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ON A ONE DIMENSIONAL TURBULENT BOUNDARY

LAYER MODEL

ROGER LEWANDOWSKI

Abstract. This paper is devoted to the study of a one stationary di-
mensional turbulence model used for simulating the boundary layer of
a turbulent flow, such as the atmospheric boundary layer. The model
is based on the coupling of an equation for the mean velocity with an
equation for the turbulent kinetic energy through eddy viscosities. We
show that under reasonable assumptions about the data, the system has
a weak solution.

1. Introduction

Fully developed turbulence of a flow fluid can be simulated by the sta-
tionary Navier-Stokes-Turbulent-Kinetic-Energy model (NSTKE), given by
the PDE system:

(1.1)


∇ · (v ⊗ v)−∇ · (νt(k)∇v) +∇p = f ,
∇ · v = 0,

v · ∇k −∇ · (µt(k)∇k) = νt(k)|Dv|2 − `−1k
√
|k|,

where

• v = v(x) = (u(x), v(x), w(x)) = lim
t→∞

1

t

∫ t

0
v(s,x)ds, x = (x, y, z) ∈

Ω ⊂ IRd (d ≤ 3), denotes the long time average of the flow velocity
v,
• p = p(x) is the long time average of the pressure,

• k = 1
2 |v − v|2 is the turbulent kinetic energy (TKE).

The NSTKE model is derived from the well known k−ε model, the modeling
of which is carried out in [7]. Results and discussions about long time average
of a turbulent fluid are displayed in [3, 8, 9, 12].

In the equations above, “∇·” is the divergence operator and f a given
source term. The function νt = νt(k) denotes the eddy viscosity, µt = µt(k)
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2 R. LEWANDOWSKI

the eddy diffusion term1. In practical uses,

(1.2) νt(k) = ν + Cv`
√
k, µt(k) = µ+ Ck`

√
k,

expecting that k ≥ 0. The coefficients Cv and Ck are dimensionless con-
stants, the function ` = `(x) is the Prandtl mixing lenght [20], ν > 0 and
µ > 0 are the kinematic viscosity and the diffusion coefficient.

The first mathematical results about the NSTKE model in 2D and 3D
bounded domains were obtained in [13, 14]. Many papers have followed and
the reader will find a comprehensive list of references in [7, Chapters 6, 7 and
8]. More recently, we have performed in [15] several numerical simulations
in a 3D channel, to test the performances of model (1.1) in boundary layers,
including a numerical algorithm to calculate the mixing length `, which is
one of the main issue in the practical use of the NSTKE model.

The NSTKE system (1.1) yields difficult mathematical issues for several
reasons:

i) It involves incompressible Navier-Stokes like equations; without any
coupling, Navier-Stokes equations are already leading to difficult
problems [10, 11, 16, 22],

ii) Because of the eddy viscosities νt and µt,
iii) Because of the quadratic source terms νt(k)|Dv|2 in the equation

satisfied by the TKE k. Natural estimates yield νt(k)|Dv|2 ∈ L1(Ω).
Thus, equation for k is an equation with “a right hand side in L1”
(see in [4, 18]).

We aim in this paper to study the NSTKE model in the 1D case. Surpris-
ingly, this case has never been studied before so far we know, although in a
3D boundary layer it fully makes sense. Indeed, let us consider for instance
the atmospheric boundary layer, where it is oftenly assumed that

v = v(z) = (u(z), 0, 0), p = Cte,

z being the altitude (or the distance to the ground). This assumption holds
for z ∈ [0, L], where L denotes the height of the boundary layer (in the
atmosphere 10m ≤ L ≤ 100m). The reader is referred to [17, 21] for further
reading about boundary layers theories. It is also reasonnable to assume
that the TKE is also only a function of z, i.e. k = k(z), which is well
verified in the case of a flat ground, according to the numerical results of
[15]. Therefore, system (1.1) becomes in the boundary layer, by writting
u = u(z) instead of u for the simplicity:

(1.3)


u
du

dz
− d

dz

(
νt(k)

du

dz

)
= f,

u
dk

dz
− d

dz

(
µt(k)

dk

dz

)
= νt(k)

∣∣∣∣dudz
∣∣∣∣2 − k

√
|k|
`

.

