instead of OSTBCs. Therefore one modulation symbol 
corresponds to one space-time coded symbol (R8 = 1). Only
the RS coding rate Re is used in the global coding rate
transmission. 

B. RS code as STBC 

A Reed-Solomon code built over the Galois Field Q:F(2m) 
and noted RS(n, k) is a q-ary code, where q = 2m = n + 1.
It has an error correction capability t = ( n - k) /2 symbols,
each symbol being an element of Q:F(2rn). One symbol is 
represented by a unique set of log2 ( n + 1) = m bits and is
called a q-ary symbol. 

We note c = { c j }i S:J s; n an RS codeword, where c j =
{ cj}1s;;s;rn is the jth q-ary symbol and c) E {O, 1 }.

(4) 

The m x n matrix representation of c can be associated with 
a spatial representation of an RS code if m bits are transmitted 
through the nt antennas every T8• In this case, Cj is mapped
to Sj = {s_j}1s;;s;n, at time jT8• One q-ary symbol is sent by 
the nt transmit antennas (cf Fig. l ).

In this configuration, we have: 

TRANSMITTER 

Sent 
Bits 

RECEIVER 

1 r, 

MLSOFf 

n,. DETECTOR r, 
n1 PI S 

Sn MAPPING SIP 

Fig. I. RS as STBC transmission scheme 

B. Channel 

SI t 

If clock and carrier are perfectly recovered, the MIMO 
channel is assumed to be an independent Rayleigh block 
fading channel represented by Hi. a nr x nt matrix at time
tT •. The channel is constant over rTs and each path between
a transmit antenna and a receive antenna has a unitary average 
power. The received vector rt= {rf hs:Js;n, is given by:

rt= Htst + llt (6) 
where llt = {n{hsJSn, is the complex AWGN. 

C. Receiver 

Demapping is performed by a near-ML detector providing 
soft outputs for every coded bit sent (approximated log­
likelihood ratios as defined in [7]). After the disinterleaving 
stage rr-1, these outputs feed an RS decoder.

IV. RS DECODING ALGORITHM 

(5) A. Chase algorithm 

We call a super-symbol the set of nt M -ary modulation
symbols transmitted during Ts and denote Ab the set of
modulation symbols. Assuming (5), there exists a bijection
between the set of q-ary symbols Q:F(q) and the set of super­
symbols A�'. 

A super-symbol being a q-ary symbol, it will benefit from 
the RS code protection, which can correct up to t wrong
symbols, whatever the error pattern inside the symbol is (1 
to m wrong bits). Intuitively we think that given a number of 
transmit antennas and an RS code, one modulation checking 
(5) should perform well.

III. TRANSMISSION SCHEME 

A. Transmitter 

At the transmitter side, bits are coded with an RS scheme, 
interleaved by II (per bit or per q-ary symbol) and mapped
to a Gray scheme over an }}f -QAM. Modulation symbols are
multiplexed on the transmit antennas to form the vector St = 
{sD 1 s;is;n, , sent at time tT8 as shown in Fig. l. 

One key point in this transmission system is the RS decoder. 
We use the second form of the Chase algorithm based on the 
algebraic Berlekamp-Massey (BM) algorithm [8]. 

The decoder chooses among the soft inputs c the nd least
reliable independent positions (LRIPs). It decodes the 2nd test 
sequences corresponding to all possible patterns for the nd 
values (0 or 1) with an algebraic algorithm, such as the BM. 

Decoded word c is then stored in Cnd only if it is a
codeword. The decoder output c is selected according to:

where 11-112 is the Euclidean distance.