1Let us stress that in the standard turbulence modeling terminology, the subscript t in
νt and µt stands for ”turbulent”, and not a time derivative. This unfortunately might be
sometime a source of confusion.
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It remains to discuss the boundary conditions. We take L = 1, always
for the simplicity. It is natural to set u(0) = k(0) = 0. However, the
boundary condition at z = 1 might be a wall law (see in [7]), which is
more complicated. To focus to one difficulty after each other, we take in
this paper u(1) = k(1) = 0. In conclusion, we will consider homogeneous
Dirichlet boundary conditions:

(1.4) u(0) = k(0) = u(1) = k(1) = 0.

Based on the Leray-Schauder fixed point Theorem, our main result (The-
orem 4.1 below) is the existence of a weak solution to Problem (1.3)-(1.4),
when the source term f is small enough (condition (3.3) : 4F < ν2, F =
||f ||H−1) and assuming a compatibility condition between ν, µ and F (condi-

tion (4.5) : ν−
√
ν2 − 4F < 2µ). Notice that one also can solve the problem

via the Banach-Picard fixed point Theorem. However, although the solu-
tion constructed by this way is uniquely determined, the conditions for its
existence are more restrictive than those required by the Leray-Schauder
Theorem, which has motivated our choice.

For conveniance, we write the NSTKE system in the abstract form: (u, k) ∈
H1

0 (I)2 (I =]0, 1[) and

(1.5)


B(u, u) +A(νt(k), u) = f,

B(u, k) +A(µt(k), k) = νt(k)

∣∣∣∣dudz
∣∣∣∣2 − k

√
|k|
`

.

On one hand, we take advantage in a 1D case of H1
0 (I) ↪→ C(I) with compact

embedding (see [5]), so that we do not need sharp estimates “à la Boccardo-
Gallouët [4]” to deal with the quadratic source term of the k-equation and
the result remains true for any continuous function νt and µt greater than
ν > 0 and µ > 0, without assuming that they are bounded, as in the 2D and
3D cases. In particular, the existence result holds when µt and νt are given
by (1.2), which is significant. On the other hand, we are losing identities
of the form 〈B(u, v), H(v)〉 = 0, satisfied for any C1 piece-wise function H
such that H(0) = 0, arising in the 2D and 3D cases for incompressible flows.
This generates difficulties specific to the 1D case.

Our strategy is to focus on the 1D steady-state Navier-Stokes Equation
(NSE) with an eddy viscosity

(1.6) B(u, u) +A(α, u) = f,

for a given continuous function α = α(z) bounded below by ν. Starting
from the 1D Oseen problem,

(1.7) B(U, u) +A(α, u) = f,

where U ∈ L∞(I) is fixed, we prove that (1.6) has a unique solution when
the smallness assumption 4F < ν2 holds (Theorem 3.2). Such a smallness
assumption about the source term is not so surprinzing in steady-state NSE
framework when dealing with uniqueness (see in [22]). However, it seems
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that in the 1D case it is more stringent since it is already needed for the
existence, and we do not know how to remove it.

The paper is organized as follows. We start with the Oseen problem (1.7)
(section 2), after having set the framework and some notations. Then we
study the NSE (1.6) (section 3) which enables us to prove the existence
result about the NSTKE system (1.5) (section 4). We conclude the paper
by a few open problems (section 5).

Acknowledgements. The author thanks Dinh-Duong Nguyen for his care-
ful rereading of this paper.

2. 1D Oseen Problem with eddy viscosity

The Oseen problem is that given by the linearized steady-state Navier-
Stokes equation, in which we replace the convection term (v·∇)v by (U·∇)v,
where U is fixed vector field (see in [1]). The main aim of this section is the
study of the 1D Oseen Problem with a fixed eddy viscosity:

(2.1)

 U
du

dz
− d

dz

(
α
du

dz

)
= f in I,

u(0) = u(1) = 0,

where u = u(z) is the unknown function, the function α = α(z) is the eddy
viscosity, U = U(z) the given convection, f the source term. We assume
throughout this section that:

� α = α(z) ∈ L∞(I) is nonnegative and bounded below by a given
ν > 0,
� U = U(z) ∈ L∞(I) and we put U∞ = ||U ||0,∞,
� f ∈ H−1(I), and we put F = ||f ||−1,2,

where || · ||s,p denotes the usual norm over W s,p(I), with I =]0, 1[. We will
prove in this section that Problem (2.1) has a weak solution when

• U is in addition in W 1,1(I) and

∣∣∣∣∣∣∣∣dUdz
∣∣∣∣∣∣∣∣
0,1

< 2ν or
dU

dz
(z) ≤ 0 a.e,

by the Lax-Milgram Theorem,
• U∞ < ν, by the Leray-Schauder fixed point Theorem.

2.1. Framework. We introduce in this subsection notations and the ab-
stract and variational formulations of Problem (2.1).

According to the Poincaré’s inequality, we can take as norm in H1
0 (I) the

L2 norm of the derivative,

||v||H1
0

=

∣∣∣∣∣∣∣∣dvdz
∣∣∣∣∣∣∣∣
0,2

,

for any v ∈ H1
0 (I). For the simplicity, we will write

(2.2) ∀ v ∈ H1
0 (I), ||v||H1

0
= ||v||h.
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The following inequality will constantly be used in the following:

(2.3) ∀ v ∈ H1
0 (I), ||v||0,∞ ≤ ||v||h.

We also set W = H1
0 (I)2 for the simplicity, equipped with the product norm

(2.4) ||(u, k)||W = ||u||h + ||k||h.
We consider the following forms:

(2.5)
(u, v) ∈W → a(α, u, v) =

∫ 1

0
α(z)

du

dz
(z)

dv

dz
(z)dz,

(u, v) ∈W → b(U, u, v) =

∫ 1

0
U(z)

du

dz
(z)v(z)dz.

Lemma 2.1. The forms a and b are bilinear continuous on the space W =
H1

0 (I)2, and one has

(2.6)
|a(α, u, v)| ≤ ||α||0,∞||u||h||v||h,

|b(U, u, v)| ≤ U∞||u||h||v||h.

We skip the proof of Lemma 2.1. Notice that we also have, for all u, v, w ∈
H1

0 (I),

(2.7) |b(u, v, w) ≤ ||u||h||v||h||w||h.
The variational formulation of problem (2.1) is the following:

(2.8)
Find u ∈ H1

0 (I) such that
∀ v ∈ H1

0 (I), b(U, u, v) + a(α, u, v) = 〈f, v〉,
where 〈 ·, ·〉 is the duality product. We also can write,

(2.9) a(α, u, v) = 〈A(α, u), v〉, b(U, u, v) = 〈B(U, u), v〉,
and by (2.6) we have

(2.10) ||A(α, u)||−1,2 ≤ ||α||0,∞||u||h, ||B(U, u)||−1,2 ≤ ||U ||∞||u||h,
so that problem (2.1) can be written in the abstract form:

(2.11) u ∈ H1
0 (I), B(U, u) +A(α, u) = f.

2.2. Existence result when U ∈ W 1,1(I). The first idea that comes to
mind is to apply the Lax-Milgram to Problem (2.8) (see in [5]). Accord-
ing to Lemma 2.1, it remains to check the coercivity of the form (u, v) →
b(U, u, v) + a(α, u, v). We have on one hand

(2.12) a(α, u, u) ≥ ν||u||2h.
However, unlike the 2D and 3D incompressible Navier-Stokes equations, we
do not generally have b(U, u, u) = 0, which is a source of difficulty. Assuming
that U ∈W 1,1(I), we get by an integration by parts
(2.13)

∀u ∈ H1
0 (I), b(U, u, u) =

1

2

∫ 1

0
U(z)

d

dz
u2(z)dz = −1

2

∫ 1

0

dU

dz
(z)u2(z)dz,
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which holds for smooth functions and therefore in our case by standard
density results. Equation (2.13) combined with (2.6), (2.12) and the Lax-
Milgram Theorem, yields the following result.

Theorem 2.2. Assume that U ∈ W 1,1(I) and either of the two following
conditions is satisfied:

ν − 1

2

∣∣∣∣∣∣∣∣dUdz
∣∣∣∣∣∣∣∣
0,1

> 0,(2.14)

dU

dz
≤ 0 a.e in I.(2.15)

Then problem (2.8) has a unique solution u = u(z).

Taking u = v as test function yields the estimate

(2.16) ||u||h ≤
F

ν − 1
2

∣∣∣∣dU
dz

∣∣∣∣
0,1

in case (2.14), and

(2.17) ||u||h ≤
F

ν

in case (2.15).