(7) 

For an adequate value for nd (close to the error correc­
tion capability), this algorithm is near-optimal for a binary 
block code. However, using it for a q-ary block code such 
as an RS code requires testing the nd least reliable q-ary
symbols, corresponding to 2mnd decodings. The RS decoder
will perform 65536 decodings for m = 4 and nd = 4. This
process being too computationally expensive, we use the same 
approximation made in [9] by choosing the nd least reliable 
bits of c = {c}h:Si:Sm,l:SJ:Sn (16 decodings in our example).
This choice leads to a sub-optimal algorithm. 
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B. The sliding encoding-window algorithm 

At high SNR, it appears that all decoded sequences are equal 
to the same codeword with the Chase-2 algorithm. To increase 
the codeword diversity, we have developed an algorithm based 
on encoding techniques: the sliding encoding-window (SEW) 
algorithm. The SEW algorithm exploits the q-ary systematic 
and cyclic properties of an RS code, but processes at the binary 
level, to quickly generate codewords that are "close" to the 
received word c. 

We recall that in systematic coding the information part is 
visible in the codeword, generally at the beginning or the end 
of the codeword. With a cyclic q-ary code, any permutation 
over q-ary symbols of a codeword is still a codeword. 

Let W be a block of km bits extracted from c and ne � 
km be the number of the LRIPs inside W. By permuting
the modulated values (±1) at the ne LRIPs and encoding 
the thresholded result, we produce 2n• codewords which are
"close" to the hard decision of c (at least km - ne bits are
identical). These codewords are stored in a set named Cn,. 

As we use systematic coding, we only introduce codeword 
diversity over the ( n - k )m bits symbols forming the redun­
dancy part. To have diversity over all bits, we exploit the q-ary 
cyclic property of the RS code. We cyclically shift W over
c and compute the same encoding operation until all bits are
covered. We call W the sliding encoding-window.

Due to systematic coding, the codewords obtained must also 
be cyclically shifted so that their km-length information part 
matches the position of W in c. We store shifted codewords
in Cn,· 

If the SEW algorithm is used alone, then the decoder output 
c verifies the following equation:

C = argmincECn, jj2c - 1- cjj2 (8) 
We can show that we have f nr:_k l windows to process,

where r.1 is the upper integer part, and that we have introduced
at least 2n, different codewords in Cn • .

We note that we keep the same code generator to create the 
list of candidates, while it has to be re-computed in encoding­
based algorithms such as the OSD [10]. Moreover, the whole 
algorithm can be highly parallelized, as we perform the same 
process on different inputs derived from the received word. 

C. Chase-2 and SEW combination 

In our case, we combine the Chase algorithm with the SEW 
algorithm to decode the received word c. We note Cnd,n, = 

Cnd U Cn, . The RS decoder output is now selected according
to: 

C = argmincEC fie - c/12 nd,ne (9) 
We use two transmit antennas, a QPSK modulation and the 

systematic RS code RS(l5, 7). The channel changes every T8 
(r = 1). The Chase algorithm with nd = 4 is combined with
the SEW algorithm with ne E {8, 12, 14, 16}.

We significantly improve the performance as shown in Fig. 
2. We have a gain of almost 1.9 dB and 3.4 dB at a BER
of 10-3 by combining Chase (nd = 4) with SEW (ne = 8)
and SEW (ne = 12) respectively. For ne 2'. 12, we do not
significantly improve the decoding efficiency. 

ffi 10-2 ..... m . 

10�·'-�-'-�--'-�__..�__.��---�_.__�_._.�__..,____, 
0 2 4 6 8 10 12 16 18 Eb/NO in dB 

Fig. 2. BER vs Eb/NO - QPSK (2Tx.1Rx) on an independent Rayleigh 
fading channel (r = 1) - Influence of the SEW algorithm combined with 
Chase (nd = 4) 

As one RS encoding is a less complex operation (using 
shift registers) than one RS decoding, the use of the SEW 
algorithm brings codeword diversity and efficiency with a 
minimum complexity cost. 

V. SIMULATION RESULTS 

We use a scheme with two transmit antennas, an M -QAM
modulation and the systematic RS code RS(15, 7) (Re = 
0.4667). The channel changes every rT,. The RS decoder uses
the Chase algorithm with nd = 4 positions (16 decodings) and 
the SEW algorithm with ne = 12 (2 212 = 8192 encodings) 
to maintain a reasonable complexity. The Alamouti scheme is 
also simulated. The global efficiencies are almost the same for 
the two schemes: RcRs = 0.4667 * 1 = 0.4667 for the RS­
based STBC and RcRs = 1 * 0.5 = 0 .5 for the Alamouti
STBC. The channel state information is assumed perfectly 
known at the receiver side. The average signal power received 
on each receive antenna is unitary cPr = 1).