2.3. Existence result when U is just in L∞(I). We only assume in
this section that U ∈ L∞(I). We aim to apply the Leray-Schauder fixed
point theorem to Problem (2.1). There are several version of this Theorem.
The one we use is the following, stated in the following in its more general
abstract form (see in [23]), and that will be used throughout the paper.

Theorem 2.3. Let E be a separated topological vector space, K ⊂ E be a
convex subset, F : K → K be a continuous function on K, equipped with the
topology inherited from that of E. Assume that F(K) is a compact subset of
K. Then F has a fixed point, that is, there exists u ∈ K such that F(u) = u.

We start with the following estimate.

Lemma 2.4. Assume

(2.18) U∞ < ν.

Then any solution to (2.8) satisfies

(2.19) ||u||h ≤
F

ν − U∞
.

Proof. Taking v = u as test and integrating by parts yields

(2.20) ν||u||2h ≤ a(α, u, u) ≤ F ||u||h +

∫ 1

0
|U |
∣∣∣∣dudz

∣∣∣∣ |u| ≤ F ||u||h +U∞||u||2h,

by using (2.3). �
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Throughout the rest of the section, we assume that the compatibility
condition (2.18) is fulfilled. The main result is:

Theorem 2.5. Problem (2.8) has a unique solution.

Proof. The proof is organized in three steps:

i) We determine the functional F : H1
0 (I)→ H1

0 (I) to which the fixed
point theorem will be applied, and then a ball B(0, R) ⊂ H1

0 (I) such
that F(B(0, R)) ⊂ B(0, R),

ii) We show that F is continuous over B(0, R) and F(B(0, R)) is com-
pact, so that it has a fixed point in B(0, R) by the Leray-Schauder
Theorem 2.3,

iii) We prove the uniqueness.

Step i) Let w ∈ H1
0 (I), and let us consider the following problem in H1

0 (I),

(2.21) B(U,w) +A(α, u) = f in [0, 1],

the variational formulation of which is:

(2.22)
Find u ∈ H1

0 (I), such that
∀ v ∈ H1

0 (I), a(α, u, v) = 〈f, v〉 − b(U,w, v).

As B(U,w) ∈ H−1(I) by (2.10), we deduce from (2.6), (2.12) and the Lax-
Milgram theorem that the variational problem (2.22) has a unique solution,
and therefore (2.21) has a unique weak solution. We put u = F(w), which
in particular satisfies

(2.23) ||F(w)||h ≤
F + U∞||w||h

ν
= r(w).

Any fixed point of F is a weak solution to (2.1). The issue is to find a radius
R > 0 such that F(B(0, R)) ⊂ B(0, R). Such a radius must verify:

(2.24) ∀w ∈ B(0, R), r(w) ≤ R,
which gives by (2.23) the inequality F +RU∞ ≤ νR, leading

R =
F

ν − U∞
as better choice.

Step ii) As (B(0, R) is a closed subset of H1
0 (I), which is a separable

Hilbert space, it suffises to prove the sequential continuity of F and to check
that F(B(0, R)) satisfies the Bolzano-Weiertrass property to prove that it
is compact. We focus on the compactness property, the proof of which also
yields the continuity of F . Therefore, we consider a sequence (wn)n∈IN in
B(0, R), and let un = F(wn). We aim to prove that from the sequence
(un)n∈IN, we can extact a subsequence which strongly converges in H1

0 (I) to
some u ∈ F(B(0, R)). The process is divided in three sub-steps:

a) Extracting from (wn)n∈IN and (un)n∈IN weak convergent subsequences
to some w and u, still denoted (wn)n∈IN and (un)n∈IN,

b) Showing that u = F(w),
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c) Proving that a(α, un, un)→ a(α, u, u) by the energy method, which
yields the strong convergence of (un)n∈IN to u in H1

0 (I).

a) As (wn)n∈IN is bounded inH1
0 (I), we can extract a subsequence (wnj )j∈IN

which weakly converges to some w (see in [5]), and also uniformly in I. Sim-
ilarly, from (unj )j∈IN, also bounded in H1

0 (I), we can extract another subse-

quence (unjk
)k∈IN which weakly converges to some u in H1

0 (I), and uniformly

in I as well2. For the simplicity, we re-write (wn)n∈IN and (un)n∈IN instead
of (wnjk

)k∈IN and (unjk
)k∈IN, so far no risk of confusion occurs.

b) For a given n, wn and un satisfy

(2.25) B(U,wn) +A(α, un) = f.

Let v ∈ H1
0 (I). Since (wn)n∈IN and (un)n∈IN weakly converge to w and u,

and as α,U ∈ L∞(I), we easily deduce from standard arguments

(2.26) lim
n→∞

b(U,wn, v) = b(U,w, v), lim
n→∞

a(α, un, v) = a(α, u, v),

leading to

(2.27) B(U,w) +A(α, u) = f,

hence u = F(w).

c) In order to prove that (un)n∈IN strongly converges to u, take v = un as
test in (2.25), and v = u as test in (2.27), which yields

b(U,wn, un) + a(α, un, un) = 〈f, un〉,(2.28)

b(U,w, u) + a(α, u, u) = 〈f, u〉.(2.29)

The equalities (2.28) and (2.29) are the energy balances. The aim of what
follows is to pass to the limit in (2.28) as n→∞.

We first note that by the weak convergence3 of (un)n∈IN to u

(2.30) lim
n→∞

〈f, un〉 = 〈f, u〉.

Next, since U ∈ L∞(I) and (un)n∈IN strongly converges to u in L2(I) (be-
cause uniformly in I), then (Uun)n∈IN strongly converges to Uu in L2(I).
Therefore, as (w′n)n∈IN weakly converges to w′ in L2(I), we deduce that4

(2.31) lim
n→∞

b(U,wn, un) = b(U,w, v).

Combining (2.28), (2.29), (2.30), (2.31) leads to

(2.32) lim
n→∞

a(α, un, un) = a(α, u, u).

2We have used the compactness of the embedding H1
0 (I) ↪→ C(I).

3Since H1
0 (I) is a separable Hilbert space, we do not distinguish weak-star and weak

convergence.

4As usual, for any differentiable function g over I, we write g′ =
dg

dz
.
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As α ≥ ν > 0 and α ∈ L∞(I), v → a(α, v, v)1/2 is a Hilbert norm on H1
0 (I),

equivalent to || · ||h. We deduce from (2.32) that

(2.33) lim
n→∞

||un||h = ||u||h,

which, combined with the weak convergence of (un)n∈IN to u yields the strong
convergence in H1

0 (I), and concludes this step, which also gives the conti-
nuity of F as a byproduct.

In conclusion, B(0, R) being a closed convex subset of H1
0 (I), we deduce

from the Leray-Schauder Theorem that the application F has a fixed point
u, hence the existence of a weak solution to Problem (2.1).

Step iii) Uniqueness. This is equivalent to prove that u = 0 is the unique
solution when f = 0. In this case, we take v = u in (2.29) and integrate by
parts. We get by the same arguments as above,

ν||u||2h ≤ a(α, u, u) ≤ |b(U, u, u)| ≤ U∞||u||2h,
which yields u = 0 by (2.18). �

In what follows, let G denotes the application defined by

(2.34) G :

{
B (0, ν) → H1

0 (I)
U → the unique solution u to Problem (2.1),

which is well defined because of (2.3) and (2.18).

3. 1D Navier-Stokes equation with an eddy viscosity

The 1D Navier-Stokes equation with an eddy viscosity is given by the
equation

(3.1) u ∈ H1
0 (I), B(u, u) +A(α, u) = f,

We prove in this section the existence of a weak solution to (3.1) when F
is small enough compared to ν2. The variational problem corresponding to
Problem (3.1) is similar to the variational problem (2.8) and specified by:

(3.2)
Find u ∈ H1

0 (I) such that
∀ v ∈ H1

0 (I), b(u, u, v) + a(α, u, v) = 〈f, v〉.
The solution is constructed as a fixed point of the application G defined by
(2.34). We then consider the uniqueness issue. The key of the analysis is
the following elementary technical result.

Lemma 3.1. Assume that

(3.3) F < ν2/4,

and let

(3.4) 0 < R1 =
1

2

(
ν −

√
ν2 − 4F

)
, R2 =

1

2

(
ν +

√
ν2 − 4F

)
< ν,

Then all R ∈ [R1, R2] satisfies

(3.5) G (B (0, R)) ⊂ B (0, R) .
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Proof. According to (2.3) and (2.19), we have

(3.6) ||G(U)||h ≤
F

ν − ||U ||h
.