A. Importance of the bijection 

We use a QPSK and a 16-QAM for the modulation. No 
interleaving is done between coding and mapping. Results are 
given in Fig. 3. 

In the QPSK case, the q-ary symbol set and the super­
symbol set have the same cardinality (card9F(16) 
cardA§ = 16). Therefore modulation symbols sent through
transmit antennas take advantage of the symbol protection 
provided by the RS code. The RS(l5, 7) offers better per­
formance than the Alamouti code after Eb/ No = 9.8 dB.
corresponding to a BER of almost 5 10-3• 

In the 16-QAM case, the q-ary symbol has a lower cardi­
nality than the super-symbol set (card9F(16) < cardA� = 

256): two q-ary symbols are sent at a time. The super­
symbol protection provided by the RS code does not exist 
in this case. This lack of protection seems to have a real 
impact on the performance, since the RS curve is 6 dB away
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Fig. 3. BER vs Eb/NO - QPSK and 16-QAM (2Tx,1Rx) on an independent 
Rayleigh fading channel ( r = 2) - Influence of the modulation 

from Alamouti's for a BER of 10-3. By extrapolation we
can estimate that the RS curve intercepts Alamouti's after 
Eb/No = 26 dB, corresponding to a BER close to 10-5•
In this case using this configuration instead of the Alamouti 
scheme is clearly not a good option. 

In a MIMO transmission using a fixed RS code as a STBC 
and a fixed number of antennas, performance will be better 
if the modulation verifies (5). In the following, we use two
transmit antennas (nt = 2), a QPSK (q = 2) and the RS(15, 7) 
code (m = 4) so that (5) holds.

B. Channel variation 

Linear decoding of OSTBCs assumes that the channel re­
mains constant during the code duration KT8, while there is no 
such constraint with RS codes. Moreover the RS performance 
(Fig. 4) is better in presence of fast Rayleigh fading (small
T), which was a predictable result. The probability that the 
channel is severe enough to corrupt the n q-ary symbols of a 
codeword is lower if the fading is faster. To virtually create a 
fast fading channel at the receiver side, we can introduce an 
interleaver after the RS coding. As the curves for T � n are 
identical to the curve obtained for T = n, a square interleaver
working on q-ary symbols must be at least n x n for the RS
code considered (n = 15).

C. Interleaver 

We have an independent Rayleigh fading channel constant 
over 8T8 (T = 8) and one receive antenna. The diagonal
interleaver II is either a 30 x 30 bit or a 15 x 15 q-ary symbol
interleaver, both working on the same number of bits (900), 
since m = 4 for RS(15, 7). 

Interleaving increases the BER performance as shown in 
Fig. 5 with a gain of almost 4 dB for a BER of 10-3 for both
interleavers. For Eb/ N0 lower than 8 dB, the q-ary symbol
interleaver performs slightly better than the bit interleaver, 
while afterward they seem to be equivalent. 

It appears that bit interleaving at this level of the transmitter 
is not an interesting option. as it breaks the q-ary symbol (set 

104·:-----:�_...._.......__..;.__.._____. _ _j,_ _ _.j__..____..___J 
0 2 4 6 8 10 12 14 16 18 20 22 

Eb/NO in dB 

Fig. 4. BER vs Eb/NO - QPSK (2Tx,1Rx) RS( 15 , 7) on an independent 
Rayleigh fading - Influence of the fading 

10°r::7"""'."T".7""""'.""""".'1�.,.......,,..,,--:'."?===================:i 
... - No Interleaver · · · · · ·  · · · ·· . . .. . . . .  · · · ·  -.... Diagonal (15x15) RSsymbols 

· · · ·  -e- Diagonal (30x30) Bits 
- - - Ideal RSsymbols 

10-4'----'---'----'----''----'------'---'-----' 
0 2 4 6 8 10 12 14 16 

Eb/NO in dB 

Fig. 5. BER vs Eb/NO - QPSK (2Tx,!Rx) RS(15, 7) on an independent 
Rayleigh fading channel ( r = 8) - Influence of the interleaver 

of m = 4 successive bits). Therefore a super-symbol is no
longer the direct mapping of a q-ary symbol even with (5) 
fulfilled. The diagonal q-ary symbol interleaver retains the
super-symbol protection. Moreover, its curve is the same as the 
ideal q-ary symbol interleaver curve for the channel considered 
(T = 8).