Therefore, all radius R < ν such that

(3.7)
F

ν −R
≤ R

are verifying (3.5). The inequality (3.7) is equivalent to

(3.8) R2 − νR+ F ≤ 0.

When condition (3.3) holds, the polynomial function R → R2 − νR + F
admits R1 and R2 for real roots and (3.8) holds, then (3.5), for R ∈ [R1, R2],
which concludes the proof. �

Theorem 3.2. Assume that (3.3) holds and let R ∈ [R1, R2]. Then G
admits a fixed point in B(0, R), which is a solution to the variational problem
(3.2).

Proof. According to what is done in Section 2 and Lemma 3.1, and to avoid
repetitions, we focus on the compactnes property, stated under the following
form. Let (Un)n∈IN be a sequence in B(0, R) that weakly converges to some
U in H1

0 (I), un = G(Un). We aim at proving that un → u = G(U) as n→∞.
We follow the same outline as that of step ii) in Theorem 2.5’s proof.

a) Extracting subsequences. Since (un)n∈IN is bounded in H1
0 (I) (because

in B(0, R)), as well as (Un)n∈IN, we can extract from these two sequences,
subsequences (still denoted by (un)n∈IN and (Un)n∈IN without risk of confu-
sion) such that (un)n∈IN weakly converges to some u in H1

0 (I), and uniformly
in I, and (Un)n∈IN uniformly converges to U in I.

b) Proving that u = G(U). The equality un = G(Un) means

(3.9) B(Un, un) +A(α, un) = f.

Let v ∈ H1
0 (I) be any test function. We obvioulsy have Unv → Uv in L2

strong, which combined with u′n → u′ in L2 weak yields,

(3.10) lim
n→∞

b(Un, un, v) = b(U, u, v).

Futhermore, since α ∈ L∞, and still because u′n → u′ in L2 weak,

(3.11) lim
n→∞

a(α, un, v) = a(α, u, v).

By consequence, u is a weak solution of the equation,

(3.12) B(U, u) +A(α, u) = f,

hence u = G(U).
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c) Energy method for proving the H1 strong convergence of (un)n∈IN to
u. Taking v = un as test in (3.9) and v = u in (3.12), we get

(3.13)
b(Un, un, un) + a(α, un, un) = 〈f, un〉,

b(U, u, u) + a(α, u, u) = 〈f, u〉.

Since (un)n∈IN and (Un)n∈IN are uniformly convergent, we have in particular
Unun → Uu in L2 strong. Therefore, from the H1 weak convergence of
(un)n∈IN to u, we deduce

(3.14) lim
n→∞

b(Un, un, un) = b(U, u, u), lim
n→∞

〈f, un〉 = 〈f, u〉,

which, by (3.13), yields

(3.15) lim
n→∞

a(α, un, un) = a(α, u, u),

hence the strong convergence of (un)n∈IN to u in H1 as above. The rest of the
proof results from Leray-Schauder’s Theorem and we skip the details. �

We now look at the uniqueness issue. Let θ ∈ [0, 1] and let

(3.16) Rθ = θR1 + (1− θ)R2,

where R1 and R2 are given by (3.4).

Theorem 3.3. Assume that (3.3) holds and let θ ∈ ]12 , 1]. Then the solution
to Problem (3.1) is unique in B(0, Rθ).

Proof. Note that according to Theorem 3.3, we know the existence of a so-
lution to problem (3.1) in B(0, Rθ) whatever the choice of θ ∈ ]12 , 1], because
of (3.3).

Let u1 and u2 be two solutions, δu = u1 − u2 in B(0, Rθ). We deduce
from an usual calculation that δu verifies

(3.17) B(u2, δu) +A(α, δu) = −B(δu, u1).

We take δu as test function in (3.17) and we integrate by parts. Then, by
the inequality (2.7) we deduce

(3.18) ν||δu||2h ≤ ||u2||h||δu||2h + ||u1||h||δu||2h ≤ 2Rθ||δu||2h,

that yields ||δu||2h = 0 when 2Rθ < ν, which is equivalent to θ ∈ ]12 , 1],
concluding the proof. �

A slight modification of the proof above gives the following result (we skip
the details).

Theorem 3.4. Assume that (3.3) holds and let θ ∈ ]12 , 1]. Let (αn)n∈IN be a

sequence of continuous functions defined on I, such that each αn is bounded
below by ν, and that uniformly converge converges to α. Let un ∈ H1

0 (I)
be the solution of B(un, un) + A(αn, un) = f . Then the sequence (un)n∈IN
strongly converges in H1

0 (I) to u, solution of B(u, u) +A(α, u) = f .
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Remark 3.5. Let β ∈ L1(I) such that β ≥ 0 a.e. in I. Let u ∈ H1
0 (I) be

given, and ε(β, u) defined by, for all v ∈ H1
0 (I),

(3.19) 〈ε(β, u), v〉 = e(β, u, v) =

∫ 1

0
β(z)u(z)v(z)dz.

Then ε(β, u) ∈ H−1(I) and ||ε(β, u)||−1,2 ≤ ||β||0,1||u||h. As

(u, v) ∈W → e(β, u, v) = 〈ε(β, u), v〉
is a continuous non negative bilinear form on H1

0 (I), the analysis carried
out before also applies to the following equations, for a given w ∈ H1

0 (I),

B(w, u) +A(α, u) + ε(β, u) = f,(3.20)

B(u, u) +A(α, u) + ε(β, u) = f(3.21)

without any change, by Leray-Schauder’s Theorem and the energy method.
The estimates remain the same because of the non negativity of ε.

4. Existence of a solution to the NSTKE system

In this section, νt and µt are two continuous non negative real valued
functions bounded below by ν > 0 and µ > 0. The NSTKE system (1.3)
can be written in the following form, for (u, k) ∈W ,

(4.1)

{
B(u, u) +A(νt(k), u) = f,

B(u, k) +A(µt(k), k) + ε
(
`−1
√
|k|, k

)
= D(k, u),

where D(k, u) ∈ H−1(I) is the operator specified by, for p ∈ H1
0 (I),

(4.2) 〈D(k, u), p〉 = d(k, u, p) =

∫ 1

0
νt(k(z))

∣∣∣∣dudz (z)

∣∣∣∣2 p(z)dz,
and the operator ε is given by (3.19).

We will prove in this section that system (4.1) has a solution. We first
observe that as k is bounded and νt is continuous, α = νt ◦k is bounded and
we have

(4.3) ||D(k, u)||−1,2 ≤ ||νt ◦ k||0,∞||u||2h.
The variational formulation of (4.1), then (1.3), is given by:

(4.4)

Find (u, k) ∈W such that ∀ (v, p) ∈W,
b(u, u, v) + a(νt(k), u, v) = f,

b(u, k, p) + a(µt(k), k, p) + e(`−1
√
|k|, k, p) = 〈D(k, u), p〉.

We now prove that system (4.1) has a weak solution under suitable assump-
tions about the data:

Theorem 4.1. Assume that (3.3) holds, and in addition

(4.5) R1 =
1

2
(ν −

√
ν2 − 4F ) < µ.

Then Problem (4.4) admits a solution.
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Proof. For the simplicity, we take θ = 1, which means that we are working
in B(0, R1), where R1 = 1

2(ν −
√
ν2 − 4F ). Let q ∈ H1

0 (I), and u = u(q) ∈
B(0, R1) that satisfies in a weak sense

(4.6) B(u(q), u(q)) +A(νt(q), u(q)) = f,

which is uniquely determined, according to Theorems 3.2 and 3.3. We de-
duce from (4.6) that
(4.7)

||D(q, u(q))||−1,2 ≤ ||νt(q)
∣∣∣∣dudz

∣∣∣∣2 ||0,1 = a(νt(q), u(q), u(q)) ≤ FR1 +R3
1,

which substantially improves (4.3) since the bound does not depends on q.
We are now led to consider the equation

(4.8) B(u(q), κ) +A(µt(q), κ) + ε
(
`−1
√
|q|, κ

)
= D(q, u(q)).

By (4.5), Theorem 2.5 combined with Remark 3.5 applies to equation (4.8).
Therefore, it has a unique weak solution k = κ(q) ∈ H1

0 (I) such that, by
(2.19) and (4.7),

(4.9) ||κ(q)||h ≤
FR1 +R3

1

µ−R1
= R′.

Consequently, we are able to define the application

(4.10) κ :

{
B(0, R′)→ B(0, R′)

q → k = κ(q).

Any fixed point k of the application κ yields a weak solution to (4.1), given
by (u(k), k). In view of all we already have done and to avoid repetition, it
remains to check the compactness of the application κ to ensure the existence
of such a fixed point. In what follows, we skip elementary steps to get to
the essential.