D. Receiver diversity 

We increase the number of receive antennas from 1 to 4. The
BER vs Eb/ No is plotted in Fig. 6 with Alamouti performance
as a reference. We use the diagonal (15 x 15) q-ary symbol 
interleaver. 

Table I gives the SNR after which the RS curve becomes 
better than the Alamouti one and its corresponding BER for 
each number of receive antennas. 

For RS curves, passing from 1 to 2, from 2 to 3 and
from 3 to 4 receive antennas leads to a gain of 8.6 dB, 
2.4 dB and 2 dB respectively. Most of the gain is achieved 
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Fig. 6. BER vs Eb/NO - QPSK on an independent Rayleigh fading channel 
(r = 2) - Receiver diversity 

nr Eb/No BER 
1 9.4 dB 6 10 ·� 
2 1.2 dB 2.8 10 -· 
3 -1.6 dB 2.7 10 " 
4 -3.6 dB 3.7 10 ·� 

TABLE I 
RECEIVER DIVERSITY RESULTS 

with the introduction of a second receive antenna. Moreover, 
with more than two receive antennas, the intersection BER 
remains around 3 10-2• We gain only on the SNR threshold 
by increasing the receive diversity. We note that for the same 
number of receivers we have a constant gap t:..Eb/ N0 = 3 dB 
between the RS and Alamouti curves at a BER of 10-3• 

The reception diversity increases the slope of the RS curve, 
decreasing the SNR threshold from which the RS scheme 
becomes better than the Alamouti one. However, performance 
is improved significantly by adding a second receive antenna. 

VI. DISCUSSION 

A. Conclusion 

We have highlighted some advantages of using RS codes as 
STBCs. Although their decoding is more complex than that 
of OSTBCs, they offer higher coding rates and performance, 
especially with receiver diversity. We have also introduced a 
new decoding technique to improve their decoding. The SEW 
algorithm easily generates a large set of potential codewords 
by exploiting the cyclic and systematic properties of an RS 
code. 

If the RS code family (which means QF(2m)), the number
of transmit antennas nt and the modulation order Af = 2b 
hold (5), then we obtain a configuration similar to that of an 
STBC. The choice of k will then define the spectral efficiency 
and the code performance of RS(n, k). 

Moreover, the decoding rules of an OSTBC assume that the 
channel remains constant during KT., while there is no such 

constraint for an RS code. In fact the lower 7, the better the 
RS performance. With a block fading channel (high 7), a q­
ary symbol interleaver virtually creates faster channel fading
(smaller 7) at the receiver side. Therefore it improves the 
RS performance without breaking the bijection between q-ary 
symbols and super-symbols. 

B. Future work 

At this moment, many points remain to be investigated. 
First, we could introduce an error correcting code (convolu­
tional code, block code, etc.) before the space-time code and 
optimize the interface between these two stages . 

We could also increase the number of transmit antennas and 
choose an adapted RS code if we keep the same modulation. 
For the modulation symbol detection, we use the near-optimal 
ML decoder. However, as the modulation order and the nuniber 
of transmit antennas increase, the complexity grows exponen­
tially. To reduce this complexity, we could use a sub-optimal 
algorithm such as the sphere decoder and evaluate the resulting 
performance. 

Finally, we could evaluate in greater detail the performance 
of the SEW algorithm, for instance, the generation of soft out­
puts: as the SEW algorithm created a large set of candidates, 
its soft outputs must be more reliable than typical decoding­
based algorithms such as the Chase algorithm. 
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