Thus, let (qn)n∈IN be a sequence that weakly converges to q in H1
0 (I),

uniformly in I, and such that (kn)n∈IN = (κ(qn))n∈IN weakly converges to
some k, uniformly in I (after having extracted a subsequence). We must
prove that k = κ(q) and that (kn)n∈IN strongly converges to k in H1

0 (I). We
treat one equation after each other.

Let αn = νt(qn). As νt is continuous and qn, q ∈ C(I), qn → q uniformly,
then αn → α = νt(q) uniformly in I. According to Theorem 3.4, un =
u(qn) → u = u(q) strongly in H1

0 (I). Thus D(qn, u(qn)) → D(q, u(q))
strongly in L1(I). In particular, from H1

0 (I) ↪→ C(I), we get

(4.11) ∀ p ∈ H1
0 (I), lim

n→∞
〈D(qn, u(qn)), p〉 = 〈D(q, u(q)), p〉.

Let us consider the second equation, and let p ∈ H1
0 (I). Then for all n ∈ IN,

we have
(4.12)

b(u(qn), kn, p) + a(µt(qn), kn, p) + e
(
`−1
√
|qn|, kn, p

)
= 〈D(qn, u(qn)), p〉.
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According to the previous results, in particular by (4.11) and because βn =

µt(kn)→ β = µt(k) uniformly in I, the term e(`−1
√
|qn|, kn, p) being not a

source of difficulty, we deduce from (4.12)

(4.13) b(u(q), k, p) + a(µt(q), k, p) + e
(
`−1
√
|q|, k, p

)
= 〈D(q, u(q)), p〉,

hence k = κ(q).
It remains to prove the strong convergence of (kn)n∈IN by the energy

method, which consists in taking p = kn in (4.12). As qn → q, u(qn)→ u(q)
and kn → k, all uniformly in I, then by the weak convergence of (kn)n∈IN to k

inH1
0 (I), b(u(qn), kn, kn)→ b(u(q), k, k) and obviously e(`−1

√
|qn|, kn, kn)→

e(`−1
√
|q|, k, k) and by (4.11), 〈D(qn, u(qn)), kn〉 → 〈D(q, u(q)), k〉. There-

fore, by (4.13)

lim
n→∞

a(µt(qn), kn, kn) = a(µt(q), k, k),

hence the strong convergence in H1
0 (I) of (kn)n∈IN to k, which concludes the

proof. �

5. Additional remarks and open problems

It remains questions about maximum principle and uniqueness.

- Maximum principle. It is expected that k ≥ 0 in I. This is usually
shown in the 2D and 3D cases, by splitting k as k = k+ − k−, and proving
b(v, k, k−) = 0 by the incompressibility constrain (see in [7, section 7.5.2]).
However, this does not work anymore in the 1D case. Thus, the problem
remains open.

- Uniqueness. We already know that uniqueness results about the NSTKE
system (1.1) in the 2D and 3D case are subjected to smallness assumptions
about the L∞ norm of the derivative of νt and µt (see [2, 6]). We conjec-
ture that the same conditions must be assumed in the 1D case. Beyond
the uniqueness issue is the convergence of the Picard iterations related to
Problem (4.1),
(5.1){

B(un−1, un) +A(νt(kn−1), un) = f,

B(un−1, kn) +A(µt(kn−1), kn) + ε
(
`−1
√
|kn−1|, kn

)
= D(kn−1, un−1),

which is an interesting problem.

We conclude by mentioning a last problem that may arise in some at-
mospheric boundary layer regimes, in which the constants ν and µ are not
involved in the definition of the eddy coefficents, the mixing length is pro-
portional to the distance to the ground, ` = `(z) = κz (κ > 0 being the Van
Kármán constant), and the mean motion is driven by the friction velocity
given by

u2? = u2?(u) = ν

∣∣∣∣dudz (0)

∣∣∣∣
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(see in [19]), that can be considered as a source term in the equation for the
mean motion. This suggests to consider the following system in I = [0, 1]:

(5.2)


B(u, u) +A(z

√
k, u) = u2?(u),

B(u, k) +A(z
√
k, k) + ε

(√
k

z
, k

)
= z
√
k

∣∣∣∣dudz
∣∣∣∣2 ,

(assuming k ≥ 0) which yields a difficult problem.
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